diff --git a/notebooks/SupervisedTest.ipynb b/notebooks/SupervisedTest.ipynb new file mode 100755 index 0000000..614e729 --- /dev/null +++ b/notebooks/SupervisedTest.ipynb @@ -0,0 +1,301 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:6c8c7d359eb62718aa13f30d7424baa01bf103b5c3b99c751cd65708ab91b906" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Here we try some simple things from supervised ML and compare to BNN" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import utils\n", + "from sklearn.metrics import roc_curve, roc_auc_score" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import sys\n", + "sys.path.insert(0, '/mnt/w76/notebook/axelr/lhcb_trigger_ml/IPythonWorkflow/')\n", + "sys.path.insert(0, '/local/userdata/shelf/notebook/antares/work/REP')" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 2 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "variables = [\"log(Pt_BJ1)\", \"log(Pt_BJ2)\", \"log(Pt_J1J2)\", \"log(Pt_JNotBest)\",\n", + " \"log(Ht)\", \"DR_J1J2\", \"Eta_LJ\", \"log(M_J1J2)\", \"log(M_JNotBest)\",\n", + " \"log(M_JW)\", \"log(Pttop_BJ1)\", \"Cos_LepLJ_BJ1\", \"Cos_WLJ_BJ1\",\n", + " \"log(Pt_Lep)\", \"Planarity\", \"log(Mtop_BJ1)\", \"Eta_Lep\", \"N_BJ\"]\n", + "folder = '/mnt/w76/notebook/datasets/doudko/samples/'\n", + "# label_names = ['ttbar', 'Wjets', 'tchan', 'tWchan', 'schan', 'DY', 'WW', 'WZ','ZZ']" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "file_labels = utils.get_file_labels(['ttbar', 'Wjets'], folder=folder)\n", + "data, labels, weights = utils.load_data(file_labels, variables, folder=folder)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 4 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from commonutils import train_test_split\n", + "trainX, testX, trainY, testY, trainW, testW = train_test_split(data, labels, weights)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "normalizer is ok\n", + "computeSignalKnnIndices is ok" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# reading predications of Lev's BNN\n", + "lev_pred, lev_labels, lev_weights = utils.load_data(utils.get_file_labels(['ttbar', 'Wjets']), ['bnn_ttwj'])\n", + "lev_pred = - lev_pred" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simple gradient boosting\n", + "from lhcb_trigger_ml" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import gradient_boosting as gb\n", + "from reports import ClassifiersDict" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ks2samp is ok\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clfs = ClassifiersDict()\n", + "# clfs['gb'] = GradientBoostingClassifier(subsample=0.1, max_depth=8, max_features=8, learning_rate=0.05, min_samples_leaf=100)\n", + "clfs['gb'] = gb.GradientBoosting(loss=gb.AdaLossFunction(), subsample=0.15, max_depth=12, n_estimators=400,\n", + " max_features=8, learning_rate=0.05, min_samples_leaf=500, update_tree=True, update_on='all')" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clfs.fit(trainX, trainY, sample_weight=trainW)\n", + "pred = clfs.test_on(testX, testY, sample_weight=testW)" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pred.roc()" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pred.learning_curves()" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MatrixNet" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from cern_utils import ef_classifier, data_storage" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 12 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "mn = ef_classifier.ClassifierEF(directory='mn', formula_name='lev_mn_train', \n", + " dataset_name='lev_mn', url_base='test02cern-i.vs.os.yandex.net')\n", + "mn.set_params(features=variables, iterations=10000, sync=False)\n", + "mn.fit(data_storage.DataStorageDF(trainX.iloc[trainY == 1]), data_storage.DataStorageDF(trainX.iloc[trainY == 0]), \n", + " trainW[trainY == 1], trainW[trainY == 0])" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 17, + "text": [ + "" + ] + } + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "prob_mn = mn.predict(data_storage.DataStorageDF(testX))" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "figure(figsize=[10, 7])\n", + "fpr, tpr, _ = roc_curve(testY, prob_mn, sample_weight=testW)\n", + "roc = roc_auc_score(testY, prob_mn, sample_weight=testW)\n", + "plot(fpr, tpr, label='MN (area = %.3f)' % roc)\n", + "legend(loc='lower left')\n", + "grid()" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Looking at the rocs together" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pred.roc()\n", + "\n", + "fpr, tpr, _ = roc_curve(lev_labels, lev_pred.values, sample_weight=lev_weights)\n", + "roc = roc_auc_score(lev_labels, lev_pred.values, sample_weight=lev_weights)\n", + "plot(tpr, 1 - fpr, label='bnn (area = %.3f)' % roc)\n", + "\n", + "fpr_mn, tpr_mn, _ = roc_curve(testY, prob_mn, sample_weight=testW)\n", + "roc_mn = roc_auc_score(testY, prob_mn, sample_weight=testW)\n", + "plot(tpr_mn, 1 - fpr_mn, label='MN (area = %.3f)' % roc_mn)\n", + "\n", + "\n", + "legend(loc='lower left')\n", + "grid()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAIwCAYAAACr5owjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYlXX6x/H3OYd9k0VAQNyXNENNs9JMkqQys8WpLJgi\n262saarpN1JpMxNjm1ZOe6ZZYVnZ4oJLJm64pGmaabkvKJsgAnLgLL8/HiwjMjPgYfm8rosrHs52\nH7ovvPnyeb4PiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiICBAP7DO7\nCBGRE1nNLkBExAS7gTLgKFAIfAiEVrtPf2AxcKTqPp8D3ardJwiYBOypeq79wKtAy9OoaRww/TQe\n92cf21jtBgabXYSING8apEWkOXIDw4BA4AygC8Ywetz5wHzgPSAMiAZWASuA9lX38QK+BNoCF1Y9\nV2+MVdNz6voNNGC2enodN2Cpp9cSERERkSq7+OVq5tPAvBOOl1V9rbqPgGlVn9+GsRLt+Qde93/A\nAaAE2AQkVH39UsAOVGCsbH/zG48fB+RU3efHqsf/1mNvA7ZVvdZ+4IEanuswsLfqvi6gQ9VtvsAr\nQC7Gavy0qq/VJAXjF4znq+4/HvA5yeOjMH5JOf7XgBUnPNeJNQBMBf5V9Xk8P0c7pgNOfv6rwkO/\nUZuIiIiI1LJd/DzEtga+BR6vOvYDHMC5NTzuRiC76vMZwMt/8HWvAwKqPr8HY5D1qTp+AnjnJI89\nC2PobVV1HA20O8ljE4GYqs/Pxxg4z6s6vhpjuG6PsbL+Fr8cYl8HPsZYZfcFZmFEWGqSAlQCt1Yd\ne//O45/D+L7ZMFaUT/w+Vx+k3waerPo8nl9mpKv/MiQiUu8U7RCR5sgCfAoUYwynO4B/V90WivGz\nMbeGx+Xyc/45DMj7g6/7IcYKMRir006MAfl4TSeLKhzDGFK7Y6yCZ2PkhH/rsQswVr8BsoAMjAgK\nwLXAmxjDaAXGKvJxXsBfgYcxhu9jGKvz152ktj0YwzgYkYuTPb4EY1W6bdV9V5/keY+/NxGRBkmD\ntIg0R27gSoyTBQcBFwF9q24rxFgZjajhcRH8PDznA+F/8HUfw4hkHD+BMZSfV6h/z3bg7xhRhxyM\nmEnrk9z/amAdUFT1WsMB/6rbwvl5yKba5+EYA/u6qscVYsRegk7yWgf/wOOfxfjlZRHGLwJjT/K8\nIiINmgZpEWnulgEvAhOqjksxVnD/UsN9R2CcYAjGIDgUYwX3VFwMjAYuB1oAIUABP6+4uk/hOd4F\nBgBtMHLRz/zGYwOAdIy4SmjVa31+wmvl8nPsA345kBdgRDU6Vz0uBAjm1Af+33v8UeB+jAjHZcAY\njBgKVY/zO+G5Wtbw3o47le+XiEid0iAtImIM0v34Oa/7KHA3Ru7XEyPn+0+MlevjMYjpGAPpDIyY\nAhhxj39iDIjV+WOsdB8BPIBH+OWWewVALL8dZegMDKx6bAXGIO36jcd6Vn0crbpPAnDJCc/1UdV7\nO56RPnFVuLzqvT2HMQCDkctO4NT83uMv4edsdwlGvOX4ULwRSML4t2kwxvf7txzm5x1URERMoUFa\nRMSIaUwD/lF1vAJj4Euuui0b44S9CzDy1GAMsxdj5IOXYQytGzFWemvK/c7B2Jd6J0akwY0RcThu\nJsbAfgT4uobH+wATMaIS+RgnG/7jNx5biJFR/gRj4LwZmH3Cc83COJFvPUZkZG3V151V/7236jm+\nx8iRZwI9aqiJqvdRfXX4ZI8/E1iKsfK/FiNbvbDqtvsx8tuFGCcxflbDax33DEbMpQh48DdqExER\nERGpUx0xhujf2uJORERERESqDMOIiQRi7CYy39xyRESkuikYZ5dvOsl9XgS+w/gTY+/6KEpERFiI\nEbs4CszllycfiohIAzAQYzj+rUF6BMZerlTdb0N9FCUiIiIi8mfV9cmGyzBOGvktQzHO7gbjsrYe\nnHxfVBERERGRBsHD5NdvzS8v+bq/6mv7T7xTi5CW7iOF+fVZl4iIiIg0P5lA/Kne2exBGn69Z+qv\nNtk/UphPQLtovAL9cANWTw+8QgPxbRWGGzdlhw4DbrxbheAGyg8V4LaAd6vgquPDuC1uvFqFAG5K\nDxZjtbjwatUCF1BxqBCnRzmekWG4XVYqDxXhtrixRgfixo3z0BHcuLDEBOC2uHAdPIoLC5Y2nmBx\n4c4uBYsT2niBxQX7y8DixNLWhtuvEH70Nr7eHuN+e4ytXy1tPMBtxb2vAlxWPKMDsLituPe4sLot\neMT6YHXbqMguwebyIDA6DJvbhmN/OR54EBQTgqfFg/L9pViwEdK+BYGWAI7sL8TDZiWiXTS+XhYO\n78vHw2YjsnM44X4hHNqZg7enJ93P7ozL5iJ/ZwFent70Pq8XXl5+fLv+e/x8AzlvYH+8bF6sz1qP\nj4cPFw66EE+bJ6uXr8bD6sGQhCF4WD1YsmQJAPHx8QD1cvzf//6XjIyMens9HTeO45SUFFJSUhpM\nPTo2//jSSy/l0UcfbTD16LhhHE+dOpWpU6c2mHp0bN7xhg0bKCoq4tNPP6VXr15MmzZtEH/Ab238\nX5vaAV8AZ9Vw21sYl479qOp4M8berQeq3c8dHR1NSkoK48ePx8OjIcz/v+ZyunFUuHDaHVQec+Cw\nO3HYnVSWO3FUuHCUO6i0u6i0O7GXV1J+rAJ7uYNj5RUUHXFicdupqKzEbjc+Kiod2CsdlDvLqbS7\nKXdUYnc6KHc4sDsrsbsc2N0Oyp0Oip1u3N6FuCu9qHS5qcTNUYcHHtYKHLixexdTUtECL1sZTqsL\nh9WB3bcEnF5gdWCx2nHbKsEvHy+3A6vFgcWjHIutgsqAfGwOL+OXBlslbpsTl82B01YBgIfLA6fV\nibfDG1+HH95Y8cQGVrBaoSVB+Ng8jGHeqwUBXj74ensT7BOEr5c/fj6B+PsG4ecfjNvbm8jQNvj6\nBeHl4U2rgFYE+wQT6BWIxfJzu6akpDB16lST/k9LQ6W+kOrUE1IT9YVUd7wnqmaNU56PzZ5I52Jc\n8OAj4GyMfUyrD9EArF+/nuTkZAYPHkx6ejoxMQ3vBHOrzYKXrw18bfgGe5tdzilzu6GyEux2KCuD\n8nI4dgzKjjqxlzooL3FwrMRJeamTYyVOio+4KSl24Xa6KCm1U1JWTmn5MY6Wl5N7xI0FO+WOSvLs\nDlwuF/mWcg67y6m0OLHYyrF7HcVpdeLhWYrFswy3Rxn+Xgdw+edhsVTiaSulwr8Qi0c5Lk87dp9j\nOD0q8HR64uHyxGJxUbnDwYpHF+Nj9SLaFkyQlw+Rvi0I8vfD3zeIQL9gbD6+tGwRhX9gGF7+QbQM\naoW/pz9B3kEEeQfh5+n3i+FcGr927dqZXYI0MOoJqYn6Qqo73Z6o60E6HRgEtMTIQj+BcdlagNeA\njzEuAfsdxuVub/mtJ4qMjCQjI4O0tDQeeOABZs6cWaeFNycWC3h5GR+BgSfeYqv6qP1fCtxuY2Av\nK4PiYmNwLygAhwNKSiD3oAP3MTs5BypxH62gpLic7LxyXO6jFJcfY1vu1wQu7sxBx1EO+uRx1F1J\nhcUNnsfAsxRfn3wsgd/jQSU2WymOwBysOLEHFuH0tFPpVQ6Ah9PDWFG3OQhy+hGED1GWIAK8vLF4\nWYnxi8DPJ5BWgVH4B4QQENiSFsGt8PEJINgnGD9PP/w8/QjyDqKFTwv8Pf01nJvo+J/rRI5TT0hN\n1BdS3en2RF0P0jecwn3uPdUns9lspKam4nQ6f//O0qBZLODra3yEhdV0Dw9O1p5LljhqbHqnE0pL\njQG9tNQY0o8eheIjbkqLKjm4pwLsdkryKykqqKSwuJwD+U4q3SUctpeT7SzimworLqsdu28h3n65\n4FmKn9dhLIHf4umuxOZVQEVAEV64cXlV4PKyU+F9jGOe5VTaHLgsbiLcQVitFs7wicHTw4so3wis\nnl7Etogl0D+ElkGtCAqKwN+vBV42L3w8fAjxCSHML4yWfi2xWqy19a0WERGROmJ2tOO02Gw2s0uQ\nBspmg6Ag4+OXLIBX1UfAKT3X8dXxwsKqVfJcI/6SfcCNo6yCA7sqqCy1s287VB5zsPeQJ25nOT8W\nuXH5HOaoZyGZPodx2yrw9i3AP3APNt8cvDwPYg2ci83lwNN2DKe3E4u3naN+5eQGFGJzW/F3e+Fl\ntdHSFkiYVwvCfEPx8vYnKrg1QUEtcXrYiA6MwdPmSWxQLGF+YYT6hhLmG0aQdxCeNs/ff4MiIiLy\npzSWv0G73e5fbebxC06nUwO2NDgulzGEFxVBXp6xSr5vX9VQXu5m/x4HjhI72fucVB6rJDvHg+Iy\nJ0ecdgrddmw+hfj65REUuAePwJ2EWvKp9M3B31WKM+goTv8yLL7llAaUcsi/CCxuiq0VeGIj0OZL\nW98owvzCCPIPJTIkFj/vAKwWK51CO9HSryUdQzoS4R9BC58W+Hn6mf3tEhERMdUfPdmwyQzSKSkp\nxMTENOhdPUT+CKfTiKbk5xv/PXAADh0yVsqPFjo4klPOzu1ODmZD0REoOOJB/lFvbBYHoQG5+Abs\nxssrhyD/bbj89uDvKsDaIpcg3zIqg8s4GHqEHP8S7DYXudYyAMJtQfRq0ZUuLbsS0bItsS07Euob\nSmRAJBH+EUT4RygHLiIiTVazHaRzcnL461//it1uJz09nejo6HoqTcywZMkSnSxSA7fbWAHPzzeG\n7qNHITvbOJGzIN/N7h8rKSmsYO8+CwdyPMgvNk4kjQoowt/vIJ6BO/AKX4PLfycO/z34eBZRFlzC\n0RZFFPuVUeJhbHkYavGno4+x2t0htBOxkZ1pERRBdGA0cZFxtA5qbUq8RH0h1aknpCbqC6nueE80\ntu3vas2Ju3r06dOHadOmkZiYaHZZIvXKYjF2XgkMhPbtf3UrP+fEf1ZeDnl5wRw8GExpaTcOHBjG\n0aOQm+MmZ38l2bsr2LXbgiPfRskRH/AsoyxoP7mh3+MKXUduwHa+8ZqHzaeQQ1GHORhyhFLPSkJc\n3oRbAgjw9MPD05uYgGg6texC26gzCGnRin6tzyUqIAp/L/96+u6IiIjUriazIn2izMxMkpKSmDJl\nioZpkVp27Jix2n3oEBw8CD/+aKx2//C9gwN7nRTkQ2GJiyLHMXxa7CcyZC/Bgdvx8d2Br+92jgXs\nIDc8j6KgMgp9KwEIcXnTzhJCa99IOoZ0oEOr7pzR8VzatTqDNi3a4O3RePZlFxGRxqvZRjuqy8vL\nIyQkRHlpEZNUVPx8YuXu3bB3rzF8794N+/Y4yctxsTfbA7yPEttmGy3CN+MTsBUPn92UBvxAUfAu\nigOOccSvAj+njVB86ewZQaRfBG1DOxAT2Yl2bXrSpdWZdA7rrC0DRUTkT9MgLc2C8m1Nx/Ec9/79\nxqC9fTvk5EBurpvvNzvZu99NiTUP//AdBPnn4h2yBZv/Tgj8kUr//RyOOESJr52WDl/s+5z07N6e\n6BatiY7sxHmd4ukRcRYdQjrg6+lr9lsVE+hnhdREfSHVNfuMtIg0ToGB0LWr8fFLFo7/iHK7oykq\niiYvD/bsGcGBA8bgnZfj4sfV5WzdUcauQgd4zmbXmmAKw1ewrcU65oRlkBN1iGJvOx5uK9GeIfQO\n60Fcu3NpG9GFLmFd6BjakUj/SGxWbZ8pIiJ/TLNakS4oKGD06NFMnDhRu3qINDFut7FX9/ffG7nt\nH7a52bqpgh+3OjlUAEUcITBiMzEha7C22Eh55A4KW+2lOLAQp9XJmbY2nBXSkVatOtKtbV+6hXen\nW3g3wnzDtN2fiEgzoWjHSbhcLtLS0pg8ebJ29RBpZkpLjQF73z7Yu8dF8cFSvt9YwZ4fK/jh6GEO\n+e+FFnvxCdtEkP8OKlp/R1HYPgD6ubvQN6wjEdGdaNOuJ77e/vSM7EnH0I542bx+55VFRKSx0CB9\nCpYsWUJycjIpKSmMGzdOJyQ2Qsq3SU3+bF+UlsKuXbBrYzFZC46ydaubLYfz2WndR2XMGnz8svHz\n3Ycl9ACOFnkc8c8jCH/CfFvQPrQjZ0T1ICaoNbFBsfRq1Yv2Ie0J8Dq1S9JL3dDPCqmJ+kKqU0b6\nD4iPj2fdunUkJyczZMgQFixYgKdn/V88QkQaFn9/6NEDevQI4oqkoKqvtgZ6cezYFWzfDnu2lbNt\nRT7frbazZbeLDUWe7PItxh6Wyf6INXi0XIgl5DB54fvI9SrEZrExIHYA3cK7ERcZR9/ovpwZfqb2\nzxYRaQKa5Yr0cU6nk8zMTAYPHlzrzy0izcexY7BjB2xcVcaW1SVs31rJDzs92HCwJUR8R2TkQvyj\nvsPSegsl4XvJ8TlIx4B2dGt1Jj0iz6KlX0u8bF60C25Hz1Y9iQqIMuXKkCIizZ2iHSIiDYTbbVye\nfdu6EratyGPP5qNs+M6TTdl+7AoohLZLaBO0Ad/AUtxRuZSFHeCoZwFHnEX0iepDh5AOdGvZjd5R\nvekU2omuYV01YIuI1CEN0tIsKN8mNWlMfeFywcE9FaxbUMD2rDzyt+SyYWcQO4tbss0aRtv284js\nvp6gzkcoitjLIfdW9pfspmtYV9oGt6V/6/7ERcbRPbw7bYPb4uPhY/ZbapAaU09I/VFfSHXKSNei\n5cuXU1payiWXXGJ2KSLSRFmtENPei5g7o+DOqF/cVn6oiNVT27J0TijfLbFwpCiEw5yJxeYiqOcS\nHD1X81Xr3cwJ+4pNxaspd5QTGxRL66DWtPBpQaeQTpwddTaXdLqE6EBt9SkiUle0Il2DZcuWMXLk\nSFJSUhg/frx29RARc5WUwDffsHXJIdasdLB9h4X12ZFsKu3IXtrg5VFCtx4r6BRXjl/PA3hF7SfH\n/R0ZO+bibfOmbXBbhnQYwjnR55DQIYFWAa3MfkciIg2Soh21JCcnh+TkZOx2O+np6cTExNTr64uI\n/C6XC8e+g2yf+wOb5uzlu3XlLM3tyhr6UeryIzqkhLa9dxDSdxPumK/J81jHN/lZ9Ijowbkx59Iu\nuB2dwzpzRZcr8PbwNvvdiIiYToN0LXI6naSlpfG///2Pd955hyFDhtR7DVIz5dukJuoLoKwMNmyg\nbOnXbJm/j7Xf+bG5OJYfWvRjUW4cHl7lxFy4iFZxW/Bs/S0HLWvZXbyDEN8Qru1+Lee1Po/LOl1G\nuH+42e+kVqgnpCbqC6lOGek6YLPZSE1N5YILLqCystLsckREfp+fH/Tvj1///vR9FPoCZGfD/Pm4\nM55i7/p8Vme2YuuGc1noMY4dhzqBtZLwIctZl7eU+WEvcY/zXoJ8Ajkn+hx6RPRgWJdh9Inqox1D\nRESq0Yq0iEhzU1EBW7bAl1/izlzKni2lrN0XybqAeNZ49uernO74tFlPh4sX4tnhG/bbMimw5xAX\nGcelHS8lvl08/WP708KnhdnvRESkVinaISIif1xlJXz/Paxfj/vrdWxdUUDGlljWeg1gmesC9js9\naJ8wh6BuG8kJ/ZhDlduJ9I/kwrYXMqzLMM5vfT4dQztitVjNficiIqdNg3Q9yszMZMCAAdrVwwTK\nt0lN1Be1zOmEbdtg0SIOfrSClWs9Wed3AV97X8C6kjYcDtxGy15ZeMXNJt93OQ7sJHZM5LyY8+ge\n3p24yDg6hnbEw2rez0j1hNREfSHVKSNdz1wuFxMmTKC0tJT09HSio7VXq4g0MTYbdO8O3bsTNWYM\nI5xORnz3HWStgJXPUL5iHVlL2rFi6w1kVL7BCmceK7uv4IcztmOJfJl820aOVBRyRsszGNhmIP1i\n+jEgdgDdwruZ/c5ERGqFVqT/BJfLRVpaGpMnT2batGkkJiaaXZKISP3Kz4dVqyArC+fK1WxZfZTM\noCtY7HMZcw70IjDyEO0Grieo2zrsLVfz9eHFeNm8GN51OANiB3B+6/Pp2aqnIiEi0iAo2mGCzMxM\nkpKSSElJYdy4cYp6iEjz5XDApk2QlYV7ZRZbMvNYXdSVjOCRLC7sRUGpD72HfkNswmyOBW3k26IV\n5JTmcEuvWxjRbQQXtb8IP08/s9+FiDRTGqRNkpuby5gxY5g4cSJRUVG//wD5U5Rvk5qoLxqofftg\n8WLIymL/x6v5wudaZh27lBVHzsRttXDxyLV49JvNNvdc9h7dybAuw0jskEif6D6cFXHW8X/YTot6\nQmqivpDqlJE2WUREBDNmzDC7DBGRhic2Fm6+GW6+mdYTj3H3pk3cnZuN+8DXbP38BzJmejPnk6vY\nUpJG3MAs9h5dyCsHZrL56D1EBkRyeefLGdFtBP1i+uHv5W/2uxER+YlWpEVExFwOB2RlUfzJIpa9\nt5e57sv40hXPtsPhhPdZSmTCTI62/Io9ZVs4O+psEtoncEGbCxjWZZiy1SJSqxTtaGBcLhf5+flE\nRESYXYqISMPncMCKFZCZSdniVaxd42JB6A184hzO9kIfug1bQEDfL9jKLML8Q7ms02UM6zKMhPYJ\n2Kw2s6sXkUbujw7S+lW+jmVlZdGzZ0/mz59vdilNypIlS8wuQRog9UUT4OEBgwbB44/jt2Qug4o+\n5z+vteT7QXdzMHoQd362mIinb8Lx7/04Pn2RNd8e4cr0q/D4lwdnvXIWjy56lI+3fIzT5QTUE1Iz\n9YVUd7o9oUG6jg0YMID09HRGjRrF2LFjcTgcZpckItJ4eHnB5ZfDjBm03LmGe0qe5tM38sg5+yrS\nVnxA7LMpuMcX0276YSK/fZr9ez14/KvH8fiXB+e/dT5zf5xLuaPc7HchIk2Uoh31JCcnh+TkZOx2\nO+np6cTExJhdkohI41ZeDgsW4EifyYovDvNF6M3MqRzCvuJg4ocfpMU5s9nk9TqbCtYxqO0gEjsm\nck23a+ga1vVP7QQiIk2XMtINmNPpJC0tjY0bNzJz5kyzyxERaTqOHYN58+CDD9g+9wcWtr6FzxxD\nmb+9Ex27F3LmyA9xxy5j3r4P6NayG9efeT1/6f4XurbsanblItKAaJBuBJxOJzabTor5M7QHqNRE\nfSEAlJbCggWwahWLZmfg2NuF9yIe4LOD/XDaLHQZ/hm2uA9YVz6TuMg44tvG0ym0E8O6DKN9SHuz\nq5d6oJ8VUp32kW5ENESLiNQhf3+4+mq4+mo8LruMi7t04dKPP8b94f+x/dsyFu24j0+3vITfjndx\nJWaw5Zwslvt9zJiMMbQPbs+o3qMY0mEIvaN642XzMvvdiEgDphXpBkKr1CIi9eDAAZg1C2bN4uCa\nfczpdD9LfC9j3tZ2BAa7aHPZh1jP+IJdjiz2Fe/l0k6XckuvWxjedTjeHt5mVy8idUzRjkYqJSWF\nmJgYxo8fj4eH/lAgIlLnDh+G2bNh1izci75kU/frmdX6PubsOZPNW2wM+8sR/PtP41vLO+wo3E7/\n2P4M6zKMm3reRIBXgNnVi0gd0D7SjdSECRNYu3YtCQkJZGdnm11Og6c9QKUm6gup7qQ9ERoKN90E\ns2ZhyTlE3COX8sSRB1mztQWbzhzJucXf8t1rd7Hxnq8ZdmA9rS39mL5xOoFpgVw781qmbphK4bHC\nensvUnv0s0Kq0z7SjVxkZCQZGRkkJibSp08fFixYYHZJIiLNh58fjBgBixZBTg4dx9/E34PeYM2u\nCHb1u57ojbksfOhRyl5cyaMU0tqjF2nL0wh/JpznVj5Hsb3Y7HcgIiZQtKMByszMJCkpiSlTppCY\nmGh2OSIizVdZmTFcf/UV7i8Xs2hXRz6MvJc3dwymc2c3Q29fy7chT/LVgTn0i+nHwDYDGd51OANi\nB+iS5SKNkDLSTUReXh4hISHKS4uINCQHD8LHH+N64y2+zOnB9FYP896ms+g58ADdElfSps8Wpm5+\njUMlh0gdmMqYc8cQ7h9udtUicoqUkW4iwsPDNUSfhPJtUhP1hVRX6z0RFQX33ot1w3qGzL6fd857\nmdKgaJ5wpmP/vD8vX/cEF63P5r4Wi/ihYAexE2O584s7+S73O5rbglBDpp8VUp0y0iIiIvXFYoG+\nfeHVV/HZvZUrr/flo9A7+NF6Bn32f86G9wcwO+V9zl61ia3fWznvzfPo+GJH3v32XSqcFWZXLyK1\nRNGORqSgoIDRo0czceJEoqOjzS5HRESq27sXXnoJ3nqLfSFxzIu9nc9dw1j1fSAD7/qQDcHj2V2y\nlbEDx3LjWTfSPby72RWLyAmUkW7CXC4XaWlpTJ48mWnTpulERBGRhqqiArZuhU8/hTff5LsW/Xmj\nVSrpG7vj2XYDLRJfYpfvTOJa9WBEtxG0C27HNd2u0QmKIiZTRroJs1qtjB07lvT0dEaNGkVqaioO\nh8PsskyhfJvURH0h1ZnWE15eEBcHjz8Ou3Zx5oSbmOQ3lkPlIbzn8wlD1j1CyGt5ZM++jTnLshkz\n90GCJwRz06ybWLV/lfLUdUw/K6Q6ZaSbkfj4eNatW8fq1asZMmQIlZWVZpckIiK/xWaDoUPhs8+w\n7NnNoNu7MMnjYfZVdOCtAE9aZY6jYOw+4tZlQmEHhr0/jA4vduD5rOc5UHzA7OpF5CQU7WjEnE4n\nmZmZDB482OxSRETkj9q8Gd5+Gz78EHtgS97s+gwvborH5m2j/20z2ej3PAdL9/Pg+Q9yZ5878ffy\nN7tikSZPGWkREZHGxOWClSvh7bdxf/wJi3uM4fljd7Psx0gG3zWH/I4vsipnMX8//+/c2fdOOoR0\nMLtikSZLGWlpFpRvk5qoL6S6RtETVitccAG89RaWvXtISIlljt+1bAkeQLv1bfnmwfn0+GY+X337\nAx1f7MjVH1zNhkMbzK66UWsUfSH1Shlp+cny5cuZP3++2WWIiMgfFRQEt90Gy5bR+v2nmeTxMIWh\nnXg02IHXxx/Rckoe2dui6P1ab26adRM/FvyoExNFTKRoRxO0bNkyRo4cSUpKCuPHj9cVEkVEGrO1\na+E//4GlS/l+8D38p2QMn2+qJDDpdrL95xIbFEvSWUmM6j2KzmGdza5WpFFTRloAyMnJITk5Gbvd\nTnp6OjExMWaXJCIif8aBAzB9Orz+OoWtz+JVnwd4ecN5BPdbTcDFL7L52EJ6RvZkaOeh3NnnTsL8\nwsyuWKSI1btrAAAgAElEQVTRUUZaAIiMjCQjI4PExET69u3LwoULzS6pVinfJjVRX0h1TaonYmLg\n0Udh2zZC7rqe/+udwe7YQTyydCbO51/Gb3IuEdk38/n3c2j5TEtu/exWtuZvVfSjBk2qL6RWKCMt\nv2Kz2UhNTSU9Pd3sUkREpLZ4esKNN8KECdjWreGvWaNZE3cbX3lfi3vBNXz7wAqS8/ZQXGyl92u9\n6Tq5K+99+x5Ol9PsykWaHEU7REREGju3Gz7+GMaMYduFt/OG3/28NSuU88530/Gad1jumMTW/O+Z\ndOkkbu19K542T7MrFmmQlJEWERFprg4fhmeegbffpqRjT2b0+i//W9mLoiILZ9/9IoucjxETFMM1\n3a7hrr530TqotdkVizQoykjLKcvMzMThcJhdxmlRvk1qor6Q6ppdT4SGQloa7NtHwIN3cNuSZL6J\nuJQZT+/FlTUG94TDnJk/jhW71xL3Shyvff1as8xQN7u+kN+ljLT8IS6XiwkTJpCQkEB2drbZ5YiI\nSG3y9IQRI2DDBkhM5Nx7+jLryqmsWe7GZ/t1bPj7fBLyPmPsl6kkvpvIyn0rza5YpFFStKMZc7lc\npKWlMXnyZKZNm0ZiYqLZJYmISF1YtcrY8SMvD157jQPtL+Df/4YZMyvpfffzLPd6jKSzknj9iteV\nn5ZmTRlp+cMyMzNJSkoiJSWFcePG6QIuIiJNkdsNn3wC998PV1wBaWnsPBzMhAkwbWYeruQh+Efk\nMfq8W3n4ggcJ9gk2u2KReqeMtPxhgwYNYv369Wzfvp28vDyzyzklyrdJTdQXUp164gQWixH32LzZ\nGKo7d6bDh//ltcmVHCsIZ97Va4lZ9T6TPlpN2ISW3DTrJnYc3mF21XVCfSHVKSMtf0pERAQzZswg\nKirK7FJERKQuBQfDq6/CypWwdCn07Ytl9SoSLvJk0xeD+GDYfNrN3cySjGC6vNSFxxY/zv7i/WZX\nLdIgKdohIiLSXLnd8P77Rn46NhYeeQSGD6fSaeV//4Onp35H+UX3Uh62lvEXPcED5z2gDLU0acpI\nS61yuVzk5+cTERFhdikiIlJXnE6YNQsmTIDiYrjnHrj5Zip8WzBlCqS+vBb74PvxitzFkwmPcfc5\nd2G16I/a0vQoIy21Kisri549ezJ//nyzS/kF5dukJuoLqU49cYpsNvjLX2DNGnjzTSP20b49Xk+N\n467bHBxcdw7PdV8JX43nb7PH0nXSWSzetdjsqk+b+kKqU0Za6sSAAQNIT09n1KhRjB07ttFewEVE\nRE6BxQIDB8KMGcYe1JmZcMcdeHrCHXfAvk/v4J+2Ag7OuYMh0y7l+hk3k1+Wb3bVIqZRtENOSU5O\nDsnJydjtdtLT04mJiTG7JBERqWulpdCnjzFcT5wIAQEAFBTAA/93mJlFj+A48x1ujruFhy54gG7h\n3UwuWOTPUUZa6ozT6SQtLY2NGzcyc+ZMs8sREZH6UFxs7D29bBm8+y6cd95PN+3aBbc+8gOrKt6g\n4uwXuTluFFd0u4S4yDg6hHQwsWiR06NBWuqc0+nEZrOZWsOSJUuIj483tQZpeNQXUp16ohZ9/DGM\nHg133w2PPw7Wn9OhGzfC2P9mk+l6ijZ9v+P7skymXDmF6868Dj9PPxOLrpn6Qqo73hM62VDqnNlD\ntIiImGDECPjmG1i8GC66CPbu/emmnj1hdno07ydPhqlf0WP9IsYvTmPAlAEUlBWYWLRI3dKKtNSK\nhrBKLSIi9cDpNLbJe+UVYw/qgQN/dfOzz8J/n3bSZswt5Ad8yYfXfsiANgNMKljk1CnaIaZISUkh\nJiaG8ePH4+HhYXY5IiJS1+bOhdtvh6AgGDYM7rwTOnX66eZ9+yA5GQ60foFdXR7kqYSn+McF/zCx\nYJHfp2iHmGLChAmsXbuWhIQEsrOz6/z1tAeo1ER9IdWpJ+rQ0KHGtPzOO+DpaZyE+Mgjxk4fGBdK\n/OoruKfv/fhO3UzqovGMmHEdR8qPmFy4+kJ+TftIi6kiIyPJyMggMTGRPn36sGDBArNLEhGRuma1\nwjnnwFNPwebNcOAAxMXBokU/3fy3v8GPK7uRsCGbebO96PBcD77YNtvkwkVqh6IdUusyMzNJSkpi\nypQpJCYmml2OiIjUp7lzjau33HADjB8PfsauHW43LFkC10+aSF7vh+gXeSHX9ryc+/rdh7eHt7k1\ni1RRRloahLy8PEJCQpSXFhFpjnJz4YEHjFXqpUshOPinm9xumPBCEf+aPYXwhHfZU/EN/WP7M+2q\naXQK7XSSJxWpe8pIS4MQHh5ep0O08m1SE/WFVKeeMElEBLz3HiQmGlGPzz776SaLBR59IJis5x/E\n9531DFllp0/LC+k6uSv/WPgPjlUeq/Py1BdSnTLSIiIi0nBYLMY+eNOnw0MPGVGPvLyfbo6Lg2+/\nhXaxXnx2XxoT2m3ks22f0fu13pRUlJhYuMipU7RD6k1BQQGjR49m4sSJREdHm12OiIjUl7Iy42qI\n774LkybB9dcbg3aVzEy46y7o3sNB/mWXsGzfV2QkZ5DYUefZSP1StEMarJCQEOLi4rSrh4hIc+Pn\nZ6xOf/45/PvfcNVVsHv3TzcPGgTr1kFosAdb/+9LbgydyIgPR/B/i/6vQWyXJ/JbNEhLvbFarYwd\nO5b09HRGjRpFamoqDofjtJ5L+TapifpCqlNPNDD9+hkTc58+xsdtt8HBg4Axa7/xBnzyCWx47X66\nLf6OhduWc84b57D+4PpaLUN9IdUpIy2NRnx8POvWrWP16tUMGTKEyspKs0sSEZH64u1txDy2b4ew\nMDjrLEhLg/JyAAYMMLLTNwxtw65xS4gqvZT4qfG8v+l9kwsX+TVlpMU0TqeTzMxMBg8ebHYpIiJi\nlh074MEHYeVK47+PPAI2GwDffw933w1HgpdycMBIBrUfyJThU/D38je5aGmqtI+0iIiIND5btsB9\n98GhQzBzJnTvDoDTCX//O7yTXorvfecTGubm4+s+pktYF5MLlqZIJxtKs6B8m9REfSHVqScake7d\njUuLP/IIDB4MGzYAxuL0pEmw9Et/wmZupHLtTcS90pMJyyeQfTT7tF5KfSHVKSMtTcby5cuZP3++\n2WWIiEh9s1jg5pvhySdh+HBjsK7SowesXmXhhrYP4/HBXN5dlUHsxFg2HNpgYsHS3CnaIQ3OsmXL\nGDlyJCkpKYwfP16XGRcRaY7mzYM77jB29nj88V/sO71yJSQlQeDQp9gUMZZJl0zi/vPuN7FYaSqU\nkZYmIScnh+TkZOx2O+np6cTExJhdkoiI1LdDh+DKK6FjR3jzTWOPvCrHjhnnJs79Nov8oUOYed2H\nDO081MRipSloaBnpS4FNwBbgHzXcfgawGthcdZ8r67geaSQiIyPJyMggMTGRvn37snDhwl/crnyb\n1ER9IdWpJxq5Vq1gyRIjKN2tG8yZ89NNvr7wyivw+Kjz4YNPGPb+MK6ccSXbD2//3adVX0h1DTEj\n7Q28gjFMxwF/AXpXu08qMAXoAYwAJtdhPdLI2Gw2UlNTSU9PN7sUERExi68vTJ8OU6fCqFHw2GNg\nt/908623Qsb/Egl+tYjDu1tzxuQzmPPDnN9+PpFaVJfRjguBR4BhVccPAT7Av0+4TxpQCDwNnA88\nA1xQw3Mp2iEiItLcZWfD6NHw44/w1ltw3nk/3fT993DLLVAU+z474m5m6pVTSYpLMrFYaYwaUrSj\nNbDvhOP9VV87URpwc9X95gD31WE9IiIi0phFR8OsWcbJh1dfbYSkS0sBI/mxYgVc3elGWs5dxM2f\n3sx1M6+jtKLU5KKlKavL7RBOZQn5eeBNYCJwHvAucGZNd0xJSaFdu3YABAcH06tXL+Lj44Gfcy06\nbj7HGzZsoHfv3gwYMIDly5ebXo+OG8bx8c8bSj06Nv940qRJ+veiKR5ffz0kJLDkhhugQwfie/eG\nyy5jWY8eXHKJjR494hnzUCFrrkjg4o0XMy91HsE+wb/6GdFg3o+OTTvesGEDRUVF7N69m9NRl9GO\ngRgnGB6PdjwMeAH/OeE+W4EE4EDV8Q6MiEdutedStEN+YfHixTz77LOUlpaSnp5OdHS02SVJA7Bk\nyZKffkCKgHqiWVi/Hg4cgGeegfBwI0/t58eWLXDJ0Ao8kkYQ1jaHNbevwmqxAuoL+bXjPdGQtr/z\nwRiUB2AMxiuBO4H1J9xnDvAhMA3oBnwFxADOas+lQVp+xeVykZaWxuTJk5k2bRqJiYlmlyQiImYp\nL4fbbzeuiPjqqzBgAAUFcMONblZ1vYhWHfJ5dNCDjOo9yuxKpQFrSIM0wGUYJxBagekYmejxwNfA\nF0BXYCoQVFXLI8DsGp5Hg7T8pszMTJKSkkhJSWHcuHG6gIuISHPldsP77xuXGX/qKbj5ZtxumPBM\nJU9+Nh3nJffx7CUTuO/ce82uVBqohjZI1xYN0vIL1f8sl5uby5gxY5g4cSJRUVHmFSam0p9rpTr1\nRDO1ZQsMGgRLlxpnIQIbN8LVt20je+j5DPNPYMr9bxHkHWRyodJQnG60w1p3JYnUn4iICGbMmKEh\nWkREoHt3GD8ebrwRDh4EoGdPWJvRlTOzVvHFhuWc/Vpfiu3FJhcqjZ1WpEVERKTpcbvh3/+G116D\njz76ac9phwNuvMnOoqBkKmIz2PnADiL8I0wuVhoKrUiLnMDlcpGbW30TGBERafIsFuMqiC+/DMOH\nGxdwATw84IP3vHkgeiauHy+l/6sXU1BWYHKx0lhpkJZG6cS9QE8mKyuLnj17Mn/+/LotSBqEU+0L\naT7UE8Lw4UZW+plnjIu47NxJZuYSHn8c3rzsXfZuakuXST1Yl73O7ErFRKf7s0KDtDRpAwYMID09\nnVGjRjF27FgcDofZJYmISH074wxjW7xzzoF+/eDNN6GkhBuv92ZByheUZzzJuW/0Z8Lyp6l0Vppd\nrTQiykhLs5CTk0NycjJ2u5309HRiYmLMLklERMxw4AD84x+QmQkvvABXX01unoX+V33H4YRrGdqr\nD29e+QY+Hj5mVyom0PZ3Ir/B6XSSlpbGxo0bmTlzptnliIiImTIz4e67oUMH+PBDCu1+XJK8hW/6\nnsvZsWfy2chPaRXQyuwqpZ7pZENpFk4ny2Sz2UhNTWXGjBm1X5A0CMrDSnXqCanJkiVLjH2mN2yA\nggJ4/XVCQmBRenf6flnA9p12Ln7nYpyu6hdalqZKGWmRU2Sz2cwuQUREGgIvL5g+HdLSYMUKgoJg\n0Xwveqz4hoP7/Ej5dBQOl86tkd+maIcIRuxDA7aISDM1dy7cfjusXQvR0RQUwMVDS9gVP4igyAI2\n3L2eUN9Qs6uUeqBoh8hpuPXWW7Wrh4hIczV0KIweDcOGwfbthIVBVmYAQ3Z9TdkP5xP/9mBW7V9l\ndpXSAGmQlkaptnOPEyZMYO3atSQkJJCdnV2rzy31R3lYqU49ITWpsS/++U+46SbjCohr1+LjAx/M\nsHDxkfcpX38tA98eyNvfvF3vtUr9UEZa5E+IjIwkIyODxMRE+vTpw4IFC8wuSURE6pPFAg88YFwJ\n8aqr4IsvsFph+jsWzi4ZS/uVc7hz9p0s2KF/H+RnykiLVJOZmUlSUhJTpkwhMTHR7HJERKS+ffUV\n3HEH9O4NTz6Jq8sZ3H8/ZOycw/Z+w1iQvIAhHYeYXaXUAe0jLVIL8vLyCAkJwcPDw+xSRETEDMeO\nwXPPGRdteeIJXKPv5Y47YO2RL/i2x3BuP/t2Xrj0BXw9fc2uVGqRTjaUZqGuc4/h4eEaohsh5WGl\nOvWE1OSU+sLXF1JTjZ08XngB61P/5tVX3PT0vYKui7/l3W/f5dWvX63zWqV+nO7PCk0KIiIiIr+l\nXTtYtgwSE/E4dIhpL/ybO/9xFquzFvJ3x0AqXZU83P/h4yuZ0sw0lv/rinaI6QoKChg9ejQTJ04k\nOjra7HJERKQ+FRYaJyPOmYPz9bdImXUlmwu+YfeFCVzRdRjvXP2O2RVKLVC0Q6SOhISEEBcXp109\nRESao5AQmDYN5s3DdvcdTPvLFyR0703ozPWkb05n6Z6lZlcoJtAgLY2SGblHq9XK2LFjSU9PZ9So\nUaSmpuoCLg2M8rBSnXpCavKn+uKcc2D2bKy338qzg+cyqGc7un03g0FTBzHnhzm1VqPUL+0jLVJP\n4uPjWbduHatXr2bIkCFUVlaaXZKIiNSnc86BL76AlBRevyaDyIIRDMqbwZUzrmT2D7PNrk7qkTLS\nIqfJ6XSSmZnJ4MGDzS5FRETMkJUFV15JyaQ3GTBhOF0un8eCoJF8PvJzBrUbZHZ1chq0j7SIiIhI\nfVm3DoYPJ++ecZw/5XbOTHqbz62j2PvAXmJbxJpdnfxBOtlQmgXlHqUm6gupTj0hNanVvujTB5Yv\nJ3z68ywb+E+2f3QLsUf/wqjPRnHUfrT2XkfqlDLSIg3E8uXLmT9/vtlliIhIfWnfHtasIWrWy6x5\naxMtl05n/fb9DH5nMIt3LTa7OqlDinaI1LJly5YxcuRIUlJSGD9+vK6QKCLSXKSnw113Ufj+PHre\n24fI68fxte9/ubTTpXx6/ad4e3ibXaH8DmWkRRqAnJwckpOTsdvtpKenExMTY3ZJIiJSHz75BB58\nkKMZK+gzPIaQqCN4/vVKyl0lvH3l25wVeZbZFcpJKCMtzUJDzz1GRkaSkZFBYmIiffv2ZeHChWaX\n1Cw09L6Q+qeekJrUaV9ccw3cey+BVyWwNTOH83q1IOeZRZzR4mz6vdmPYntx3b22nLbT7Qn9zVmk\njthsNlJTU7ngggu017SISHPy0ENQUoJ1+DAmZS4lIMCXOf99jUseLqTfG/3ISM6gXXA7s6uUWqBo\nh4iIiEhtc7kgKQkCA3G/9jr33Qdr1rrp8ehdTN88hXlJ87i4w8VmVynVKCMtIiIi0hAUFUHnzjBv\nHu4+fbnpJigpgSsee4d7593FR9d9xNDOQ82uUk6gjLQ0C00h95iZmYnD4TC7jCalKfSF1C71hNSk\n3voiOBjeeAMuvxzLuq954w3Iz4f5E27ilcveYsSHI1iyu55qkZPSPtIijYjL5WLChAkkJCSQnZ1t\ndjkiIlJXrroKXn8dLr8cnwM7WLDAWKhe+doNPDvkWS6adhHfHPzG7CrlNCnaIWISl8tFWloakydP\nZtq0aSQmJppdkoiI1JUXXoD33oPlyyku96J7d5g0CTa3HMeXu74kMyUTq0Xrm2ZTRlqkkcnMzCQp\nKYmUlBTGjRunC7iIiDRFbrexOl1UBDNnsmpnBJdeCp/NLWXE8rYMajeIj6/72Owqmz1lpKVZaEq5\nx0GDBrF+/Xq2b99OXl6e2eU0ak2pL6R2qCekJqb0hcUCM2dCmzbwz39y3rlupkyBq4f582nCD3zy\n/Sd8l/td/dclgDLSIo1aREQEM2bMICoqyuxSRESkrnh5weTJ8M038PjjXHMNPPMMjLohlNE9H6LH\nKz04fOyw2VXKH6Boh4iIiEh9ysuDgQPhjjvgwQcZOxY+/BC6PnYt+8p+YM1ta/D28Da7ymZJ0Q6R\nJsTlcpGbm2t2GSIiUpvCw2HhQuMExEWL+M9/4IYbYM0jM3BVevDEkifQAmLjoEFaGqXmknvMysqi\nZ8+ezJ8/3+xSGoXm0hdy6tQTUpMG0RexsfCvf8G998KOHTz5JDz8dxu5kz/mra+nkb453ewKmxVl\npEWaoAEDBpCens6oUaMYO3asLuAiItKU/PWvkJICI0ZAcTEPPwzPprbD/cWrJH2SxKacTWZXKL9D\nGWmRRiAnJ4fk5GTsdjvp6enExMSYXZKIiNQGtxvuuQe2bIF588DXlwcegFnlYyjrmM6W0VsI9w83\nu8pmQ/tIizRRTqeTtLQ0Nm7cyMyZM80uR0REaovLBUlJ4HDAhx/icFq4aLCL7PhhxPeJ4s3hbx4f\n8KSO6WRDaRYaRL6tntlsNlJTU5kxY4bZpTRYzbEv5OTUE1KTBtcXVitMnQp790LXrnjccC0z36ng\n6IyX+ejb2Ty04CGzK2zylJEWaSZsNpvZJYiISG3z9oalS2HWLLDbaTX1v3w1qx226Zk8v+p5tuVv\nM7tCqUFj+TuBoh0iJ+F0OjVgi4g0Ffv2Qe/ekJXFB+s7c0f6Y7jPfYGd9++kpV9Ls6tr0hTtEGmG\nbr31Vu3qISLSVMTGwqOPwsiRXH9NJUkxT+I+FMfDCx4xuzKpRoO0NEoNLt9msgkTJrB27VoSEhLI\nzs42uxzTqC+kOvWE1KRR9MWDD0JwMEyaxP8mW+iycSbTN77L1vytZlfWJCkjLdKMRUZGkpGRQWJi\nIn369GHBggVmlyQiIn+G1QpTpsDzz2OZM5tZ70ThvWMESa//S1c9bECUkRZpYjIzM0lKSmLKlCkk\nJiaaXY6IiPwZa9bAsGEwcyZrws+g/5Tzub7dfbx379/MrqxJ0j7SIkJeXh4hISF4eHiYXYqIiPxZ\nX30F118Pixfz0r59jFkzlMWXH+CivtFmV9bk6GRDaRYaRb7NROHh4c1yiFZfSHXqCalJo+uLiy6C\n556Da6/lvosvZqDvnQx7K4WD+cfMrqzJUEZaREREpKlKToYOHeCf/2Thgy8QFFLOOY+PQX+wN5ei\nHSLNREFBAaNHj2bixIlER+vPgSIijU5BAfTqBa+9xsEB5xDzXGseCl7D0w/2NLuyJkPRDhGpUUhI\nCHFxcdrVQ0SksQoLg+nTISWFqD0HeajveJ47eDmLsnLNrqzZ0iAtjVKjy7c1AFarlbFjx5Kens6o\nUaNITU1tchdwUV9IdeoJqUmj7ov4eHjmGRg5kqeH3M/5kRdzxbvXUFrmMruyRk0ZaRE5JfHx8axb\nt47Vq1czZMgQKisrzS5JRET+iJtuMi4hft11fHX3S1hCd9Jn7ANmV9UsKSMt0kw5nU4yMzMZPHiw\n2aWIiMgfZbcbJyCGh7Pln2Pp8b8ePHHOyzxxzQ1mV9aoaR9pERERkeagoAA6d4a5c3ls6xHSvr2H\nrWM206mdj9mVNVo62VCahUadb5M6o76Q6tQTUpMm0xdhYfDeezB8OE+29yG6RSQD//UwLsWl/zBl\npEWkVixfvpz58+ebXYaIiJyKyy6Dl17C8re/seTedzkU+zLjXvrR7KqaDUU7ROQXli1bxsiRI0lJ\nSWH8+PHN8gqJIiKNitMJPXvCY49xxbHPWfh+N75+PpUePcwurPFRRlpE/rScnBySk5Ox2+2kp6cT\nExNjdkkiInIyX38Nl11G5kfPcuXSf9Lusx18vcoHrYX8McpIS7PQZPJtDVRkZCQZGRkkJibSt29f\nFi5caHZJp0R9IdWpJ6QmTbIv+vaFp5/mwrvSOCOyNblnP8Czz5pdVOOhjLSI1CqbzUZqairp6elm\nlyIiIqfilluwnNGN6QUXcjDmNZ76YAFbtphdVNOmaIeIiIhIU7F5MwwZwqfzX+CGT28jZvZ6tizv\nhJeX2YU1Dop2iIiIiDRXPXpAr15c9dk27ux3K/sTBvPCC1qMrCsapKVRapL5tkYmMzMTh8Nhdhm/\noL6Q6tQTUpMm3xdvvAFvvMFz7otx+eUw/pN0du40u6iGTRlpEak3LpeLCRMmkJCQQHZ2ttnliIjI\niVq3hpdfxvbQIyy4cS7ll6Zw/t+f4d1vZppdWZOjjLSInBaXy0VaWhqTJ09m2rRpJCYmml2SiIgc\n53bDRRdBcjLTz/Hh8TdWsDv8VTKSMrik0yVmV9dgaR9pEalXmZmZJCUlkZKSwrhx43QBFxGRhiIr\nC669Fr7+mp1lreg58mM8rrmd/EfysFltZlfXIOlkQ2kWmny+rREZNGgQ69evZ/v27eTl5Zlai/pC\nqlNPSE2aTV+cfz7cdRckJtIhooS/9LiG8mM2nst6zuzKGhxlpEXENBEREcyYMYOoqCizSxERkRON\nHQt9+sBdd/H0f6HF5/N57Mtx6C/9tUPRDhEREZGmrKzsp9XpjPZ3c3lmOJOueoL7zr3X7MoaHGWk\nRaTBcLlc5OfnExERYXYpIiLN248/Qv/+uDOX0u3BXLadH8/a29fSN7qv2ZU1KMpIS7PQbPJtjVxW\nVhY9e/Zk/vz59fJ66gupTj0hNWmWfdG5M9x/P5Ynx/O/hwcRkvUSidMTyS/LN7uyBkEZaRFpcAYM\nGEB6ejqjRo1i7NixDe4CLiIizcrf/gbr15NQ9sX/s3fvYVHW+f/Hn8yQR1BQEY+Jh9S08JyZGgQ5\ndnLLTupixaJbq21l5/oxu6u77RrVZm1tW+6uqbU7VFvf7Qy6paRmQCKmledMBUXEAwpyHH5/DBLg\nqDDMcM8Mr8d1zSX3zD33/cLrHX28ec/7ZmKbe+lUdAUz3p2hfukmUGuHiHhcXl4eM2fOpLS0FJvN\nRs+ePY2OJCLSMn3yCTz4ID+8ncnQCW3o+vtBLLz6T8y4dIbRybyCeqRFxCtVVlaycOFCNm3axDvv\n6O5aIiKGqKqCX/8afviB6/iYsEnLWGd+ip337zQ6mVdQj7S0CC2yv83Hmc1mrFYrycnJHjuH6kLq\nU02IMy26LgIC4MUXYedOnhy/ho+fu4U9x/bw1f6vjE5mKPVIi4hPMJt1Ny0REUMFBsIbbzDxhVuY\ncbWdAcd+xZOfPWl0Kp+k1g4RMVxlZaUW2CIize2hhzhR3obebz9O6X3dSZr0NPePvd/oVIZSj7SI\n+Jz4+Hh69uzJggULCAwMNDqOiEjLcPAgREbyp2nZ/O/4PrKGTGbvg3vp0LqD0ckMox5paRFadH+b\nH0pKSiIzM5PY2Fhyc3NdPo7qQupTTYgzqotq3brBM8/wwBe3sv3zy7g85EZmvNsyp3eoR1pEfFZ4\neDgpKSlYLBZGjRrFihUrjI4kItIy3HUX7bsFkzThI/b87WXW71vPur3rjE7lM9TaISJeJS0tjbi4\nOJYsWYLFYjE6joiI/9u1i6rLxjK+/wEu+cVy/nX0fg4/epi2F7Q1OlmzU4+0iPi8/Px8QkND1S8t\nIlGbIQgAACAASURBVNJcHniAz3ZFMOvbedjvj+Dnl87g6aufNjpVs1OPtLQI6m/zb2FhYS4tolUX\nUp9qQpxRXTiRmEjs2gUMHVBOUNrfeG3DaxQUFxidqtmoR1pEREREXNO1K9x5Jx/2vZ+i7Gvo1qo/\nz375rNGpvJ5aO0TEJxQUFDB37lwWLVpEjx49jI4jIuJ/jhyBAQN4afYmXvt+J3vGTSF9djpDuw41\nOlmzUWuHiPil0NBQIiMjNdVDRMRTOnWC++5jzvGnKdt2FZM7zWX6u9ONTuXVPL2QvgbYDHwHPH6W\nfW4HNgLfAP/2cB7xE+pva3lMJhOJiYnYbDYSEhKwWq1UVFTU2Ud1IfWpJsQZ1cU5/PKXBL5j49mf\nZ/H9KwvYUbCDt7a8ZXQqj/Nkj/TPgT3ASeBE9aOwAe9rDfwNx2I6ErgVGFFvn2HAw8CE6n1+3ZDQ\nItJyRUdHs2HDBtLT05k0aRLl5eVGRxIR8R+9esHbbzPlLxbsp1rxcN83mf7udI6eOmp0Mq/UkB6Q\nvcBk4PtGHvtK4DHghurtR4A2wFO19nkB2AC8cZ5jqUdaROqorKwkLS2NmJgYo6OIiPif2bOxHZ3M\nsz/cRq9Hf0bfkL68eO2LRqfyOE/0SO+h8YtogF7Avlrb+6ufq20QMBz4GseC+mcunEdEWiCz2axF\ntIiIpzzxBNNWzyX/kJ1xwTN4c/OblFWWGZ3K6zRkUOtGwAZ8AJz+G6wC3jvP+xpyCdkERABjgd7A\nl8Ba4Ej9HePj44mIiAAgJCSE4cOHEx0dDfzU16LtlrOdnZ3NvHnzvCaPtr1j+/TX3pJH28Zvv/DC\nC/r/hbbP2D79nLfk8crtAQP4YuAArjG/ymbbHIZP/gePLn6UqRdP9Y58btrOzs7m2LFj7NmzB1c0\n5NL10uo/6y+Mf3Ge903E8QHD060djwKtgD/W2ucfOBbOp8/xP8AKfFXvWGrtkDpWr15d8x+CyGmr\nV68mMDCQoqIiJk+ebHQc8QL6WSHOqC4aaONGjk26jUEB21jw78+576vrKHisgA6tOxidzO1O14Q3\n3SK8DbAVGA8cwnG1+R4gq9Y+U4EbgXigC7AJR6tHfr1jaSEtIg2yZs0apk+fTnx8PAsWLNBtxkVE\nmuKPf8T69z4cnzKTr4eP447IO5g7Zq7RqTzGEz3SEcCnOCZ1FAIfVz93PiXAHCAVxwL5PRyL6AXA\nlOp9/g8oAL7FcWX6Cc5cRIuINNjEiRPJysoiIyODmJgYcnJyjI4kIuK7nniCX5a8xJvLKnhw9BM8\nv/559UrX0pCF9Js4eqQ7Vz+Sq59riE+BS4AhwMLq534HfFhrn4eBocBgzj+9QwSo2+cmctrpuggP\nDyclJQWLxcLo0aNZuXKlscHEMPpZIc6oLhrBbKbPH+9mXEA6B1dPoUu7LsQuj6XSXml0MrdytSYa\nspAOBpYD5dWPNwD/a44REb9iNpuxWq3YbDajo4iI+LaEBH4fuogFv61kZdwqdh/dzeINi41O5RUa\n0gPyJfAS8Hb19u04bpwy3lOhnFCPtIiIiIhRkpIYsfB2Fv1fBIU9PuTG5Bu5dsC1fBL3idHJ3MoT\nHzbsj+MOheNwTO74ErgX2OVCPldpIS0iIiJilBMnWNj/H+weeQt/T7mQ/KJ8uj7XlR/n/ciFHS80\nOp3beOLDhrsAC44Wjw44bvndnItokTOov02caUxdpKWlUVFR4bkw4hX0s0KcUV24IDiYO2a1Ivmz\nMHZtLSesfRi/HPlLXvjqBaOTuYUneqQfr/7zJeAvTv4UEfFJdrudpKQkYmNjyc3NNTqOiIhP6PXo\nDH7RYwVvWN6A8nLuiLyDRV8tIu9kntHRDHOuS9dTcEzXiKfuzVgCqreXeS7WGdTaISJuZbfbWbhw\nIS+//DLLli3DYrEYHUlExOtlZ9m5flwBP76WSmD8TKa+NZWhYUN5KuYpo6O5hSd6pG/npw8anus5\nT9JCWkQ8Ii0tjbi4OOLj45k/f75u4CIich7jhhznsfxHmbrjGb4p3cuwV4dR+EQhwa2DjY7WZJ7o\nkX7SyXOJDT2BiCeov02ccaUuoqKiyMrKYufOneTn635Q/kY/K8QZ1UXTzH2yIy8GPgRPP01keCSX\ndr2U5ZuWGx2rSTzRI30tjn7onvzUG/0S8E/qtnqIiPi0rl27kpycTPfu3Y2OIiLi9aZPhz2BA/jq\nlSzIyWFy/8ms2rPK6FiGONel62HACOD3wG/4qTf6FLCK5r2Vt1o7RERERLzEM8/AF69s5sO73iXn\n4dlcuOhCTjx5gvat2hsdrUk80SPdASgCTt8L0gy0BoobG64JtJAWkWZnt9s5fPgwXbt2NTqKiIhX\nKSmBiyLKeKMyjugDNiYsj+aK3lfwzKRnjI7WJJ7okf4f0KrWdhvg88bFEnEv9beJM+6ui/Xr1zNs\n2DBSU1PdelxpPvpZIc6oLpquTRtInN+KFyvuhc8+461b3+IfWf9gc95mo6O5xBM90qe1wtHOcVoR\njsW0iIhfGz9+PDabjYSEBBITE3UDFxGRWqZPhy/KLmfPXz+mZ4eeXN3vapK3JBsdq1k15NL118As\nYFP19nBgCTDSU6GcUGuHiBgmLy+PmTNnUlpais1mo2fPnkZHEhHxCnNnldD13y8yf9cd/P3Axyzb\ntIy1CWuNjuUyT7R2PAB8DKytfnwE3OdKOBERXxQeHk5KSgoWi4V58+YZHUdExGvcdXcb3mp7F1Uv\nvcwNA2/gm7xvOHDigNGxmk1DFtLrgH7AvOpHv+rnRAyj/jZxxpN1YTabsVqtJCe3rF9b+jr9rBBn\nVBfuM2YMFLXpzKZX19Pd1IFrBlxD0roko2M1mid7pIOB3wJzcbR59MZx+3ARkRbHbDYbHUFExGuY\nTDAz/gJe7/wIvP46/2/i/+OljJewV9mNjtYsGtID8j7wJXAnMBTHBw0zgEgP5qpPPdIi4rUqKyu1\nwBaRFmvzZrgmppS9HS7FvP17Ap4KZNVdq4iOiDY6WqN5oke6H5AElFVvlwAt458ZIiINMGvWLE31\nEJEW65JLILx3Kz5tezP885/8KeZPzHxvZou4Kt2QhXQZ0LbW9oUeyiLSYOpvE2eMqoukpCQyMzOJ\njY0lNzfXkAzinH5WiDOqC/cKCIA77wzgPz3vh7//nScnPsnRkqNsOrjp/G/2Ep7skV4AfAb0Apbj\n+KDhky6dTUTED9We6jFq1ChWrFhhdCQRkWZ1883wQWZ3Sr/ZBuXlTB08lafXPW10LI9raA9IODCx\n+us1QJ5n4pyVeqRFxCekpaURFxfHkiVLsFgsRscREWk2UVEwL+9JpiZdTm7MGPq80IcPZ3zINQOu\nMTpagzW2R/pcO14MfA+MAqpq7VtV/SgEdrmUsvG0kBYRn5Gfn09oaCiBgYFGRxERaTZJSfDj/3bw\nysk7Yf16nl33LCt3r2TFHb7zWzp3ftjwoeo//1z9eK768WfgeeA/wDsupRRpIvW3iTPeUhdhYWFa\nRHsJb6kJ8S6qC8+47TZ4K2sAJXsPwebN3HvZvazcvdIneqU90SP9y+o/o4GrnDxGAJ1cOquIiIiI\n+JV+/WD06AD+MfIVePZZ2l3QjgfGPsCrX79qdDSPacil62DgcaAHkAD0B4YAH3owV31q7RARn1ZQ\nUMDcuXNZtGgRPXr0MDqOiIhHrFoF8+6rZNPBcFi7lvfZxu+/+D0b7t5gdLQG8cQc6TeBE8DY6u0c\n4I+NTiYi0oKFhoYSGRmpqR4i4teiouBgvpntc1+AX/yCyX2v5pu8b9hesN3oaB6hG7KIT1J/mzjj\nzXVhMplITEzEZrORkJCA1WrVDVyagTfXhBhHdeE5JhNMnQqvl8VBbi5tdu9lcJfBrNu7zuho5+TJ\nOdK6IYuIiJtER0ezYcMG0tPTmTRpEuXl5UZHEhFxq3nz4LXFAZyIugHee4/4YfGs/nG10bE8oiE9\nID8DngAuAj7F8UHDu6u/bi7qkRYRv1JZWUlaWhoxMTFGRxERcbvbboPLL8zl4eQx/LBpNZcsHk7u\nQ7l0bNPR6Gjn5Ike6Q+AqcCc6q9HA5tdCSciIg5ms1mLaBHxW3Fx8H5mD+jUib67j9KrQy+Wb1pu\ndCy3O99CehwwDeiCY250OvAH4EsP5xI5J/W3iTOqC6lPNSHOqC487/rr4fvvYefYOHjjDWaPmM3H\nOz42OtZZeaJH+jlgCXATjivRfwbSgO+AgS6dTUREzmnt2rWkpqYaHUNEpEkuuACmTIGP+90HNhu3\ntR9D6q5UjpccNzqaW52rB2QncAmOKR2dgH045kf/2Ay56lOPtIi0CGvWrGH69OnEx8ezYMEC3SFR\nRHzWRx/Bb34DGy2PA9CnezLv3PYOl/W8zOBkZ+fOHukTOBbRAEeAHRiziBYRaTEmTpxIVlYWGRkZ\nxMTEkJOTY3QkERGXXHst/Pgj/BgRBdu2Mar7KNb8uMboWG51roV0Pxx3Lzz9iKj19QceTyZyDupv\nE2f8pS7Cw8NJSUnBYrEwevRoVq5caXQkn+UvNSHupbpoHmYzXHklfFowBtatI2HYXSStS6KkouT8\nb25mrtbEuX5neGO97T/X+lp9FiIiHmQ2m7FarUyYMEGzpkXEZ911FzzzTBi/6tWLG/JC6BbUjdc3\nvs6cMXOMjuYWDe4BMZh6pEVERER8TEUFdOkC2x56jfDvVvHvxJ/xUsZLrJ+13uhoTnlijrSIiIiI\nSKMFBsI118Ab5rsgJYVx7Qby1f6vyDuZZ3Q0t9BCWnyS+tvEmZZUF2lpaVRUVBgdw+u1pJqQhlNd\nNK/HH4c/v9yGyvFX0verbUwdPJV/bf6X0bHq8MQcaRER8UJ2u52kpCRiY2PJzc01Oo6IyDmNGAHh\n4fB+t3tgzRpuvvhm3v72baNjucW5ekA+rPV1Vb19q4CfeSSRc+qRFhGpxW63s3DhQl5++WWWLVuG\nxWIxOpKIyFk99xx8k3aE5ZtHUrFjG53/3JWlNy5l6sVTjY5WR2N7pM+1Y3T1n1OBMMBWvf80IB+Y\n51JC12ghLSLiRFpaGnFxccTHxzN//nzdwEVEvNL+/XDppVXkXXwVre6OZ0HEj3y842MyfplhdLQ6\n3Plhw9XVj8uBn/PT/Og4YJyrAUXcQf1t4kxLrIuoqCiysrLYuXMn+fn5RsfxOi2xJuT8VBfNr1cv\nGD48gPeueA7eeIOHr3iYzNxMTpadNDoa4Nke6U44bsZyWp/q50RExAt07dqV5ORkunfvbnQUEZGz\nuu02+HDfMMjIIKgMhncbTmZOptGxmqQhl65vBF4FtldvDwTuoXnvbqjWDhEREREftmkTXH015EfG\nwgMPkFD1X8b0GONVN2fxxBzp93HcLvxR4GGgL7pFuIiI17Pb7Rw6dMjoGCIiAAwZ4rhteHbknfDJ\nJ/QP7U/KrhSjYzVJQxbSAcBlwCBgKHA7cKcnQ4mcj/rbxBnVRV3r169n2LBhpKamGh3FMKoJcUZ1\nYYwLLoBZs+DfhTdAaio3DLyBD7Z9wKnyU0ZH82iP9NvAQhwfMBwNjKl+iIiIFxs/fjw2m42EhAQS\nExN1AxcRMdz06fDGJ50oOnyKYa0vZECnAXyT943RsVzWkB6Q7TiuRhvZpKweaRERF+Xl5TFz5kxK\nS0ux2Wz07NnT6Egi0oJNngyzf/wNt/0thjlFb1NSWcLrN75udCzAMz3SWUBXVwOJiIixwsPDSUlJ\nwWKxMG9ec94CQETkTDfdBP8qvgn27OGRKx5hafZSsg5kGR3LJQ1ZSHcDtgErcMySPj1PWsQw6m8T\nZ1QXZ2c2m7FarSQnJxsdpVmpJsQZ1YWx7rwT1hQMYd+nW+jfqT8PXv4g93x0j6GZXK2JhtwCa75L\nRxYREa9jNpuNjiAiLVz79nDNZPjvR4Hcl59P4sREujzbhROlJwhuHWx0vEZpcA+IwdQjLSLiIZWV\nlVpgi0iz+ugj+H937OWbP3wAv/41A18ayHOW5/jZoJ8ZmssTPdIngRPVj1LADhS6Ek5ERLzPrFmz\nNNVDRJrVddfB3vLu/LhsNQDXDriWP3zxB2NDuaAhC+kgILj60RbHnQ7/6slQIuej/jZxRnXhmqSk\nJDIzM4mNjSU3N9foOG6lmhBnVBfGM5ng2utNfPRtX8jJ4fEJj/N17tfsPrrbkDyenCNdmx3Hhw2v\ncelsIiLidWpP9Rg1ahQrVqwwOpKItAA/u8nMOx1mUfX2O/QI7sGECyfwr2/+ZXSsRmlID8gttb42\nAaOAycAIjyRyTj3SIiLNIC0tjbi4OJYsWYLFYjE6joj4sfJyGNi7mH+HzWPc5sWs3LWSm966ibxH\n8ghqFWRIpsb2SDdkx6X8dDMWO7AfeBU40MhsTaGFtIhIM8nPzyc0NJTAwIYMdhIRcZ31yUpKXniV\n576/HiIiiFoaxZUXXskfYozpl/bEhw3jgV9UP2YBv6N5F9EiZ1B/mzijunCPsLAwv1lEqybEGdWF\n97htupn/tJpB1cKnAfjtlb/lr5l/5WTZyWbN4cke6QjgUxyTOgqBj6ufExERERFxWWQkHCoPZcfb\nG2HHDmL7xTKm5xje2vKW0dEapCEL6TcBG9C5+pFc/ZyIYaKjo42OIF5IdeE5BQUFTJs2zeemeqgm\nxBnVhfcICIDrrw9gxYC58OWXAMRExPB/W/+vWXO4WhMNWUgHA8uB8urHG0AHl84mIiI+KTQ0lMjI\nSE31EBG3mzIF0krGwtdfA3DLkFv4eMfHnCg9YXCy82vIQroImAGYqx8zcNycRcQw6m8TZ1QXnmMy\nmUhMTMRms5GQkIDVavWJG7ioJsQZ1YV3iYmBz/ZeROn7KVBVxYBOA+gW1I33t73fbBk82SN9B44P\nGh4DjgJ3AXe6dDYREfFp0dHRbNiwgfT0dCZNmkR5ebnRkUTEx/XqBZEjTLxXej1s2gTATYNuYtPB\nTQYnO7/zjfcw4xh/d4fno5yTxt+JiHiRyspK0tLSiImJMTqKiPgBmw2WJu4gdcrL8OKLvPjVi/x3\n239ZddeqZs3hiTnSq4GrASN/h6eFtIiIiIifOnEC+vetJK1iAhfn/I+DVSfo/ufunHjyRLPenMUT\nc6T3AeuB3wAPVz8eciWciLuov02cUV1IfaoJcUZ14X2Cg2H23Wb+3v4BWLuWbkHdGBo2lIycjGY5\nvyd7pHfhmB1tAoJwTPEIdulsIiLi19auXUtqaqrRMUTEB91+O/y3eDJVH38CwEWdL2q2hbSrGnzp\n2mBq7RAR8QFr1qxh+vTpxMfHs2DBAr+5Q6KIeF5VFQzoWczysEcYv+kV3vn2HV7OfJm0+LRmy+CJ\n1o4PgQ+q/zz99VvAY0DbxkcUERF/NXHiRLKyssjIyCAmJoacnByjI4mIjwgIgOlxgXzyfV8oKqJP\nSB+yD2YbHeucGrKQ/gHHrcEXA3/HMQbvCI7bhC/3WDKRc1B/mzijuvAO4eHhpKSkYLFYGD16NCtX\nrjQsi2pCnFFdeK/rbmrFh4E3wcaNjOg2gsLSQg4VHfL4eT3ZIz0WmMlPV6PvBEYA91b/KSIiUofZ\nbMZqtWKz2YyOIiI+5PLL4SDd2PxGNheYL2Bcr3Gs37fe6Fhn1ZAekB3AVcD+6u1ewCrgImAjzbOY\nVo+0iIiISAvw5F25FH/wP148cgf3fXo/BacK+Pct/26Wc3uiR/oxIBPHPOnVwNfAEzj6o99obEAR\nERERkbO564nuLC2cSum/3+WaAdew4cAGoyOdVUMW0u8D/XEsqB8F+uEYh3cKeN5z0UTOTv1t4ozq\nwnekpaVRUeH5+3ypJsQZ1YV3G3xxABdFlJP5l/XE9ovlcPFhfjj6g0fP6cke6X8CxUAGjivTJuAT\nl84mIiItnt1uJykpidjYWHJzc42OIyJe6PKY9nyZ3Y425VX0DenLd/nfGR3JqYYspPcDr1R/HQqs\nQC0dYrDo6GijI4gXUl34BpPJxEcffYTFYmHUqFGsWLHCY+dSTYgzqgvvd+Wk1qxpMwm+/pqgVkHs\nOLLDo+dztSYa2kz9LNABGAU8DfzHpbO5Th82FBHxQ2lpacTFxREfH8/8+fN1AxcRAeDAARgYUUrB\nr+fzm2vsBAQE8PTVT3v8vO78sOEt1Y+bga9wjMHbCFRVPydiGPW3iTOqC98TFRVFVlYWO3fuJD8/\n3+3HV02IM6oL79e9u+Oxc8kXtCmpYHvBdo+ez9WaONc//afgWDSfll29/w3V2++5dEYREZFaunbt\nSnJystExRMTLjBrXmrV77+a27d/x+5P/R1FZEe1btTc6Vh0NvnRtMLV2iIiIiLQgixfDmn/9yBvt\nfsXwGw/wyvWvcEXvKzx6Tk/MkX4DR3/0aR2BZY2LJSIi0jh2u51Dhzx/a2AR8U6XXw7rfuwFa9fS\nsVUw2w5vMzrSGRqykL4EKKy1fRyI9EwckYZRf5s4o7rwL+vXr2fYsGGkpqa6fAzVhDijuvANl14K\nJ4vN7B14NReXdSSvKM9j5/LkHOnWnHlFuo1LZxMREWmg8ePHY7PZSEhIIDExsVlu4CIi3iMgAMaO\nhdX9EjDv3kP2wWyjI52hIT0g9wAPA29V73878GfgNQ/mqk890iIiLVReXh4zZ86ktLQUm81Gz549\njY4kIs3kscfgZM4xovf1408/v5DsX3l2Me2JHunXgOk42juOAdNo3kW0iIi0YOHh4aSkpGCxWJg3\nb57RcUSkGU2ZAlm7OjJ8fyWb8jYZHecMDVlIg2N+9L+Bd4AC4EKPJRJpAPW3iTOqC/9lNpuxWq2N\nHpOnmhBnVBe+45JLYNOmAHpeFA3gsXnSnuyRvg3YDWwHVgN7gE9dOpuIiEgTmM1moyOISDMKDYXI\nSHipfSL3HerLa197V1NEQ3pAtgITgJXACOBK4C5glgdz1aceaRERcaqyslILbBE/9uab8N//VHDz\nvnYsiI9g232eu8uhJ3qki4DDwAXVB/4CGO1KOBEREXebNWuWpnqI+LEJEyBtXSA3lV/EziO7vGqe\ndEMW0oVAO+BLwAb8BShv4PGvATYD3wGPn2O/WwA7MLKBx5UWTv1t4ozqomVKSkoiMzOT2NhYcnNz\n67ymmhBnVBe+JSICqqrg2OipjAjoTkZOhtvP4cke6SlAKXA/8DmwE5jcgPe1Bv6GYzEdCdyKozWk\nvmDgAeCrBhxTRESkjtpTPUaNGsWKFSuMjiQibjZuHKzpfBPj9wewZu8ao+PUaHAPSLWuOEbglTVg\n3yuBx4AbqrcfwXEjl6fq7fcCsAJ4tHqfDU6OpR5pERE5r7S0NOLi4liyZAkWi8XoOCLiJs8+C9u3\nlDF5S0fmJ/Rjy73feuQ87uyRvhJYC7yHo+ViC/ANcACY2oBj9wL21dreX/1cbSOBnsAn1dtaLYuI\niMuioqLYuHEjMTExRkcRETe64gr4ZmsrooMv5YcjuzlUdMjoSMC5F9J/BX6Poy/6c2A20A0YD/yx\nAcc+36LYBDyP4yr0aY29Qi4tlPrbxBnVhQCEhYURGBgIqCbEOdWF7xk2DLZuhcCxUxlXHs76fevd\nenxXayLwHK9V4Wi5AMeC+nQP81Ya9mHD/UDvWtu9qXuFOhgYimM2NTgW6R/g6MnOqn+w+Ph4IiIi\nAAgJCWH48OFER0cDP33z2m4529nZ2V6VR9va1rZ3bmdnZ3tVHm17x/Zp3pJH2+ffDgqCvn1X89cj\n3biktJjPfviMjgc7Nvn42dnZHDt2jD179rB06VIa61xXgDfy04cDa3/tbNuZNjgW3eOBQzimftyD\nk0VytVXAw2d5XT3SIiLisoKCAubOncuiRYvo0aOH0XFExAV/+Qts3FDJpT+04b07x7B29pduP4c7\ne6QjgRPVj0trfX16+3xKgDlAKrAJR691FrAAx1VnERGRZhEaGkpkZKSmeoj4sEmT4LNVZqKDLmVd\njntbO1x1roW0GUf7RTCOFpDgetsN8SlwCTAEWFj93O+AD53sexVnv1otUkf9X8+JgOpCznS6Jkwm\nE4mJidhsNhISErBarbqBSwumnxW+afBgqKyEduMfBqCwtNBtx3a1Js61kBYREfEr0dHRbNiwgfT0\ndCZNmkR5eUPvLyYiRgsIgJEj4dseU5i8O4C3M5caHclnpmSoR1pERNymsrKStLQ0jckT8TFWq2NB\nPXh3JP8YUcWqRza79fju7JEWERHxS2azWYtoER80diysWgUTh1zD6qItGH2hVQtp8UnqbxNnVBdS\nn2pCnFFd+K6oKFi3DnoMGkdoxQVuuzGLeqRFRESaaO3ataSmphodQ0TOokMH6NsXtlZcRI9iM//b\n/T9D86hHWkREpNqaNWuYPn068fHxLFiwoOYOiSLiPWbMgGsvP0Lmmt6cvON2Xr/xdbcdWz3SIiIi\nLpo4cSJZWVlkZGQQExNDTk6O0ZFEpJ5hw2Dj7hAm7C4nc1+6oVm0kBafpP42cUZ1IfW5UhPh4eGk\npKRgsVgYPXo0K1eudH8wMZR+Vvi2sWMh42sT15sv5tuC77FX2Zt8TPVIi4iIuInZbMZqtWKz2YyO\nIiL1jBwJmzZBq6um0KMqiJSdKYZlUY+0iIiIiPiUSy+F1+9azQt7ZzLolnv4TdRv3HJc9UiLiIiI\niF8bOxa+PHox/fYc57tDWwzLoYW0+CT1t4kzqgupz1M1kZaWRkVFhUeOLZ6nnxW+b9w4yNwbztTc\nDrzz/btNvjGLeqRFRESagd1uJykpidjYWHJzc42OI9IiXXwxbN8OIwJ7U1lVyf7C/YbkUI+0iIhI\nI9ntdhYuXMjLL7/MsmXLsFgsRkcSaVEOH4b+/eHYtHuIjvicX1yXSPzw+CYfVz3SIiIiHmYymUhM\nTCQ5OZmEhASsVqtaPUSaUZcuEBoKW0MuZ8yx9izftNyQHFpIi09Sf5s4o7qQ+jxdE1FRUWRlZbFz\n507y8/M9ei5xH/2s8A9RUZDW7lquT8tl1Z5VVNorXT6WeqRFREQM0LVrV5KTk+nevbvRUURa0qHI\nxQAAIABJREFUlBEjIPtAONHZx+jctjMbD25s9gzqkRYRERERn/PJJ7BoEazM6sxdf72aMf0m8uvL\nft2kY6pHWkRExAvY7XYOHTpkdAwRv3XxxfD990BwMJeFDOXr3K+bPYMW0uKT1N8mzqgupD4ja2L9\n+vUMGzaM1NRUwzKIc/pZ4R/69IFTp2BPq4Fc0qo33+Z/6/Kx1CMtIiLiRcaPH4/NZiMhIYHExERN\n9RBxM5MJJk2Cz01XM/RUEN8ecn0h7Sr1SIuIiHhQXl4eM2fOpLS0FJvNRs+ePY2OJOI3nnsOdi9f\ny1/vWE9I5VNsmbOF3h17u3w89UiLiIh4kfDwcFJSUrBYLMybN8/oOCJ+5corYU3BxQTs2MG4XuNY\nsWtFs55fC2nxSepvE2dUF1Kft9SE2WzGarWSnJxsdBTBe+pCmu7ii2F3QUeqdu0mPCjc5Q8cqkda\nRETEy5nNZqMjiPiV4GDo0NHE/vQc7rwkjtU/rm7W86tHWkRExECVlZVaYIs0QXQ0WHcnMPa92XT4\neDxHHjtCaNtQl46lHmkREREfMmvWLE31EGmCwYMhK/xagjM30aF1B7YXbG+2c2shLT5J/W3ijOpC\n6vOFmkhKSiIzM5PY2Fhyc3ONjtMi+EJdSMP16gW72g6FzEz6hfYjvzi/0cdQj7SIiIgPqj3VY9So\nUaxY0bxTB0R83ZVXwoZDveH77xnZbSSf//B5s51bPdIiIiJeIi0tjbi4OJYsWYLFYjE6johPKC6G\nTp2qOBkYymufPcUHOz4kdaZrdxRtbI90oEtnEREREbeLiopi48aNhIa69kEpkZaoXTvo1SuArFPR\nTLD34v/t/6rZzq3WDvFJ6m8TZ1QXUp8v1kRYWBiBgbrO5Um+WBdybr16wd4LJxK5u4jC0kK2Ht7a\nqPerR1pEREREWqQxY2Bbh9EEZGUxtudYth3e1izn1UJafFJ0dLTREcQLqS6kPn+piYKCAqZNm6ap\nHm7iL3UhPxk8GLbbL4ING7io80UcOHmgUe93tSa0kBYREfFyoaGhREZGaqqHyFkMHw5f7+sKmzYx\nILQ/3+R90yzn1UJafJL628QZ1YXU5y81YTKZSExMxGazkZCQgNVq1Q1cmsBf6kJ+cskl8MNeM8VV\nbZkYMoz0nPRGvV890iIiIn4uOjqaDRs2kJ6ezqRJkygvLzc6kohXaN0aLr00gPS+0wn/fi/fHvqW\n5hidrDnSIiIiPqayspK0tDRiYmKMjiLiNR56CMJ2rueJLosx9VnKgYcP0C2oW6OO0dg50roiLSIi\n4mPMZrMW0SL1jBkDGccHEfDNZvqF9mN/4X6Pn1MLafFJ6m8TZ1QXUp9qQpxRXfinMWNgxdeh8N13\nXNJlKBtyNzT4veqRFhERaeHWrl1Laqprt0YW8XX9+kFZWQDHwgfRuTyQfYX7PH5O9UiLiIj4iTVr\n1jB9+nTi4+NZsGCB7pAoLc6wYfB650f48JYf+T7cTPKtyY16v3qkRUREWqiJEyeSlZVFRkYGMTEx\n5OTkGB1JpFkNGADbOo1j8MEKdh/d7fHzaSEtPkn9beKM6kLqa4k1ER4eTkpKChaLhdGjR7Ny5Uqj\nI3mdllgXLcWoUfB1WST9tueTX5zf4PepR1pEREQAx1QPq9WKzWYzOopIs7rkEvi+sCddN++mwu75\nmxapR1pERERE/MK2bXDddVVsOB5M6H1FVP2ucetH9UiLiIiISIvUpw/s3x9Au4EjAThy6ohHz6eF\ntPgk9beJM6oLqU814VxaWhoVFZ7/tbe3Ul34rzZtICICtve7jnCC2HZ4W4Pepx5pEREROS+73U5S\nUhKxsbHk5uYaHUfE7fr3h11dx3Fh8QVsytvk0XNpIS0+KTo62ugI4oVUF1KfauJMJpOJjz76CIvF\nwqhRo1ixYoXRkZqd6sK/DR4M2wMGEXnA3uDbhLtaE1pIi4iItDAmk4nExESSk5NJSEjAarW26FYP\n8S8REbDnUFv6Hw1g55GdHj2XFtLik9TfJs6oLqQ+1cS5RUVFkZWVxc6dO8nPb/jMXV+nuvBvgwfD\npl3B9Nt3gj3HfmjQe1ytCd07VEREpAXr2rUrycmNu42yiDe7/HLYuMlEtwGhmCvsHj2X5kiLiIiI\niF+55BJ4IOgmXpn2PRsfbNjkDtAcaREREXEDu93OoUOHjI4h4pIBAyAn8GK2ndjj0fNoIS0+Sf1t\n4ozqQupTTbhu/fr1DBs2jNTUVKOjuJ3qwv9ddRXsP2XhVFUZRWVF591fc6RFRETEbcaPH4/NZiMh\nIYHExERN9RCfcumlsPXEEMIqWrOvcJ/HzqMeaRERETmrvLw8Zs6cSWlpKTabjZ49exodSeS8DhyA\noYMrCJ/VnsUP/I+JfSY26H3qkRYRERG3CQ8PJyUlBYvFwrx584yOI9Ig3bpBcIiZXnntyDvouVnS\nWkiLT1J/mzijupD6VBPuYTabsVqtfjMmT3Xh/wICYNy4AEpMvTm59/wLafVIi4iIiEeZzWajI4g0\n2KBBUBzYh6M7t3jsHOqRFhEREZdVVlZqgS1eKTkZ/vjOI4wbspLFf9jUoPeoR1pERESazaxZszTV\nQ7zSwIFwpKgzp4oLPXYOLaTFJ6m/TZxRXUh9qgnPS0pKIjMzk9jYWHJzc42O0yCqi5ahXz84nHMx\n2yvPf2Mh9UiLiIhIs6s91WPUqFGsWLHC6EgiAISEwAU5sWSEFnO8+KhHzqEeaREREXGLtLQ04uLi\nWLJkCRaLxeg4IgweDFWTglh85+tEjbntvPs3tkdaC2kRERFxm/z8fEJDQwkMDDQ6igiTJ0NZ+GAu\ns1xO0syl591fHzaUFkH9beKM6kLqU000v7CwMK9fRKsuWo6+faFNSR8OFZ67f1890iIiIiIitXTq\nBF2OjmbPif0eOb4W0uKToqOjjY4gXkh1IfWpJrxDQUEB06ZN85qpHqqLliM8HKqKB7GvLP+c+7la\nE1pIi4iIiEeFhoYSGRmpqR7S7Pr0gUNHL2GX/TCe+LydFtLik9TfJs6oLqQ+1YR3MJlMJCYmYrPZ\nSEhIwGq1GnoDF9VFy3HRRbCvIAKAAycPnHU/9UiLiIiIV4uOjmbDhg2kp6czadIkysvLjY4kfu7C\nC2FbfihDyjpy9JT7Z0lr/J2IiIg0q8rKStLS0oiJiTE6irQAIe3LGfnLCH71y0XcPvT2c+6r8Xci\nIiLi1cxmsxbR0mwG9Coh6HgHvtz3pduPrYW0+CT1t4kzqgupTzUhzqguWpbOXaDv3m5sOLDhrPuo\nR1pERER82tq1a0lNTTU6hviZkVe0pXLTaNL3p7v92FpIi0/SDFBxRnUh9akmfEtVVRUJCQkkJiZ6\ndKqH6qJliRwZyMGyCZTby6mwO68rzZEWERERnzZx4kSysrLIyMggJiaGnJwcoyOJH+jZE3Kr+tLe\n3JbC0kK3HlsLafFJ6m8TZ1QXUp9qwveEh4eTkpKCxWJh9OjRrFy50u3nUF20LL17w/6KbpTbyzl4\n8qDTfdQjLSIiIn7BbDZjtVqx2WxGRxE/0KsX5JeHcFFAOLuP7nbrsTVHWkRERET82qXd8gm7I5Z7\n7kpk2iXTzrqf5kiLiIiIiNTSt2cZFxxpz+Hiw249rhbS4pPU3ybOqC6kPtWEf0pLS2vSVA/VRctz\n0cAA7Ie6sL1gu9PX1SMtIiIifs9ut5OUlERsbCy5ublGxxEfMSCyHWUHe/Bt/rduPa4W0uKTNANU\nnFFdSH2qCf9jMpn46KOPsFgsjBo1ihUrVjT6GKqLlicisgPH9k1g77Efnb6uOdIiIiLSIphMJhIT\nE0lOTiYhIQGr1erRG7iI77swwkTOycvYfewHtx5XC2nxSepvE2dUF1KfasK/RUVFkZWVxc6dO8nP\nz2/w+1QXLU///nD8VB8qqyrJLzqzVlyticAm5hIRERExTNeuXUlOTjY6hni5Nm2gvbmSiAv68cOx\nHwhrH+aW42qOtIiIiIj4vaFdDtL6V1Esmr2YqIgop/tojrSIiIi0eHa7nUOHDhkdQ7zI2P4FVB7v\nwI4jO9x2zOZYSF8DbAa+Ax538vqjwLfAFuALoG8zZBIfp/42cUZ1IfWpJlqu9evXM2zYMFJTU894\nTXXRMg3oX0Xg4a5sO7ztjNe8dY50a+BvOBbTkcCtwIh6+3wFjAQuAf4NPO/hTCIiIuLnxo8fj81m\nIyEhgcTERE31EMIj2lJ6rAvbjzi/KYsrPL2QHovjanMOUAG8BVxfb581QGn11+uAnh7OJH5AM0DF\nGdWF1KeaaNmio6PJysoiIyODmJgYcnJyap6XlieoRwf4YRQny06e8Zq3zpHuBeyrtb2/+rmzuQd4\n36OJREREpMUIDw8nJSUFi8XCvHnzjI4jBuo5OJiTJ3pwvOS4247p6YV0Y0ZtxOFo8XjGQ1nEj6i/\nTZxRXUh9qgkBMJvNWK3WmjF5qouWqfdFbSipCHF6d0NvnSO9H+hda7s3da9Qn3Y1kAhcCZQ7O1B8\nfDwREREAhISEMHz48JrL8Ke/eW23nO3s7GyvyqNtbWvbO7ezs7O9Ko+2jd1es2YNtRmdR9vNu71z\n52oOFxZQeepwzevZ2dkcO3aMPXv2sHTpUhrL03Ok2wBbgfHAIeBLHO0bWbX2GQG8A0wGdp3lOJoj\nLSIiIm5XWVmJ2Ww2OoY0k16tcslJ7MmpxFO0CWxzxuveNke6BJgDpAKbgPdwLKIXADdU7/MM0B74\nD7AR+K+HM4mIiIgAMGvWLE31aEEi2hXQitYcPXXULcfz9EIa4FMco+2GAAurn/sd8FH115OA7jiu\nTI8AbmqGTOLjTv+6RqQ21YXUp5oQZ2rXRVJSEpmZmcTGxpKbm2tcKGkW4e2LaG1vS3F5cZ3nXf1Z\n0RwLaRERERGvVHuqx6hRo1ixYoXRkcSDAlpdQNuyEEoqStxzPLccxfPUIy0iIiIelZaWRlxcHEuW\nLMFisRgdRzxgwZWf8dexv+S/97/JFb2vOOP1xvZIe3pqh4iIiIhPiIqKYuPGjYSGhhodRTyke08T\n5aWtKCwtdMvx1NohPkl9j+KM6kLqU02IM+eqi7CwMAIDdZ3RXwW3txNYHMaeY3vqPK8eaRERERGR\ncxg0xIy9IILdR3e75XhaSItPOj1cXaQ21YXUp5oQZxpbFwUFBUybNk1TPfxAn+GhFB+JoMJed9yh\nqz8rtJAWEREROYfQ0FAiIyM11cMPhFw+mLJTXSg6VeSW42khLT5JfY/ijOpC6lNNiDONrQuTyURi\nYiI2m42EhASsVqtu4OKjzO1aE2QuZEdu3Ztpq0daRERExIOio6PZsGED6enpTJo0ifLycqMjiQu6\nngij+KTmSIuIiIg0u8rKStLS0oiJiTE6irggesjr7Ll9IXvmbz/jtcbOkdYVaREREZFGMJvNWkT7\nsN7tqygqP+WWY2khLT5JfY/ijOpC6lNNiDOqi5YtvE0wJ03H6jynHmkRERERA61du5bU1FSjY8h5\ntG/TjTJTCafccFVaC2nxSZoNK86oLqQ+1YQ446m6qKqqIiEhgcTERE318GIRFwbQuiSEglMFNc9p\njrSIiIiIgSZOnEhWVhYZGRnExMSQk5NjdCRxokff1gSUtuPIqSNNPpYW0uKT1N8mzqgupD7VhDjj\nyboIDw8nJSUFi8XC6NGjWblypcfOJa7pc3Fb7Md71blNuHqkRURERLyA2WzGarVis9mMjiJO9IkM\noayoG3uP72vysTRHWkRERERajtJSAn9+Fwvvv4JHo+6v85LmSIuIiIiInE3r1rQvCqbg4PEmH0oL\nafFJ6nsUZ1QXUp9qQpwxui7S0tI01cNgQXY4eOhQzbZ6pEVERES8nN1uJykpidjYWHJzc42O02J1\nLulEztGm//2rR1pERESkGdntdhYuXMjLL7/MsmXLsFgsRkdqca6I/h32K9bx1Z/+V+d59UiLiIiI\neDGTyURiYiLJyckkJCRgtVrV6tHMQgNCya36scnH0UJafJLR/W3inVQXUp9qQpzxlrqIiooiKyuL\nnTt3kp+fb3ScFiW0dUcKA47WbLtaE4FuyiMiIiIijdS1a1eSk5ONjtHidG4bxonAwiYfRz3SIiIi\nItKivHT319zfcwynEk/RJrBNzfPqkRYRERHxcXa7nUO1xrOJe0WPNxFQ2p4DJw406ThaSItP8pb+\nNvEuqgupTzUhzvhCXaxfv55hw4aRmppqdBS/1KOXiYAjAzhU5PjHiuZIi4iIiPiJ8ePHY7PZSEhI\nIDExUVM93CykSyBVJ3pwoLBpH/L06R7pTp06cfToUSe7i3hGaGgoR44cMTqGiIi0EHl5ecycOZPS\n0lJsNhs9e/Y0OpJ/2LGDNr+7n0fviOEP1z5a83Rje6R9emrH0aNH0YcQpTlV/wcmIiLSLMLDw0lJ\nSWHhwoXMmzePd955x+hI/qF1a9of6cGRY/YmHUatHSLiN3yh71Gal2pCnPG1ujCbzVitVo3Jc6e2\nbWldYaKopAxQj7SIiIiIXzObzUZH8B9t2xJaeZLCotImHcZXfk/ttEc6ICBArR3SrFRzIiLiTSor\nK7XAdkVlJWMnXUfJxG5sWrCs5mnNkRYRERFpIWbNmqWpHq4wm+lc2J6qiqb9I0QLaQOsXr2a3r17\nN+o9r732Gg8++KCHErUceXl5DBkyhLKyMqOjiAf4Wt+jeJ5qQpzxp7pISkoiMzOT2NhYcnNzjY7j\nU8IpprisGFCPtF8rKyvjj3/8I4899pjRUZrks88+Y/DgwQQHBxMTE8PevXvPum92djbjxo2jffv2\nhIeHk5iYWPPav/71L4KDg2se7du3x2QysXHjRgDmz5/PBRdcUPN6hw4d2LNnD+D49PNVV13F4sWL\nPfq9ioiINIfTUz0sFgujRo1ixYoVRkfyGZ0CKjhVvZB2lRbSPuD999/n4osvpnv37i69325v2mgX\ndzh8+DC33norixYt4sSJE0yYMIFp06addf8ZM2Zw9dVXc/LkSdavX8/rr79eM/InLi6OEydO1Dxe\neeUV+vfvz4gRIwBHf9OMGTNqXi8sLCQiIqLm2HFxcbz22mse/X7FGNHR0UZHEC+jmhBn/K0uTCYT\niYmJJCcnk5CQoMV0A4UHVFFceRJwvSa0kPaQL7/8ksGDB9OxY0duv/12pk2bxm9+85s6+yxcuJDw\n8HC6devGP//5z7Me69NPPyUqKqrOc1OnTiU8PJygoCAuv/xysrOza16Lj49nzpw5XH/99XTo0IHV\nq1ezZ88errvuOkJCQujevTtJSUk1+6enpzNmzBg6duxIp06dmD17NqWlTfsUa33vvfceI0aM4Npr\nrwXAarWyZcsWtm/f7nT/Xbt2ERcXR0BAAP369WPChAns3LnT6b5Lly7lzjvvrNmuqqo65wcCL7vs\nMnbv3s2+ffua8B2JiIh4l6ioKDZu3EhMTIzRUXxCxzYXUMGpJh1DC2kPKCkp4eabb+ahhx7i+PHj\nxMfH8/7779e5mcfBgwc5efIkBw8e5IMPPmDevHls2rTJ6fG2bNnCoEGD6jx32223sXfvXo4fP050\ndDTTp0+v8/rbb7/NH/7wBwoLCxk/fjzXXnstV155JUeOHCEzM5PFixfz3//+F4DWrVuzePFijh8/\nzpYtW8jIyGDRokVn/f5CQkIIDQ11+njmmWecvufbb79l2LBhNdutWrVi4MCBbNmyxen+11xzDcuW\nLaOiooKtW7eyfv16LBbLGfv9+OOPrFmzps5COiAggA8++IDOnTszYMCAM76XwMBABgwYUOcfH+If\n/KnvUdxDNSHO+HNdhIWFERjo0/fbazYhoZ2oMDmuSKtH2pmAAPc8GumLL76gTZs23H333QBcd911\nXHHFFXX2MZvN/Pa3vyUgIIDLLruMm2666ax3Kzp27BjBwcF1nvv5z39O69ata4a0b9++nfz8/Opv\nO4Cbb76ZkSNHAvDVV19RXFzME088gclkolevXsyePZu3334bgOHDh9e0RfTo0YO7776bL7744qzf\n37Fjxzh69KjTx9n6uIuKimjXrl2d54KCgjh58qTT/RctWsRbb71F27ZtGTJkCLNnz2bUqFFn7Ld8\n+XKuvPJK+vTpU/Pc9OnT2bVrFwUFBSQnJ7No0SJef/31Ou8LDg7m+PHjZ/0eRURExL917tyZCrN6\npM+uqso9j0Y6dOgQPXr0qPNcr1696mx36tSJ1q1b13k9Ly/P6fFCQ0MpLCys2S4rK2PevHn06dOH\nkJCQmgkgtRel3bp1q/l6//795Obm1rlyvHDhQo4dOwY4rhZbLBa6dOlCSEgIjz/+OEVFRY3+vs8l\nKCjojGOePHnyjH8gABQXFxMTE8Pvf/97SktL2bdvHytXruRvf/vbGfsuX76cu+66q85zgwYNokuX\nLgCMHj2aefPm8e6779bZ58SJE4SEhDT12xIv4299j9J0qglxpqXVRUFBAdOmTdNUj3rCu3Wk0uRo\nZVWPtBcJDw8/o1jr9+MeOXKEkpKSOq/XXvzWFhkZWaeXePny5Xz++eesW7eOY8eOsX//foCz9gV3\n796dgQMH1rlyXFhYyCeffALAPffcw5gxY9i/fz/Hjh0jKSnpnB9QDAoKqjM1o/bj6aefdvqeoUOH\n8s0339Rsl5aWsm3bNoYOHXrGvt988w0nTpxg5syZmEwmevbsyYwZM/jwww/r7Ldu3ToOHDjArbfe\netasp/9eav/dVFRUsHPnzjqtJiIiIv4qNDSUyMhITfWop1OvLlQFHXDlmmkNLaQ9YMKECZSUlPCP\nf/wDgJSUFL766qs6+1RWVvLUU09ht9tJT0/ngw8+OOuC8LrrriMtLa1mu7i4GLPZTMeOHSkpKcFq\ntdbZv/6COioqCrvdzssvv0xZWRlVVVVs27aNrKysmuO1adOG1q1bs3v3bqdXfms7efJknakZtR9P\nPPGE0/dMnTqVjRs3kpKSgt1u56mnniIyMpKBAweesW+/fv0oLi7GZrNht9s5ePAgycnJDBkypM5+\ny5Yt49Zbb6V9+/Z1nv/kk084ceIE4Bij99JLL3HjjTfWvJ6RkUFERESjZ3mL9/PnvkdxjWpCnGlp\ndXF6qofNZiMhIQGr1aobuACdLuwDJjslJeqR9ipt27bl3Xff5bnnnqNjx44sWbKEKVOmYDL99Nfd\nvXt32rVrR48ePfjZz37G888/f9YrpDfccANbt27lwIEDgGMqR48ePQgPD2fo0KGMHDmyzgcZAwIC\n6mybzWZSU1P57LPPCA8PJyQkhDvvvJOjR48C8Oyzz7J06VI6dOhAfHw8t956a533u0OXLl34z3/+\nw4MPPkjHjh1Zt24dycnJNa/PmTOHOXPmANC1a1dsNht/+tOfCAoKYsiQIfTr14/58+fX7F9SUsI7\n77xzRlsHOK7Y9+nTh6CgIKZOncrcuXNr+tXBMYf69LlERERaiujoaDZs2EB6ejqTJk2ivLzc6EiG\nah0aBsDJk65fknbvaslzqpy1LQQEBJxzzJk3mThxIjNnzuSee+5x6f1///vf+e677845TUPO79Ch\nQ0RHR5OdnU2rVq0a/X5fqjkRERFnKisrSUtL05i8LVsIeHsEG6cdZ/hQx0CE6guJDV4fayHtIV9+\n+SUDBw6kc+fONQPSt27dWme6hPgeb645ERERaYS9e7ngr5HYordz67VdgcYvpNXa4SGbN29m6NCh\nBAUFMX/+fN58800tokU8rKX1Pcr5qSbEGdWFANCpE4GVJgqOVrhcE5rY7SH33HOPy20cIiIiIs1t\n7dq1FBUVMXnyZKOjNI/27bmgwsSPB/IY1OP8uzujK9Ii4jda2mxYOT/VhDijunCuqqqKhIQEEhMT\nW8ZUj4AA2pe2ZcfhjZojLSIiIiKumzhxIllZWWRkZBATE0NOTo7RkTyuW2EXTp1wfXqJFtIi4jfU\n9yj1qSbEGdXF2YWHh5OSkoLFYmH06NGsXLnS6Ege1dZ0ASeLT6pHWkRERESazmw2Y7VamTBhgt/P\nmm4TaOJw5QGX36/xdyKNoJoTERHxH9fPjuKHojF8Z3sO0Pg7rxEREcFnn33WbOcbP348mzZtarbz\n+asPP/yQ6dOnGx1DREREmkFnU0dKK0tcfr8W0h5S/zbdnvThhx/SsWPHs95i3Fc8/vjjhIWFERYW\nxhNPPHHOfV988UUuvPBC2rVrx7Bhw1i1alXNa6Wlpdx999107tyZ4OBgJk+ezN69e2teP3LkCFOn\nTqVDhw707dsXm81W89qUKVP49ttv2bx5s/u/QfE49T1KfaoJcUZ10TRpaWl+M9UjqE1risxHXa4J\nLaT9wKuvvsodd9zh0nu95T+E1157jU8//ZStW7fy/fffk5KSwmuvveZ03/T0dBITE3n//fcpLi5m\nzpw53HLLLTV9XC+88AIZGRls3bqVw4cP061bN+bMmVPz/nvvvZeOHTty5MgR3nvvPebOnct3331X\n8/qMGTNYvHixZ79hERERH2S320lKSiI2Npbc3Fyj4zRZm3Zmyihz+f1aSHtQRkYGl156KcHBwUyf\nPp1Tp04Bjn8J9+rVi+eff57u3bvTpUsXXn311Zr3xcfHc++99zJlyhSCg4MZPnw427dvd3qOsrIy\nVq1aRVRUVM1z6enpjBkzho4dO9KpUydmz55NaWlpzesmk4lXXnmFQYMGMXjwYADeeustBg8eTIcO\nHRg5ciSZmZk1+z/11FP07duXoKAgBgwYUOcKrrssW7aMRx55hM6dO9OlSxceffRRli5d6nTfHTt2\nMHToUEaMGAHAHXfcwbFj/7+9O4+K6kr3Pv6tAkFkkBJFUTHG9hqcMKiddsWJdoCo8aYdrrYXB2In\nIbE74zWvMWgn6SS329c2g23H6O3YJl4cck28MU7RjiNJXjUKjqTVhESRBEWZiROc949TlBQUCAQo\nwN9nrVrrDPvss6vWs+CpXfvsnU1mZiYAZ86cITo6mjZt2uDt7c2kSZM4ffo0AAUFBXxl+UFUAAAZ\nyUlEQVT44Yf84Q9/wNPTk4iICCZOnMiqVasc9UdGRrJ58+Zaf49S9zQ3rJSlmBBXFBc1Z7Va2bRp\nE1FRUfTr14/t27e7u0k/STvf1twoqnlMKJGuI4Zh8P7777Nz507S09O5cOEC8+bNc5zPyMigsLCQ\n9PR0Vq1axZNPPklWVpbj/Lp163j11VfJzs6mV69ezJ071+V9Tp8+jdVqpX37m0vyeHt7s3z5cnJy\ncjh+/DgHDhzg9ddfd7pu27ZtHDp0iJMnT5KYmMjjjz/O+++/T25uLrNnz+aBBx5wJN+9e/fmyy+/\nJD8/n0WLFvHggw+Slpbmsj2rV6/GZrO5fLVq1arC606ePOk0NKV3796cOHHCZdmhQ4eSmprKgQMH\nKCoqYsWKFURERBASEgLAfffdx9atW/n+++8pLCwkISGB+++/H4BTp07h4+NDp06dHPWFh4c73Sss\nLIxvv/2W/Px8l/cXERG5nVmtVuLj41m7di0zZ85k3rx5DeYX7ury9fPmuqXY3c2oc4YrFR2/eb52\nXjXRuXNnY8WKFY79f/zjH0aHDh0MwzCMXbt2GT4+PkZRUZHjfHBwsJGYmGgYhmHMmDHDePjhhx3n\ntmzZYvzsZz9zeZ/ExESjXbt2lbblL3/5izFq1CjHvsVicdzLMAwjNjbWmD9/vtM1d911l/HJJ5+4\nrK9///7GunXrKr1ndXl4eBinT5927H/99deGxWKpsPyyZcsMT09Pw9PT02jTpo1x8OBBp/PTp083\nLBaL4enpafTt29e4fPmyYRiGsXfvXqN9+/ZOZd955x0jMjLSsX/t2jXDYrEY586dK3ffW8WcuNeu\nXbvc3QRpYBQT4oriovZkZGQYkydPNtLT093dlBpZsfx5o9mkXzliAqjW1FxNuke6tlLpmurYsaNj\nu0OHDmRkZDj2g4KCsFpvfvwtWrRw9ABbLBbatm3rOOfj4+M0NKM0m81GXl6e07ETJ04QFRVF69at\nCQwMZM6cORQUFDiVKem9BUhLS2PRokVOvcdpaWlcunQJgOXLl9OrVy9atmyJzWYjOTm5XH0/lZ+f\nn1Od+fn5+Pn5uSy7ceNGFi1aREpKCtevXychIYGxY8fy/ffmPJCzZ88mLy+Py5cvU1BQwMSJExk1\napTL+5Tcy9/f37Ff8nkGBgbW6nsUERFpaoKDg1m7dq1TXtGY+Pi1oMhaVOPrm3Qi7W6lhzGkpaU5\nJce1pWvXrhiG4UgiAeLi4vj5z39OWloa2dnZLFiwgOLiin+2CAkJ4cUXXyQrK8vxys/PZ8qUKZw+\nfZqnnnqKv//97+Tk5JCVlcXdd99d4VzKCQkJ+Pv7u3wFBARUOLSjZ8+eTtP3HT16lF69erksu2XL\nFsaMGUPXrl0BGDlyJKGhoSQmJgKwefNmHnzwQQIDA/Hy8uKJJ57gwIEDXLx4kW7duvHjjz86zeJR\n9l4pKSl07ty5wkReGi6Ne5SyFBPiiuJCSjT3a0GxVyFDh0bW6Hol0nXEMAyWLFnCxYsXycvL449/\n/COTJ0+u8rVV5eXlxYgRI5ymbSksLKR58+Z4e3vzzTffsHTp0krreOihh1i6dClJSUkAXLlyhe3b\nt5Ofn09hYSGGYdCyZUsMw2D16tWVzlcdExNDXl6ey1dubq5TL31p06dP57XXXiMzM5PMzEwWLVpE\nbGysy7Ldu3dn8+bNpKamYhgGO3fu5Pjx444HJ8PCwnj33XfJzc3l+vXrLFmyhODgYIKCgvD19WX8\n+PG88MILXL9+naSkJD744AOnWU/27NnD6NGjK/3MREREpGLFxcVcuHDB3c24JW8/P7B9zbUaTtyh\nRLqOWCwWJk2axLBhw2jfvj2tW7fmlVdecTpf2bVlz1dWPi4uzmnWiYULF7Jy5UoCAgKIjY1l4sSJ\nTteXrWvIkCEsXLiQGTNm4O/vzx133MGyZcuwWCz06dOH3/72t/Tv35927dpx6NAhBg4cWOXPoari\n4uKIjo4mLCyMsLAwoqOjeeSRRxzn/f39+eyzzwCYNWsW0dHRDBgwAF9fX+Li4li8eDG9e/cGYMmS\nJVy7do3Q0FACAwPZsGEDGzZscAyleeutt8jOziYoKIjx48ezdOlSunfv7rjX2rVriYuLq/X3KHVP\nc8NKWYoJcUVxUfe++OIL+vTpwyeffOLuplSqa3AYFs8f+eST3TW6XkuENxGDBg3ir3/9a6NflMXd\nPv74YxISEli7dq3L84q5hm337t36yVacKCbEFcVF/di9ezcxMTHExsby0ksv4enp6e4mlXMh/TRt\n/6sba8N2MXlyZLWXCFciLVINijkREZGqy8jIYOrUqVy9epU1a9bQoUMHdzfJSW7+JQL/sxMp0/O5\nK8xS7URaQztEREREpE60bduWbdu2ERUVxVNPPeXu5pTj6e0D1mKuZRfW6Hol0iLSZGjco5SlmBBX\nFBf1y8PDg3nz5lU4bNKdPCweYL3BF7u21uh6JdIiIiIiUuc8PDzc3YRyPKweGJZibuTUrEdaY6RF\nqkExJyIiUnuKiorcmmAbhoH1D1Z2++5n6Ox7NEZaRERERBqH3/zmN8THx3Pjxg233N9isUCxlYJ8\n1ytI34oSaRFpMjTuUcpSTIgriouGY8GCBRw8eJDhw4eTnp7uljZ4Xm9B4ldf1OhaJdIiIiIi4hal\nZ/Xo168f27dvr/c2WICLV7NqdK0S6UZq7ty5vPnmm+5uRqOXkZFBjx49uFbTtUGlQdECC1KWYkJc\nUVw0LFarlfj4eNauXcvMmTPrPZn2/TGI4KC7anStEuk60rlzZ7y9vbl06ZLT8YiICKxWK2fPngUg\nNjYWq9XKwYMHHWXOnDnjWM7alYsXL7Jq1SoeffTRuml8PVm9ejV33nknAQEBjBs3jqysir8Nfvrp\np4SHh9OiRQtCQ0NZvHix0/k333yTTp060aJFC/r06cOuXbuczs+ZM4c2bdrQpk0bnnvuOcfxtm3b\n8stf/pLly5fX7psTERGRahk6dChJSUkMGzasfm/sUcSlIvVINygWi4UuXbqwZs0ax7Fjx47x448/\nljwR6tCqVSvmzZtX5bpXrlzJmDFj8Pb2rna7DMNoELNOnDhxglmzZvHBBx9w6dIlbDYbs2bNcln2\n6tWrTJw4kccff5zCwkI2bNjA888/7/jysX//fuLj4/noo48oLCzkscceY8KECVy/fh2AZcuWsXXr\nVr766itSUlLYtm0by5Ytc9QfExPjtC+Nl8Y9SlmKCXFFcdFwtWnTpt6XEm9x3Z+v007W6Fol0nVo\n6tSpvPfee479d999l+nTpzslshaLhRkzZnD06FH27t1bpXq3bdvG0KFDHfvZ2dlER0fTunVr/P39\nGTFiBN99953jfGRkJPPmzWPgwIH4+/uTmppKcnIygwcPJiAggDvuuMOpnR9//DHh4eEEBATQtm1b\npx7c2pKQkMD48ePp27cvzZo14+WXX+bDDz+koKCgXNmLFy+Sk5PDtGnTAOjfvz89evTgzJkzAJw+\nfZqePXsSEREBwLRp08jOziYzMxMwP/fZs2cTFBRE69atefbZZ1m5cqWj/nvuuYdvvvmGc+fO1fr7\nFBERkYYt8FprrhbVbNYQJdJ1aMCAAeTm5vLVV19RVFTEunXrmDp1arlyLVq04Pnnnyc+Pr5K9R47\ndoy77ro5lscwDJ544gkyMjK4cOECISEhxMXFOV2zZs0aVq1aRV5eHgEBAdx33308+uij5ObmsnXr\nVp555hkOHz4MQGBgIOvXryc3N5c9e/awatWqClcjOnv2LDabrcJXRdedPHmSPn36OPY7dOiAn58f\np06dKle2Y8eOhIeHs2LFCoqKivj888/57rvvGDJkCGD+FJSamsqBAwcoKipixYoVREREEBIS4vJe\nvXv35sSJE459T09PunbtSnJycqWfuzR8GvcoZSkmxBXFReNy6dIlJk+eXGezejSjGf7B7Wp0bf32\nndczy0u1s96M8ULNh0JMmzaN9957jyFDhtCjRw86dOhQrozFYiEuLo4///nPbNu2ja5du1ZaZ3Z2\nNv7+/o59m83GmDFjAPDx8WHOnDncc889TvXPnDmTLl26ALB582a6detGTEwMAD169GDChAmsX7+e\nvn37MnjwYMe1YWFhTJkyhb179/LrX/+6XFs6depU6djmiuTn5+Pr6+t0zM/Pj7y8PJflly9fzpgx\nY3jyyScBePvttx2fZWhoKK+88goDBw50fB5btmyp8F5+fn7k5+c71e/v709OTk6134eIiIjULZvN\nRnh4OP369ePdd98lKiqqVus3PIrIt9YsB2jSifRPSYBrg8ViYdq0aQwePJjU1NRywzpK8/LyYv78\n+cyfP/+Wa9HbbDanhDMnJ4cnn3ySHTt2UFBQgGEYXL16FcMwHOOxS3pnAdLS0ti/fz82m81x7MaN\nG47e8n379vHcc8+RkpKCYRhcuXKFSZMm1fhzcMVVMpufn+/0BaHE+fPnuf/++1m9ejUjR47k1KlT\nPPDAA4SEhDB69Gg2btzIokWLSElJoWvXruzYsYOxY8eSlJREu3bt8PPzcxoykp+fj5+fn9M98vLy\nCAwMrNX3KPVv9+7d6mkSJ4oJcUVx0biUzOoxcOBApk6dSmxsLC+++GKtjaUOutGWiz+k1axttdIC\nqVCnTp3o0qULW7duZfz48S7LlCTXsbGxZGdn88EHH1RaZ3h4OP/85z8d+wsXLuT8+fMcOXKE7Oxs\nPvvss0ofKgwJCWHEiBFkZWU5Xnl5eSxduhSAKVOmMHXqVC5cuEBWVha/+93vKC4udlnX2bNn8ff3\nr/BV+mHL0nr27MnRo0cd+2lpaeTn59OtW7dyZfft20fHjh0ZOXIkAN26dWPs2LFs2rQJgC1btjBm\nzBhHT/7IkSMJDQ1l3759jnsdOXLEUd/Ro0fp1auXY//GjRucOXPGafiHiIiINCyRkZEcOnSI/fv3\nM3LkSMekAj9VC3y5Yi3/jFZVKJGuB++88w47d+7Ex8en3LnSya6npycvvfQSCxYsqLS+0aNHs2fP\nHsd+YWEhzZo1w9/fn9zcXF5++eVK7zNu3DiSk5NZv349RUVFFBcXk5SU5EjOCwsL8fX1xdPTk6Sk\nJBISEsrNNFKiU6dO5OXlVfiaMmWKy+tiYmL48MMPSUpK4tq1a8yfP58JEyaUG+4B0L17d1JSUti1\naxeGYfD111+zceNGevTo4Ti/efNmUlNTMQyDnTt3cvz4ccLCwgCYPn06r732GpmZmWRmZrJo0SJi\nY2Md9R84cIDOnTsTGhpa6ecuDZ96mKQsxYS4orhovEoWcJk/fz7NmjWrlTr9LP5Y29puXdAFJdL1\noEuXLvTt29exXzoptVgsTvtTpkyhffv2FSauYCaGW7Zs4cqVKwA8/fTT5OTkYLPZGDBgAMOHDy93\nfel9m83Gtm3bePvtt2nVqhVBQUE8/fTTjvqWLFnC3LlzadmyJb///e+ZOHHiT/sAXOjRowdLly5l\n3LhxtG7dmuzsbN566y3H+dGjR/OnP/0JgD59+vDGG2/w8MMP4+vry7333suoUaN47LHHAJg1axbR\n0dEMGDAAX19f4uLiWLx4Mb179wYgLi6O6OhowsLCCAsLIzo6mkceecRxr4SEBEddIiIi0rB5eHjU\n6lzTxYY3RRTV6NraeRqv7hmuhilYLJYGMSeyO8THxxMcHOx4+E5q5sKFC0RGRpKcnIyXl9cty9/O\nMdcYaNyjlKWYEFcUF1LaI0/PYdOxvaT/44uSjscq58dN+mHDpuzVV191dxOahODgYE6erNkk7CIi\nItJwJCYmUlBQQHR0dLWu82rmSZGlZj3SGtohIk2GepikLMWEuKK4aJoMw2DmzJnEx8dz40bVF1hp\n3swLj3YBNbqnEmkRERERafQGDx7M4cOHOXDgAMOGDeP8+fNVus7m1ZJrzTRrh4jc5nbv3u3uJkgD\no5gQVxQXTVfJrB5RUVH079+fHTt23PIa3+Y+XMm4XKP7aYy0iIiIiDQZHh4ezJs3j0GDBlVprmkv\nb0+u+l2s0b00a4dINSjmREREmpZ1yzYw4+QzXHkz9faatcNms1U637JIbSu9rLqIiIg0fj4tvDGM\nmuWTdT1G+j7gGHASmOPivDewzl7mM+CO6lR++fJlx1LYet1er5JVDuv7dflyzcZQSf3QuEcpSzEh\nrigubm979uxxmtWjuY8XRekN72FDb2ApZjIdDkwEIsqU+R3wPdAbWAgsrsP2SBOSnJzs7iZIA6S4\nkLIUE+KK4uL2VVxczIIFCxg+fDjp6ekANPfxpvjilRrVV5eJ9C+AE8B54AZmz/OYMmVGA6vs2xuB\ne2k847bFjbKzs93dBGmAFBdSlmJCXFFc3L6sViubNm0iKiqKfv36sX37dryae8G1mi3IUpdjpDsC\n50rtpwGRlZQpBi4BwUBGHbZLRERERG5TVquV+Ph4Bg0aRExMDBNGTcCw1GwigbrskdbUBlJnvv32\nW3c3QRogxYWUpZgQVxQXAjB06FAOHz5M+g8/QG7VV0IsrS6HUQzGfMDwfvv+s4AX8GqpMp/ay3yJ\nmdRnAG0xe6dLOwP8rA7bKiIiIiJyBLjb3Y0AaA58C3QAmgEHgb5lyvwH8IZ9exzmOGkRERERkdve\nKOA45vR3c+3HXgLG2re9gfcxp7/7HOhcz+0TERERERERERERkdtVnS7gIo3SrWLiWcxpFo8De4E7\n669p4ka3iosSEzCfuSg7rEyanqrExCQgCTgKrK6ndol73SouwoD93Pz1/IH6a5q4wQrM5/GOVVJm\nMWZecZjy6580aN5AKuaYak/MMdVl30DpMdW/Aj6qt9aJO1QlJgbbywE8Cmyot9aJu1QlLgD8Mb9c\nfY4S6aauKjHRBzNh8rXvt6q31om7VCUu/huIs293x3naXml6BmPGQEWJ9ATgf+3bEcAtV+6p6yXC\nq0MLuEhZVYmJfcBV+/ZnmH8wpWmrSlwAvAz8CTM+9HeiaatKTDwILAFK1gG+XG+tE3epSlycA1ra\ntwOB7+qtdeIO+4CsSs6XzjOTML+AdayswoaUSLtawKVs4ytawEWapqrERGlx6FeK20FV4qIv5peq\nLfZ9zWvftFUlJu7CnNLqS+AQ8K/10zRxo6rExR+BGfZym4HH66dp0kBVN++o05UNq0v/6KSs6sRE\nDGbyNLSO2iINx63iwgq8hvnPsYR6pJu2qvytsGLODPULIBRzyE8i6pluyqoSF68BfwNeBwZgDvXo\nWZeNkgav7P+LSuOoIfVIp2H+cSsRSvmxSmlAJ/u2FQgCLtZ908RNqhITACOAeMwepuv10C5xr1vF\nhT/mP8LdmOMjB2AOBdM46aarKn8rzgEfA0WYaxycBLrVR+PEbaoSF4Mwp+EF+H+Ya2Dol+7bV9mY\n6Wg/1ihoARcpqyoxEYFWvrzdVCUuStt1i/PS+FUlJsYBK+3brTHHzbapn+aJm1QlLjZz89er7sAP\ngEc9tU/cozOVP2xYMmlBX8xVDhsVLeAiZVUUEyVLz+8Avsd8KCCJm0/bStN2q78VpSmRvj1UJSYW\nYT589hUwrV5bJ+5yq7i4C/gCMy5OcvN/izRNa4B04BrmrxMzMZ+viitVZgk3p7/T/w4RERERERER\nERERERERERERERERERERERERERERERERERERERERERERkcbrZeCfmBP2HwHusR//L8yFHWpbfgXH\ni7g5j3oS8H/sx4cApzDnQm2OOYdyCvB/MedMrWwe5fbA//z0JouIiIiIOIvEXBSqmX0/AGhXx/fM\nq+bxt4GYUvvZgKVWWyQiIiIiUk3/BnxUwbndQD/79izMJew/w+yp/ov9+ErgTWAvcBb4d/txP8yV\nGA9hrr73b6XqrU4i/RBwCfgG+G97W29g9lhPAl4E/sNetjuQiNmrngTciblq7HH7eU/Mlb6OYPZo\nP2E/Hml/r2sxe77/h5uJ+kDgSyAZOGB/X3uAPqXamAj0ruA9iYiIiEgTFQAcw0wslwLDS50rWZL8\nDswk2R+wYiaSi+1lVmIuVQtmIvutfdsDaGHfbg2kcjM5rSiRLkmQS14lyfffgfGlypW+/gXgGfv2\nEWBMqfv7YCbSx+zHngDi7dvemEn+v2Am0tlAW3sbPweG2sukcTNp9rHXOx143X6sG3CwgvcjItJo\neLq7ASIijVAucDdm4jgEs9d3PvA3+3kL8AvgU24msOsxE0gAA9ho307BTJrBHCryBnAvcB0IBkKA\n9Era8iMQUcG5yoZyWIA2QBCw2X6syF5faVGYifNE+34A0AW4gtnbnGE/ngx0AgoxvxgcKdU+MN//\nfOBZYCZmoi8i0qgpkRYRqZkiYKf9dQxzOMXfSp03cE5kyya118qUBbPXNgBzyIOB2SNdV3+njVL3\nvZVHMXvaS4sErpbaL8Lsea+ozkJgB/ArzF7zvlVtqIhIQ2V1dwNERBqhf8Ec/lAiAjhXat8A9gO/\nxBza4YE5zOJWiWtz4IK93BDM4SF1xQJkAheB++3HmmEOxSjtE8xZPkr+X9zpokwJAziK+dncbT/m\ni/n+wfyisRizJzvnJ7VeRKQBUI+0iEj1+QNvYSaJnpgPFD5UpsxZYCHmkIcfgNM4D5swXGwnYCau\nRzAf1kupoHxpPphjo0tsBZ6v5B5l96cA7wD/iTmcZEKZ83/FTIxPYPaiZwH/SsU92teAycAKzOT7\nCuYY8gLMqfhy0LAOEREREbmFkp5bT8wx0ZPc2JaGIATzC4WIiIiISKX+jNkL+w3mvM638zzO04Gv\n0ZcJEREREREREREREREREREREREREREREREREREREREREREREREREREREZHq+P+TLNpy70rhYAAA\nAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/notebooks/TheanoNN.ipynb b/notebooks/TheanoNN.ipynb new file mode 100755 index 0000000..7fa36b0 --- /dev/null +++ b/notebooks/TheanoNN.ipynb @@ -0,0 +1,2668 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a4f76f6a51df7b80457bd517a7c33d8530115ab4697062ceaeeff16c31d96ade" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Testing different approaches based on supervised neural networks" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import numpy, theano\n", + "import theano.tensor as T\n", + "\n", + "from sklearn.metrics import roc_auc_score\n", + "from sklearn.cross_validation import train_test_split\n", + "from sklearn.ensemble import AdaBoostClassifier\n", + "from sklearn.metrics import roc_curve\n", + "from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n", + "\n", + "from cmsuml import nnet, utils" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "folder = '/mnt/w76/notebook/datasets/doudko/samples/'\n", + "variables = [\"log(Pt_BJ1)\", \"log(Pt_BJ2)\", \"log(Pt_J1J2)\", \"log(Pt_JNotBest)\",\n", + " \"log(Ht)\", \"DR_J1J2\", \"Eta_LJ\", \"log(M_J1J2)\", \"log(M_JNotBest)\",\n", + " \"log(M_JW)\", \"log(Pttop_BJ1)\", \"Cos_LepLJ_BJ1\", \"Cos_WLJ_BJ1\",\n", + " \"log(Pt_Lep)\", \"Planarity\", \"log(Mtop_BJ1)\", \"Eta_Lep\", \"N_BJ\"]\n", + "file_labels = utils.get_file_labels(['ttbar', 'Wjets'], folder=folder)\n", + "data2, labels2, weights2 = utils.load_data(file_labels, variables, folder=folder)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## scaling data, adding column with 1's" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "indices = numpy.concatenate([numpy.arange(40000), len(data2) - numpy.arange(40000) - 1])\n", + "data = StandardScaler().fit_transform(numpy.array(data2)[indices, :])\n", + "data = numpy.hstack([data, numpy.ones(len(data))[:, numpy.newaxis]])\n", + "labels = labels2[indices]\n", + "weights = weights2[indices]\n", + "trainX, testX, trainY, testY, trainW, testW = train_test_split(data, labels, weights, train_size=0.5, test_size=0.5)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 57 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "poly = PolynomialFeatures()\n", + "polyTrainX = poly.fit_transform(trainX)\n", + "polyTestX = poly.transform(testX)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 58 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Debug printing for expressions\n", + "# theano.printing.debugprint(nn.Der2)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Experimental neural network" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "reload(nnet)\n", + "floatX = theano.config.floatX" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 7 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "class GNeuralNetwork(nnet.AbstractNeuralNetworkClassifier):\n", + " def prepare(self):\n", + " assert len(self.layers) == 3 and self.layers[2] == 1\n", + " n1, n2, n3 = self.layers\n", + " W0 = theano.shared(value=numpy.random.normal(size=[n2, n1]).astype(floatX), name='W0')\n", + " W1 = theano.shared(value=numpy.random.normal(size=[n2, n1]).astype(floatX), name='W1')\n", + " W2 = theano.shared(value=numpy.random.normal(size=[n3, n2]).astype(floatX), name='W2')\n", + " self.parameters = {'W0': W0, 'W1': W1, 'W2': W2}\n", + "\n", + " def activation(input):\n", + " first = T.nnet.sigmoid(T.dot(W0, input)) * T.nnet.sigmoid(T.dot(W1, input))\n", + " return T.nnet.sigmoid(T.dot(W2, first))\n", + " return activation" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 14 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "class TanhNeuralNetwork(nnet.AbstractNeuralNetworkClassifier):\n", + " def prepare(self):\n", + " assert len(self.layers) == 3 and self.layers[2] == 1\n", + " n1, n2, n3 = self.layers\n", + " W1 = theano.shared(value=numpy.random.normal(size=[n2, n1]).astype(floatX), name='W1')\n", + " W2 = theano.shared(value=numpy.random.normal(size=[n3, n2]).astype(floatX), name='W2')\n", + " self.parameters = {'W1': W1, 'W2': W2}\n", + "\n", + " def activation(input):\n", + " first = T.tanh(T.dot(W1, input))\n", + " return T.nnet.sigmoid(T.dot(W2, first))\n", + " return activation" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 15 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "class PlainNeuralNetwork(nnet.AbstractNeuralNetworkClassifier):\n", + " def prepare(self):\n", + " assert len(self.layers) == 3 and self.layers[2] == 1\n", + " n1, n2, n3 = self.layers\n", + " W1 = theano.shared(value=numpy.random.normal(size=[n2, n1]).astype(floatX), name='W1')\n", + " W2 = theano.shared(value=numpy.random.normal(size=[n3, n2]).astype(floatX), name='W2')\n", + " self.parameters = {'W1': W1, 'W2': W2}\n", + "\n", + " def activation(input):\n", + " return T.dot(W2, T.tanh(T.dot(W1, input))))\n", + " return activation" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Pairwise layer\n", + "class PWNeuralNetwork(nnet.AbstractNeuralNetworkClassifier):\n", + " def prepare(self):\n", + " assert len(self.layers) == 3 and self.layers[2] == 1\n", + " n1, n2, n3 = self.layers\n", + " W1 = theano.shared(value=numpy.random.normal(size=[n2, n1]).astype(floatX), name='W1')\n", + " W2 = theano.shared(value=numpy.random.normal(size=[n2, n2, 1]).astype(floatX), name='W2', \n", + " broadcastable=[False, False, True])\n", + " self.parameters = {'W1': W1, 'W2': W2}\n", + " \n", + " def activation(input):\n", + " first = T.tanh(T.dot(W1, input))\n", + " second = first.reshape([n2, 1, input.shape[1]]) * first.reshape([1, n2, input.shape[1]])\n", + " return T.nnet.sigmoid(T.sum(W2 * second, axis=[0, 1]))\n", + "\n", + " return activation" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 16 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# pairwise layer on softmax\n", + "class PWSMNeuralNetwork(nnet.AbstractNeuralNetworkClassifier):\n", + " def prepare(self):\n", + " n1, n2, n3 = self.layers\n", + " W0 = theano.shared(value=numpy.random.normal(size=[n2, n1]).astype(floatX), name='W1')\n", + " W1 = theano.shared(value=numpy.random.normal(size=[n2, n1]).astype(floatX), name='W1')\n", + " W2 = theano.shared(value=numpy.random.normal(size=[n2, n2, 1]).astype(floatX), name='W2', \n", + " broadcastable=[False, False, True])\n", + " self.parameters = {'W0': W0, 'W1': W1, 'W2': W2}\n", + " \n", + " def activation(input):\n", + " first0 = T.nnet.softmax(T.dot(W0, input))\n", + " first1 = T.nnet.softmax(T.dot(W1, input))\n", + " second = first0.reshape([n2, 1, input.shape[1]]) * first1.reshape([1, n2, input.shape[1]])\n", + " return T.nnet.sigmoid(T.sum(W2 * second, axis=[0, 1]))\n", + "\n", + " return activation" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 17 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = nnet.MultiLayerNetwork(layers=[trainX.shape[1], 1])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 8 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = nnet.SimpleNeuralNetwork(layers=[trainX.shape[1], 40, 1])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = nnet.MultiLayerNetwork(layers=[trainX.shape[1], 20, 10, 1])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 10 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = nnet.MultiLayerNetwork(layers=[trainX.shape[1], 10, 5, 3, 1])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 11 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = nnet.SoftmaxNeuralNetwork(layers=[trainX.shape[1], 15, 1], loss=nnet.squared_loss)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 48 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = nnet.RBFNeuralNetwork(layers=[trainX.shape[1], 15, 1])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 59 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = GNeuralNetwork(layers=[trainX.shape[1], 40, 1])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 19 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = PWNeuralNetwork(layers=[trainX.shape[1], 10, 1], loss=nnet.log_loss)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 20 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = PWSMNeuralNetwork(layers=[trainX.shape[1], 14, 1], loss=nnet.log_loss)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 21 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = TanhNeuralNetwork(layers=[trainX.shape[1], 30, 1], loss=nnet.log_loss)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 62 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 66, + "text": [ + "TanhNeuralNetwork(layers=[19, 30, 1], loss=,\n", + " random_state=,\n", + " trainer='irprop-', trainer_parameters=None)" + ] + } + ], + "prompt_number": 66 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "for n_hidden in [10, 15, 20, 25, 30]:\n", + " nn = nnet.so" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "for stage in range(100):\n", + " nn.fit(trainX, trainY, sample_weight=trainW, trainer='sgd', stages=1000, batch=10, learning_rate=0.1)\n", + " print roc_auc_score(testY, nn.predict_proba(testX)[:, 1], sample_weight=testW),\n", + " print roc_auc_score(trainY, nn.predict_proba(trainX)[:, 1], sample_weight=trainW),\n", + " print nn.compute_loss(testX, testY, testW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.515523970127 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.517686188221 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "51.318349137\n", + "0.519008398056" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.521466314793 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "45.0462639994\n", + "0.521985352039" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.524647831917 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "39.446608168\n", + "0.524319767952" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.527324795723 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "34.523968375\n", + "0.52775144577" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.529004454613 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "30.1424892857\n", + "0.531042039394" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.532761991024 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "26.2690722007\n", + "0.53426015377" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.533892810345 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "22.826978901\n", + "0.539329349995" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.537133812904 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "19.7858624582\n", + "0.542789459229" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.54204595089 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "17.0932480913\n", + "0.547657251358" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.549028635025 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "14.7140203487\n", + "0.552298724651" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.555025219917 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "12.6339185467\n", + "0.558037161827" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.561246573925 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "10.8188941636\n", + "0.561727583408" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.566814184189 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "9.25846898621\n", + "0.562431156635" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.568488657475 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "8.00071077915\n", + "0.561503469944" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.567133724689 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "6.9773617907\n", + "0.553756415844" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.55925655365 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "6.16525524908\n", + "0.547097146511" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.551433622837 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "5.48037372597\n", + "0.543771624565" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.546096682549 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "4.91625815139\n", + "0.542481541634" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.543220162392 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "4.47705205881\n", + "0.54186463356" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.541192173958 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "4.12788645021\n", + "0.542100965977" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.540492117405 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3.84365903829\n", + "0.541633844376" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.539036154747 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3.62671997205\n", + "0.541263759136" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.538215994835 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3.45408812657\n", + "0.541831076145" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.538691341877 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3.30911886881\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "pyerr", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mstage\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m100\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrainW\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainer\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'sgd'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstages\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32mprint\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtestW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrainW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcompute_loss\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtestY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtestW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/local/userdata/shelf/notebook/axelr/cms_uml/cmsuml/nnet.py\u001b[0m in \u001b[0;36mpredict_proba\u001b[1;34m(self, X)\u001b[0m\n\u001b[0;32m 167\u001b[0m \"\"\"\n\u001b[0;32m 168\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 169\u001b[1;33m \u001b[0mresult\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mActivation\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtranspose\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 170\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 171\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/mnt/w76/venv/py27/local/lib/python2.7/site-packages/theano/compile/function_module.pyc\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 577\u001b[0m \u001b[0mt0_fn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 578\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 579\u001b[1;33m \u001b[0moutputs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 580\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 581\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'position_of_error'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "code", + "collapsed": true, + "input": [ + "# nnet.irprop_plus_trainer()\n", + "for stage in range(100):\n", + " nn.fit(trainX, trainY, sample_weight=trainW, trainer='irprop+', stages=300, min_step=1e-4, max_stage_samples=20000)\n", + " print roc_auc_score(testY, nn.predict_proba(testX)[:, 1], sample_weight=testW),\n", + " print roc_auc_score(trainY, nn.predict_proba(trainX)[:, 1], sample_weight=trainW),\n", + " print nn.compute_loss(testX, testY, testW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.507775604725 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.508548140526 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "187.339827602\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "pyerr", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# nnet.irprop_plus_trainer()\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mstage\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m100\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrainW\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainer\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'irprop+'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstages\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m300\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmin_step\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1e-4\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmax_stage_samples\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m20000\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtestW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrainW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/local/userdata/shelf/notebook/axelr/cms_uml/cmsuml/nnet.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, X, y, sample_weight, trainer, **trainer_parameters)\u001b[0m\n\u001b[0;32m 207\u001b[0m \u001b[0mparameters_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrainer_parameters\u001b[0m \u001b[1;32mis\u001b[0m \u001b[0mNone\u001b[0m \u001b[1;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrainer_parameters\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 208\u001b[0m \u001b[0mparameters_\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainer_parameters\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 209\u001b[1;33m \u001b[0mtrainer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mderivatives\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mLoss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mparameters_\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 210\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 211\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/local/userdata/shelf/notebook/axelr/cms_uml/cmsuml/nnet.py\u001b[0m in \u001b[0;36mirprop_plus_trainer\u001b[1;34m(x, y, w, parameters, derivatives, loss, stages, max_stage_samples, positive_step, negative_step, max_step, min_step, random)\u001b[0m\n\u001b[0;32m 90\u001b[0m \u001b[0mloss_value\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mloss\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxTp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0myp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwp\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 91\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 92\u001b[1;33m \u001b[0mnew_derivative\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mderivatives\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxTp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0myp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwp\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 93\u001b[0m \u001b[0mold_derivative\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mprev_derivatives\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 94\u001b[0m \u001b[0mval\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_value\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/mnt/w76/venv/py27/local/lib/python2.7/site-packages/theano/compile/function_module.pyc\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 577\u001b[0m \u001b[0mt0_fn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 578\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 579\u001b[1;33m \u001b[0moutputs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 580\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 581\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'position_of_error'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "prompt_number": 63 + }, + { + "cell_type": "code", + "collapsed": true, + "input": [ + "# nnet.irprop_minus_trainer()\n", + "for stage in range(100):\n", + " nn.fit(trainX, trainY, sample_weight=trainW, trainer='irprop-', stages=1000, min_step=1e-4, max_stage_samples=100000)\n", + " print roc_auc_score(testY, nn.predict_proba(testX)[:, 1], sample_weight=testW),\n", + " print roc_auc_score(trainY, nn.predict_proba(trainX)[:, 1], sample_weight=trainW),\n", + " print nn.compute_loss(testX, testY, testW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.803196489811 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.834550976753 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.477287543646\n", + "0.805091559887" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.836057424545 " + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.474941621398\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "pyerr", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# nnet.irprop_minus_trainer()\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mstage\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m100\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrainW\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainer\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'irprop-'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstages\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmin_step\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1e-4\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmax_stage_samples\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m100000\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtestW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrainW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/local/userdata/shelf/notebook/axelr/cms_uml/cmsuml/nnet.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, X, y, sample_weight, trainer, **trainer_parameters)\u001b[0m\n\u001b[0;32m 207\u001b[0m \u001b[0mparameters_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrainer_parameters\u001b[0m \u001b[1;32mis\u001b[0m \u001b[0mNone\u001b[0m \u001b[1;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrainer_parameters\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 208\u001b[0m \u001b[0mparameters_\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrainer_parameters\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 209\u001b[1;33m \u001b[0mtrainer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mderivatives\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mLoss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mparameters_\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 210\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 211\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/local/userdata/shelf/notebook/axelr/cms_uml/cmsuml/nnet.py\u001b[0m in \u001b[0;36mirprop_minus_trainer\u001b[1;34m(x, y, w, parameters, derivatives, loss, stages, max_stage_samples, positive_step, negative_step, max_step, min_step, random)\u001b[0m\n\u001b[0;32m 67\u001b[0m \u001b[0mxTp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0myp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwp\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mget_batch\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxT\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mw\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmax_stage_samples\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrandom\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mrandom\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 68\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 69\u001b[1;33m \u001b[0mnew_derivative\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mderivatives\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxTp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0myp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwp\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 70\u001b[0m \u001b[0mold_derivative\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mprev_derivatives\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 71\u001b[0m \u001b[0mdelta\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdeltas\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/mnt/w76/venv/py27/local/lib/python2.7/site-packages/theano/compile/function_module.pyc\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 577\u001b[0m \u001b[0mt0_fn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 578\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 579\u001b[1;33m \u001b[0moutputs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 580\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 581\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'position_of_error'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import cPickle as pickle\n", + "nn_str = pickle.dumps(nn)\n", + "nn2 = pickle.loads(nn_str)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 16 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# roc_auc_score(testY, nn.predict_proba(testX)[:, 1], sample_weight=testW), nn.compute_loss(testX, testY, testW)\n", + "# roc_auc_score(testY, nn2.predict_proba(testX)[:, 1], sample_weight=testW), nn2.compute_loss(testX, testY, testW)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 18 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "hist(nn.predict_proba(testX)[testY == 0, 1], alpha=0.5, bins=20)\n", + "hist(nn.predict_proba(testX)[testY == 1, 1], alpha=0.5, bins=20)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 47, + "text": [ + "(array([ 74., 21., 28., 23., 29., 38., 66., 112.,\n", + " 216., 544., 1672., 3387., 2783., 1709., 885., 525.,\n", + " 275., 152., 108., 67.]),\n", + " array([ 2.64570989e-27, 4.99999904e-02, 9.99999808e-02,\n", + " 1.49999971e-01, 1.99999962e-01, 2.49999952e-01,\n", + " 2.99999942e-01, 3.49999933e-01, 3.99999923e-01,\n", + " 4.49999913e-01, 4.99999904e-01, 5.49999894e-01,\n", + " 5.99999885e-01, 6.49999875e-01, 6.99999865e-01,\n", + " 7.49999856e-01, 7.99999846e-01, 8.49999837e-01,\n", + " 8.99999827e-01, 9.49999817e-01, 9.99999808e-01]),\n", + " )" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEACAYAAAC3adEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFUlJREFUeJzt3X2QnVVhx/Fv3kAQ2gwQCM0GlmIRBhEDKkhlvHaESRMr\ngcxgkfBqp7SdVO2gErTILopNhhE0pXUcLakSQdRA1CGA+HKVhBfpEsiySFtSorsJS14AJbgEskn/\nOGfZ59zs5m6e5+be3ZvvZ+ZOznPuec49+8zm/u55zvPcBUmSJEmSJEmSJEmSJEmSJKlhbgGeBzqH\neO5KYAdwSKZuMdAFPAbMyNRfEuu7gIsz9acCq2P9V2o2aknSXnMm4Q2+MhimA/cCzzIYDHOB5bE8\nA3g8lo8EngEOio9ngMPjc2sYDJDlwLm1Hb4kaU+Nr/L8A8CLQ9TfCHy6om4WcGssrwYmAi3AWcA9\nwNb4uBc4Gzgqvv7quM9SYPaeDV+SVGvVgmEo5wA9hE/7WS1Ad2a7J9ZNi+Wh6rPt18d6SVIDTdzD\n9gcCnyHMAgaMG6YsSRqD9jQYjgVagSfidgvQAZxGmAlMBx7JPNcd60/L9DEdeDDTnkz77Mxi8EWP\nPXbn2rVr93CokrTPWwu8ZW903MrQVyXBrovPd8XyKQyGx58QFpwPjo+1wBHxucrF5/OGeZ2dCq69\n9tpGD2HU8FgM8lgM8lgMAnbu+Vt+9TWG2wmf7o8jfPq/rPINO1NeRlgn6AK+kWm7AbieMJN4BLiO\ncAkssc0tcZ/fAnfm+SEkSbVT7VTSBVWe/9OK7fnDtFsSH5U6SO93kCQ1WJ6rktRApVKp0UMYNTwW\ngzwWgzwWxY2Vq4ji6TJJ0kiNGzcOcrzPO2OQJCUMBklSwmCQJCUMBklSwmCQJCUMBklSwmCQJCUM\nBklSwmCQJCUMBklSwmCQJCUMBklSwmCQJCUMBklSwmCQJCUMBklSwmCQJCUMBklSwmCQJCUMBklS\nwmCQJCUmVnn+FmA2sBE4KdbdCMyM5f8DLgG2xO2rgYuAfuBK4MexfiZwAzAB+CawKNYfA9wGHAR0\nxX1fz/3TSHW2YMEienv7CvUxdeoBLFx4VY1GJBVXLRiWAP8KfCtT9yPgk8AOYCHwz8A/AacC5xEC\nZCqwEjiOMCv5KvBe4HngIUJgrAYWE0JiOfBlYD5wU/EfS6qP3t4+WlvbCvWxbl2x/aVaq3Yq6QHg\nxYq6nxNCAWAVMC2WZwPfIcwW1hNmAKfFR1es2w7cEdtOBE4nhALA0lgvSWqgomsMfwv8IJanAT2Z\n53qAlljfPUT9FGBzpn59rJckNVC1U0m781ngNeDbNRrLbrW1tb1RLpVKlEqlerysJI0Z5XKZcrlc\nuJ+8wXAJ4bTPX2TqeoDpme0WwkxhfEX99Fi/ETison12xpHIBoMkaVeVH5rb29tz9ZPnVNJM4NPA\nh4BXM/UrgA8TwqYFeBvwK+DRWJ4GTALOB+4hrEU8DMyJ+8+LfUiSGqhaMNwOPAi8lfAp/3LCVUoH\nAfcTriz699i2A7gLWAPcC1xBuPT0VeDvgfuAJ4A7gcfiPh8DrgI6gSNi35KkBqp2KumCIepu2U37\nL8ZHpXvio9KzwHuqjEGSVEfe+SxJShgMkqSEwSBJShgMkqSEwSBJShgMkqSEwSBJShgMkqSEwSBJ\nShgMkqSEwSBJShgMkqSEwSBJShgMkqSEwSBJShgMkqSEwSBJShgMkqSEwSBJShgMkqSEwSBJShgM\nkqSEwSBJSlQLhluA54HOTN0hwP3AGuA+YHLmucVAF/AYMCNTf0ms7wIuztSfCqyO9V/Z8+FLkmqt\nWjAsAWZW1LUDdwNvB+6J2wBzgaOAE4GPxn0BjgSuAU6Lj88Bh2f6vzzuczRwbs6fQ5JUI9WC4QHg\nxYq6WcCtsbwUmB3LszP1q4GJQAtwFiFAtsbHvcDZhBAZH9tW9iVJapA8awxTgC2xvJnBT//TgO5M\nux5CMEyL5aHqs+3Xx3pJUgNNrHF/42rc3xva2treKJdKJUql0t56KamuOjo6uPTStkJ9TJ16AAsX\nXlWbAWnMKpfLlMvlwv3kCYZNwGGE2cIUYGOs7wGmA4/E7RbCjKCHsLYwYDrwYKY9mfbZmUUiGwxS\nM+nrm0Bra1uhPtatK7a/mkPlh+b29vbhG+9GnlNJK4B5sTwvbg/UXxjLpwD9hNNDPyUsYB8cHzOB\nnxBCYweDVy9dmOlLktQg1WYMtwPvI8wQuglXFF0L3EG4mqgXOD+2XQa8n3Dp6Tbgsli/AbiewZnE\ndYRLYIltbgH2IwTInYV+GklSYdWC4YJh6s8apn7+MPVLGLx8NauD9H4HSVKDeeezJClhMEiSEgaD\nJClhMEiSEgaDJClhMEiSEgaDJClhMEiSEgaDJClhMEiSEgaDJClhMEiSEgaDJClhMEiSEgaDJClh\nMEiSEgaDJClhMEiSEgaDJClhMEiSEgaDJCkxsdEDkBppwYJF9Pb25d6/o6OT1tbajUcaDQwG7dN6\ne/tobW3Lvf/KlXNqNxhplChyKqkd+B/gaeD7wIHAMcBDQCfwHWBSbLs/cEesXwUcnennauCp+NzZ\nBcYjSaqBvMHwFuAi4G3A8UA/cAGwGFgEnAT0AvNj+/nAc7H+htgO4FTgvFg/E/gasF/OMUmSaiBv\nMLwAvA68mXA66kDgt8DpwPLYZikwO5ZnAbfG8g+BM+JrzybMLPqB9UAX8O6cY5Ik1UCRYPgSIQw2\nAC8BTwKbM23WAy2x3AJ0x/IOYAtwODAN6Mns05PZR5LUAHkXn48FPgG0Ar8DvgecVaMxDamtre2N\ncqlUolQq7c2Xk6Qxp1wuUy6XC/eTNxjeDTxI+OQPcCfwPuCwTJsWBmcDPcBRwEbCLOVQYFOsn16x\nTzdDyAaDJGlXlR+a29vbc/WT91TSM4T1hAOAccAHCFcnPQwMXL83D1gRyyviNsA5hCuX+mP9hwkB\n1UJYzP5VzjFJkmog74zhUcIlqmsIawargZuBZcBtwOcJC8mfjO1vJiw+dwIvAx+J9R3AXZl+riAs\nakuSGqTIDW5t8ZH1LPCeIdpuA84fpp8vxockaRTwu5IkSQmDQZKUMBgkSQmDQZKUMBgkSQmDQZKU\nMBgkSQmDQZKUMBgkSQmDQZKUMBgkSQmDQZKUMBgkSQmDQZKUMBgkSQmDQZKUMBgkSQmDQZKUMBgk\nSQmDQZKUMBgkSQmDQZKUMBgkSYkiwTAZ+B7wBPBr4HTgEOB+YA1wX2wzYDHQBTwGzMjUXxLru4CL\nC4xHklQDRYLh68CdwMnAicBTQDtwN/B24J64DTAXOCq2+yiwJNYfCVwDnBYfnwOOKDAmSVJBeYPh\nUOAdwO1xewfwe2AWcGusWwrMjuXZmfrVwESgBTiLECBb4+PeWCdJapC8wfBnwCbgu8CTwLeAg4Ep\nwJbYZjNweCxPA7oz+/cQgmFaLFfWS5IaZGLO/cYD7wI+DjwKfJlwSmh3xuV8LQDa2treKJdKJUql\nUpHuJKnplMtlyuVy4X7yBkM3sJ4QCgDfJ6wPbAQOI8wWpsRtCDOB6cAjcbsl9tFDWFsYMB14cKgX\nzAaDJGlXlR+a29vbh2+8G3lPJXUT3vyPi9sfIFyZdA8wL9bNA1bE8grgwlg+BegnBMtPgZmE01AH\nx/JPco5JklQDeWcMEK4u+jZwIPAbwhv/OOAO4HKgFzg/tl0GvJ9wSeo24LJYvwG4nsGZxHXA8wXG\nJEkqqEgwPEFYZ6g03FVF84epX8Lg5auSpAbzzmdJUsJgkCQlDAZJUsJgkCQlDAZJUsJgkCQlDAZJ\nUsJgkCQlDAZJUsJgkCQlDAZJUsJgkCQlinyJntRQCxYsore3r1AfHR2dtLbWZjxSszAYNGb19vbR\n2tpWqI+VK+fUZjBSE/FUkiQpYTBIkhIGgyQpYTBIkhIGgyQpYTBIkhIGgyQpYTBIkhIGgyQpUTQY\nJgCrgR/F7WOAh4BO4DvApFi/P3BHrF8FHJ3p42rgqfjc2QXHI0kqqGgwfJzwpr4zbi8GFgEnAb3A\n/Fg/H3gu1t8Q2wGcCpwX62cCXwP2KzgmSVIBRYKhBZgFfAMYR5g9nA4sj88vBWbH8izg1lj+IXBG\nfO3ZhJlFP7Ae6ALeXWBMkqSCigTDTcCngB1x+3Bgc+b59YTwIP7bHcs7gC2x/TSgJ7NPT2YfSVID\n5P121Q8CGwnrC6VYN64WAxpOW1vbG+VSqUSpVBq2rSTti8rlMuVyuXA/eYPhDOBDhFNEbwL+iLC2\ncFimTQuDs4Ee4ChCmIwHDgU2xfrpFft0M4RsMEiSdlX5obm9vT1XP3lPJX2G8IZ+DPDXwM+Ai4CH\ngYEvuJ8HrIjlFXEb4BzClUv9sf7DhIBqAd4G/CrnmCRJNVCrP9QzcFXSx4DbgM8TFpI/GetvJiw+\ndwIvAx+J9R3AXcAawtrDFcDrNRqTJCmHWgTDL+ID4FngPUO02QacP8z+X4wPSdIo4J3PkqSEwSBJ\nShgMkqSEwSBJShgMkqRErS5XlZTTlle6WF6+tFAf69eu5NICXUydegALF15VaAxqHgaD1GDbJ25j\ncqm1UB9r1/6M1ta23PuvW5d/XzUfTyVJkhIGgyQpYTBIkhIGgyQpYTBIkhIGgyQpYTBIkhLex6CG\nWLBgEb29fYX66OjopLW1NuMZ67Zte6nQTXJbtz7OgrZXWdi2sHaD0phlMKghenv7Ct2QBbBy5Zzq\njfYROyb1F7tJ7qV19L7UW7PxaGzzVJIkKWEwSJISBoMkKWEwSJISBoMkKWEwSJISBoMkKZE3GKYD\nvwQ6gf8GPh3rDwHuB9YA9wGTM/ssBrqAx4AZmfpLYn0XcHHO8UiSaiRvMLwG/ANwEnAq8DfAyUA7\ncDfwduCeuA0wFzgKOBH4KLAk1h8JXAOcFh+fA47IOSZJUg3kDYbngSdjeSthhjANmAXcGuuXArNj\neXamfjXhjusW4CxCgGyNj3tjnSSpQWqxxtAKvAtYCUwBtsT6zcDhsTwN6M7s00MIhmmxXFkvSWqQ\not+VdBDwfeDjwO+rtB1X5IXa2treKJdKJUqlUpHuJKnplMtlyuVy4X6KBMMkYBnwbWB5rNsEHEaY\nLUwBNsb6HsKC9SNxu4Uwg+ghrC0MmA48ONSLZYNBkrSryg/N7e3twzfejbynksYB/wE8BdyUqV8B\nzIvleXF7oP7CWD4F6AfWAz8FZgIHx8dM4Cc5xyRJqoG8M4Y/J7zxryEsJgNcDVwL3AFcDvQC58fn\nlgHvJ1ySug24LNZvAK5ncCZxHWFhexerVq3KOVSYMGEC73znO5k40W8Zl6Rq8r5TrmT42cZwVxXN\nH6Z+CYOXrw7r619/ZQTDGlp//+PccEMrU6dOzd2HBvlHdqTmNmY+Qre2np173+7utTUcifwjO4O2\nvNJV6C+nAWzb/mJtBlNQR0cHl37i0tz7T5081b8A1yTGTDBIo9H2iduK/eU0YMf/7qjNYArq6++j\ndU5r7v3XLV9Xs7GosfyuJElSwmCQJCUMBklSwmCQJCUMBklSwquS9kFF70PwHgSpuRkM+6Ci9yE0\nyz0IkoZmMEhiw3Mb6Hv+BZYvL+fuo7/j5doNSA1lMEhi++vjmTTpECZPLuXuo6dvefVGGhMMhjHG\n7ymStLcZDGOM31MkaW8zGCTVxJYtGwp9CR/4RXyjhcEgqSa2j99e6Ev4wC/iGy0MhjpyfUDSWGAw\n1JHrA5LGgn0mGL7whX9j69YJufd/+uknOP74kwuNwU/7ksaCfSYYNm16jRNOWJR7/5Ur5/hpvwkV\n/Qtso+WvrzWLon9FDlzAroV9JhikoRT9C2yj5a+vNYuif0UOXMCuBYNBUk1s2/Zqoa/UANi8xRnY\naGAwSKqJHTvHFfpKDYD+7WtqMxgVMlqCYSZwAzAB+CaQfzFA0j7NdYriRkMw7A98FXgv8DzwEPBj\nYHUjBzVa9fVtbvQQRo3eFx4ttHAMzbN4vHNbf6OHMGq88MILrlMUNBqC4TSgC1gft+8AZmMwDMlg\nGPTa9q2FFo6heRaPDYZBfb8vdhMpFJ91jPUZx2gIhhagO7PdA5QqG9330JW5X6Dv5V9zzBHH5d5f\ntVf0MlGA/h3F3wA0utRiAfsPfyj+e1H06qhl1yyj96XeQmNoZLiMhmDYOZJGG197KPcLjO9/lc5n\nenn2xUtz99H90i8Kv5HVoo/fvbqu4eOoxc/xCr2FP+3v7BjRr47GkFosYL/++qpC4bJ5cy+/K/hH\ni7o3bmDunLm594fahEte4xryqqkzgauAD8btTwH7Addn2jwDHFvncUnSWLcWeEujB5HHm4B1wDRg\nEvAocEojByRJary/BJ4EngKubvBYJEmSJI1WM4FOwszhqiGe359wOWsnsAo4un5Dq7tqx+JThMt8\nnwR+CRxTv6HVXbVjMWAusIPmPhU5kmNxPuFy7zXAbXUaVyNUOxbHA48weDbinPoNra5uIdwD1rmb\nNosJ7xePATPqMaha2R94lrDWMJGw1lD5A1wJfDmW5wA/qNvo6mskx+LM2A7g74C76ja6+hrJsQA4\nmBCQD9K8wTCSY3Ey4c3wzXH7kLqNrr5GciyWAlfE8gmkl8U3kzMJP/twwTAXWB7LM4DHq3U4vjbj\nqonsjW7bGbzRLWsWcGss/xA4g9FxZVWtjeRYPABsi+VVhP8gzWgkxwLg88BCwjFpxt8JGNmxuAy4\nGXglbr9Qt9HV10iORTfwx7E8GfhN3UZXXw8Au7uFP/u+uZoQpC2763A0BcNQN7pVDj7bZgewBTh8\n7w+t7kZyLLKuoHlnTyM5FqcQgnFF3G7WGxxGcizeCrwD+C+gA/hQfYZWdyM5Fv8CXBLb3Q38Y32G\nNurs6fvJqLjBbUCz/mfOY0+OxYWEN8b37aWxNFq1YzEeuJHwBjCgWWcMI/m9GA+0Ej5RTyecWltJ\n880cRnIsbgS+AdwEnE44tXTi3hzUKFb5f2K3x280zRh6CL/IA6az6znBHuCoWB4PHAps2vtDq7uR\nHAuADwCfJXwqfL0O42qEasfiYMJ/9jLhnPPphNOMzbjOMJLfi27gR0A/4f6gp4Bm/D6YkRyL9wLf\njeWHCfdMNeMZhmoqj1VLrBsTRnKjW3bx+VzCG0AzGsmxmMG+cUf4nt4A+fMqz49lIzkW5wL/GcuH\nEc7BT6nP8OpqJMfibgZnkicAvYSv9m9Grex+8Xng4pRTgCfqMaBaGupGt3bgr2J5f8IngE7CFLm1\nzuOrp+GOxcBXh9wPPEdYTFrN4FUHzaja70VWMwcDjOxYfImwMPs0cFFdR1df1Y7FWwlf498V23yw\nsoMmcTuwAXiNMGu6nLDueEWmzc0MXq7azP8/JEmSJEmSJEmSJEmSJEmSJEmSJElj2f8Dd1ARXS7q\nwgkAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ada over ANN" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# base_nn = nnet.SimpleNeuralNetwork(layers=[trainX.shape[1], 40, 1], batch=10, stages=100000, learning_rate=0.1, loss=nnet.log_loss)\n", + "base_nn = nnet.SimpleNeuralNetwork(layers=[trainX.shape[1], 30, 1], loss=nnet.log_loss, trainer='irprop-', \n", + " trainer_parameters={'stages': 3000})\n", + "ada = AdaBoostClassifier(base_estimator=base_nn, n_estimators=20, learning_rate=0.2)\n", + "ada.fit(trainX, trainY, sample_weight=trainW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 389, + "text": [ + "AdaBoostClassifier(algorithm='SAMME.R',\n", + " base_estimator=SimpleNeuralNetwork(layers=[19, 30, 1],\n", + " loss=, trainer='rprop',\n", + " trainer_parameters={'stages': 500}),\n", + " learning_rate=0.05, n_estimators=20, random_state=None)" + ] + } + ], + "prompt_number": 389 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "for p in ada.staged_predict_proba(testX):\n", + " print roc_auc_score(testY, p[:, 1], sample_weight=testW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.829844176769\n", + "0.837105572224\n", + "0.839629292488" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.838817179203\n", + "0.839265584946" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.839965939522\n", + "0.840102791786" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.840440154076\n", + "0.840945243835\n", + "0.840789794922" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.840478658676\n", + "0.841065704823" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.841689884663\n", + "0.842014551163" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.842322826385\n", + "0.842601120472\n", + "0.84238666296" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.842132866383\n", + "0.842454791069" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.842549324036\n" + ] + } + ], + "prompt_number": 390 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "for p in ada.staged_predict_proba(trainX):\n", + " print roc_auc_score(trainY, p[:, 1], sample_weight=trainW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.844816923141\n", + "0.854829549789" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.858767807484" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.85924500227" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.858410596848" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.859895467758" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.860426962376" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.860656261444" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.861087441444" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.860353469849" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.860277533531" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.860963881016" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.862666130066" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.863828003407" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.864591598511" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.864933431149" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.865300297737" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.865537762642" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.865647792816" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.865844666958" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + } + ], + "prompt_number": 391 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Polynomial features" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = nnet.SimpleNeuralNetwork(layers=[polyTrainX.shape[1], 7, 1], loss=nnet.log_loss)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 35 + }, + { + "cell_type": "code", + "collapsed": true, + "input": [ + "for stage in range(100):\n", + " nn.fit(polyTrainX, trainY, stages=1000, batch=100, learning_rate=0.01)\n", + " print roc_auc_score(testY, nn.predict_proba(polyTestX)[:, 1], sample_weight=testW), nn.compute_loss(polyTestX, testY, testW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.829803705215 0.625290040673\n", + "0.829862952232" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.61805971159\n", + "0.829950630665" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.612673503856\n", + "0.830121994019" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.619204749601\n", + "0.829814374447" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.618723336581\n", + "0.829724431038" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.625765356324\n", + "0.830176413059" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.612865389152\n", + "0.83016037941" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.610759385639\n", + "0.830526232719" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.609472130723\n", + "0.830448508263" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.613113388104\n", + "0.830027937889" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.612937508176\n", + "0.829982101917" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.622157045943\n", + "0.829935729504" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.616214318328\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "pyerr", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mstage\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m100\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpolyTrainX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstages\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m100\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.01\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpolyTestX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtestW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcompute_loss\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpolyTestX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtestY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtestW\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/local/userdata/shelf/notebook/axelr/cms_uml/nnet.pyc\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, X, y, sample_weight, stages, batch, learning_rate, penalty)\u001b[0m\n\u001b[0;32m 79\u001b[0m \u001b[0mwp\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mindices\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 80\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 81\u001b[1;33m \u001b[0mder\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mderivatives\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mXp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0myp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwp\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 82\u001b[0m \u001b[0mval\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_value\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m*\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;36m1.\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mlearning_rate\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mpenalty\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mlearning_rate\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mder\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 83\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_value\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mval\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/mnt/w76/venv/py27/local/lib/python2.7/site-packages/theano/compile/function_module.pyc\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 577\u001b[0m \u001b[0mt0_fn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 578\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 579\u001b[1;33m \u001b[0moutputs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 580\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 581\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'position_of_error'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pretraining, lets try to pretrain first on subchannels " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "subchannel_labels = dict([(name, i) for i, name in enumerate(sorted(file_labels), 1) if i < 18])\n", + "#make no difference between second channel:\n", + "for name in subchannel_labels:\n", + " if 'ttbar' in name:\n", + " subchannel_labels[name] = 0\n", + " if 'jOE' in name:\n", + " subchannel_labels[name] = 13\n", + "\n", + "subchannel_labels" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 310, + "text": [ + "{'Wjets-2p-mg_53X.02.01_Dhm_W_c.root': 1,\n", + " 'Wjets-2p-mg_53X.02.01_Dhm_W_light.root': 2,\n", + " 'Wjets-2p-mg_53X.02.01_Dhm_W_other.root': 3,\n", + " 'Wjets-2p-mg_53X.02.01_Dhm_W_qq.root': 4,\n", + " 'Wjets-3p-mg_53X.02.01_YDn_W_c.root': 5,\n", + " 'Wjets-3p-mg_53X.02.01_YDn_W_light.root': 6,\n", + " 'Wjets-3p-mg_53X.02.01_YDn_W_other.root': 7,\n", + " 'Wjets-3p-mg_53X.02.01_YDn_W_qq.root': 8,\n", + " 'Wjets-4p-mg_53X.02.01_FxU_W_c.root': 9,\n", + " 'Wjets-4p-mg_53X.02.01_FxU_W_light.root': 10,\n", + " 'Wjets-4p-mg_53X.02.01_FxU_W_other.root': 11,\n", + " 'Wjets-4p-mg_53X.02.01_FxU_W_qq.root': 12,\n", + " 'Wjets-mg_53X.02.01_jOE_W_c.root': 13,\n", + " 'Wjets-mg_53X.02.01_jOE_W_light.root': 13,\n", + " 'Wjets-mg_53X.02.01_jOE_W_other.root': 13,\n", + " 'Wjets-mg_53X.02.01_jOE_W_qq.root': 13,\n", + " 'ttbar-mgms_53X.02.01_zEC_p1.root': 0}" + ] + } + ], + "prompt_number": 310 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "subdata, sublabels, subweights = utils.load_data(subchannel_labels, variables, folder=folder)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 311 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "for col in subdata.columns:\n", + " print col\n", + " for label in numpy.unique(sublabels):\n", + " inds = sublabels == label\n", + "# print label, sum(inds)\n", + "# print label, inds\n", + " hist(subdata[col].loc[inds].values, weights=subweights[inds], histtype='step', normed=True, bins=40, label=str(label))\n", + " legend()\n", + " show() " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(Pt_BJ1)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEnCAYAAABSTgMJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvnZ5eCYGEUKWFjmABJOKKgKKiAgL2giIq\na8GyisAi/uxYQNAVQVFABRexsIhIEASkBwgltBBSSEIyaZPpM78/JkRKkEmYMCG8n+eZxzv3njnz\nTtR3zpx7CgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELUe2pgG/BDFdfuA/Irrm8DHrhwYQkhhKiK\nxsty44DdQEgV19zAAuBJXwUlhBDi/Ki8KBMPDAI+BZQqritnOS+EEMJPvEnu04DxgOss193AbUAq\nsBRo6pvQhBBC1NS5kvtNQB6evvSztc5PJPRE4HvgK59FJ4QQokbO1Z3yGnA34AAMQCiwGLjnb15T\nShV98y1btnQfPHiwhmEKIcQl6yDQqjbfoC9Vj5ZpcNLxYGDrWV7vvhhMnDjR3yF45WKI82KI0e2W\nOH1N4vQtPF3f1ebtaBnwtPJPvMlkYDOeZP8MnhuuasCIp6UvhBDCj6qT3JMrHgATTzr/QsVDCCFE\nHeHNaJlLSlJSkr9D8MrFEOfFECNInL4mcdYNF3J8ekX3kRBCCG8pigI1yNXV6ZYRQgi/iIyMxGg0\n+juMWhUREUFhYaHP6pOWuxCizlMUhfqeP872GWvacpc+dyGEqIckuQshRD0kyV0IIeohSe5CCFEP\nSXIXQojzVFhYyJAhQwgNDaV58+YsWLDA3yHJUEghxMUpMhJqc3RkRAR4OzJx7NixhIWFUVhYyM6d\nO+nXrx+dO3emffv2tRfgOchQSCFEnVfVMEFFgdpMKd7WbzKZiIyMZP/+/SQkJADw8MMPEx0dzf/9\n3/9V4/1kKKQQQtQZaWlpBAQEVCZ2gE6dOpGamurHqCS5CyHEeSkrKyMoKOiUc0FBQZSWlvopIg9J\n7kIIcR6Cg4MxmUynnCsrKyMk5Iw9iy4oSe5CCHEeWrdujdlsJiMjo/Lcjh076NChgx+jkhuqQoiL\nQF2+oQowYsQIDAYDn3zyCbt27aJfv36sW7eOdu3aVeP9/HNDVY1nk+yqttnTA18DO4E/8GyWLYQQ\nl4yPPvqIoqIioqKiuO2225g5c2a1Entt8Pbb4GmgO56Nr28+7dozQBPgn8CtwP3ALVXUIS13IUSN\nVNWqrUvj3H3BHy33eDx7pH56ljcYBMyrOF4KXF2TQIQQojoKCz3dJrX1uJCJvTZ4M0N1GjAeCD3L\n9XjgaMWxCygAYoDc847uImW325k6dSoWiwWAsLAwXnjhhRPfwEIIUevO1XK/CcjD098umclLx44d\nY9q0aYSHhxMeHs7LL7+M3W73d1hCiEvIuVruV+PpYx8EGPC03r8A7jmpTCaQgOdLQAVEAflVVTZp\n0qTK46SkpHq9QW1oaCgvvPACAK+88oqfoxFCXCySk5NJTk4+73qq0xrvCzwLDD7t/Mk3VIfguaF6\n+k1XuIRuqB49epSrr76ao0c9vVU6nY6ysjJ0Op2fIxPi4iTb7NXuBtkKcOKdJwOb8QyNnI7nhupO\noBQYWd0ghBBC+FZ1kntyxQNg4knnrcAwH8UjhBDCB2T5ASGEqIckuQshRD0kyV0IIc7D9OnTufzy\nyzEYDNx///3+DqeSbLMnhLgoRb4RidFSe+sPRBgiKHz+3NNU4+LimDBhAsuXL8dsNtdaPNUlyV0I\ncVEyWoy4J9be8EhlsnejD4cMGQLA5s2byczMrLV4qku6ZYQQwgfq2jh8Se5CCOEDdW3tKEnuQgjh\nA9JyF0KIekha7kIIUY84nU4sFgsOhwOn04nVasXpdPo7LEnuQghxPqZMmUJgYCBvvPEGX375JQEB\nAUydOtXfYckG2bVBVoUUwreq3Gavjoxz9xV/rgophBB1xoVMvBcj6ZYRQoh6SJK7EELUQ5LchRCi\nHvImuRuATXg2yU4DplVR5j48+6Zuq3g84KP4hBBC1IA3N1QtwDWAuaL8WuBaYNVJZdzAAuBJXwco\nhBCi+rztljmxjqUOUAO5p11XuLDDKoUQQvwNb5O7CtiOJ6mvAnafdt0N3AakAkuBpr4KUAghRPV5\nm9xdQBcgHk8XTdJp108k9ETge+ArH8UnhBCiBqo7iakY+Am4Ekg+6fzJ08RmA+9V9eJJkyZVHicl\nJZGUlFTNtxdCiLrFZrPx8MMPs3LlSoxGI82aNWPq1KnceuutNaovOTmZ5OTk847Lm37yKMAGlAIB\nwHLgDTxJ/oQGeEbLAAwGJgPdTqtHlh+Q5QeEqJEqp+ZHRoKx9pYfICICCs89C7a8vJwPP/yQe++9\nl9jYWJYtW8Ydd9xBSkoKrVq18vrt/LH8QGPgi4rKDcB8PIl9MrAZ+AF4BhiE52arEbi7uoEIIUS1\nGI1Qmw1GL5fwDQwM5Pnnn698PnDgQNq3b8+WLVuqldx9zZvkvhPoWsX5iScdv1DxEEKIS1pubi57\n9uyhQ4cOfo1DZqgKIYSP2O12Ro0axd13301iYqJfY5HkLoQQPuByubj77rsxGAxMnz7d3+HIkr9C\nCHG+3G43Dz74IPn5+Sxbtgy1Wu3vkCS5CyHE+RozZgz79u1jxYoVdWZUnHTLCCHEeThy5AiffPIJ\n27dvJzY2lpCQEEJCQliwYIFf45KWuxDi4hQR4fVwxRrX74WmTZvicrlqL44akuQuhLg4eTHB6FIm\n3TJCCFEPSXIXQoh6SJK7EELUQ5LchRCiHpLkLoQQ9ZAkdyGEqIckuQshRD0kyV0IIeohSe5CCHGe\nRo4cSWxsLMHBwTRp0oQJEyZUuavShXSuGaoGYE1FuSA8OzA9dVoZPZ6dmtoDJcBI4IhvwxRCiFNF\nrl2L0eGotfojNBoKe/f2quyECROYO3cuOp2Offv20bdvX3r27MngwYNrLb5zOVdytwDXAOaKsmuB\na4FVJ5V5HMgBhgO3Ah8At/g8UiGEOInR4cCdlFRr9SvV2KS6Xbt2pzzXaDTExcX5OKLq8aZbxlzx\nTx2ePVJzT7s+CJhXcbwUuJoabOYqhBAXs8cee4ygoCASExN5+eWX6datm1/j8Sa5q4DteJL6KmD3\nadfjgaMVxy6gAIjxVYBCCHEx+OijjzCZTKxevZqJEyeyceNGv8bjTXJ3AV3wJPFrgKTaDEgIIS5m\nvXr1YtiwYRfVeu7FeG6oXgkkn3Q+E0gA8vB8WUQB+VVVMGnSpMrjpKQkkmqxv0wIIfzF4XCg1Wpr\n9Nrk5GSSq9HffzbnSu5RgA0oBQKA64E3TivzM3AXsBnPjdT1eFr7Zzg5uQshRH2Qn5/P2rVrGTRo\nEDqdjuTkZBYuXMjSpUtrVN/pDd/JkyfXqJ5zJffGeIY5KniGRc7H03qfjCeZ/wBMx3NDdSeeL4GR\nNYpECCEuQoqi8O6773Lffffhcrlo0aIFs2bNok+fPn6N61zJfSfQtYrzE086tgLDfBaREEJ4IUKj\nqdZwxZrU743o6GjWrFlTa3HUlGyzJ4S4KHk7wehSJcsPCCFEPSTJXQgh6iFJ7kIIUQ9JchdCiHpI\nkrsQQtRDktyFEKIekuQuhBD1kCR3IYSohyS5XyBff/01CxYsYPHixTidTn+HI4SoBfv378dgMHD3\n3Xf7OxSZoXohjBkzhp9//hmAn376ifbt25+xc4sQonrWRq7FYay9bfY0ERp6F1ZvFuzYsWPp2bMn\niuL//YokuV8A77//fuVx+/bt/b5xrhD1gcPoIMmdVGv1JyvJ1Sq/cOFCIiIiaN++PQcOHKidoKpB\numWEEOI8lZSUMHHiRKZNm1ZnGm+S3IUQ4jxNmDCBhx56iMaNG9eJLhmQbhkhhDgv27dvZ+XKlWzb\ntg2gzrTcvUnuTYCvgAhAB8wG3jytTBLwPXCo4vli4FXfhCiEEHXX6tWrSU9PJyEhAYCysjKcTid7\n9uxh8+bNfovLm+RuAx4DdgHBwFZgOZByWrnVwM0+jU4IIeq40aNHM2LECMDTan/77bdJT09n1qxZ\nfo3Lm+SeW/EAKAN24Nl+7/TkXjc6moQQ4gIKCAggICCg8nlwcDABAQFERUX5Marq97k3A3oA9592\n3g1chWdbvjzgac5M/uJvHD16lC1btlQ+79atW+XPPCHEmTQRmmoPV6xu/TUxceLEcxe6AKoTfTDw\nLTAOz0bYJ9sCxAMWoD+wBGjuiwAvFdOmTeOXX36hVatWHDp0iL59+/Lhhx/6Oywh6qzqTjC61Hib\n3LV4bpLOx5O4T1d20vEvePrpY4FjJxeaNGlS5XFSUhJJSUneR1rPud1uHnzwQZ566immT5/O3r17\n/R2SEMIPkpOTSfbBxt/eJHcFzwiZ3cC0s5SJBo5XHHcHgvB0z5zi5OQuhBDiTKc3fCdPnlyjerxJ\n7r2Au/DcSN1Wce5fwIkO4Y+BEcDoiuc2YCTgqlFEQgghzps3yX0t557J+mHFQwghRB0gyw8IIUQ9\nJMldCCHqIUnuQghRD0lyF0KIekiSuxBCnKekpCQCAgIICQkhJCSkTuy0Jkv+CiEuSmvXRuJwGGut\nfo0mgt69C70qqygKM2bM4IEHHqi1eKpLkrsQ4qLkcBhJSqq9tdOTk6u3FmJdWcf9BOmWEUIIH3jh\nhReIiIigR48eLF++3N/hSHIXQojz9fbbb3P06FEKCgp45plnuP3229m3b59fY5LkLoQQ56l79+4Y\nDAZUKhV33nkn/fr144cffvBrTJLchRDCx9xut9/74CW5CyHEeSguLua3337DbrfjcrlYtGgRK1eu\n5MYbb/RrXDJaRgghzoPdbue5554jLS0Nt9tNmzZt+Pbbb2nfvr1f45LkLoS4KGk0EdUerljd+r0R\nHR3N5s2bay2OmpLkLoS4KHk7wehSJX3uQghRD50ruTcBfgd2AvuA585S7gMgFdgKdPVZdEIIIWrk\nXN0yNuAxYBcQjCd5LwdSTipzO54t9xLxJPY5QBefRyqEEMJr52q55+JJ7ABlePZRbXxamUHAvIrj\nbXi+MOJ9FaAQQojqq06fezOgB549VU8WDxw96XkmktyFEMKvvE3uwcC3wDigtIrrp49HqlvLowkh\nxCXGm6GQWmAxMB9YUsX1TDw3Xv+seB5fce4MkyZNqjxOSkoiKSnJ+0iFEOISkJycTHJy8nnXc67k\nrgCzgd3AtLOU+Rm4C1gEdAOcQFZVBU9O7kIIIc50esN38uTJNarnXN0yvfAk7mvx3CzdBgwEHql4\ngKdVn4VnKOSnwP01ikQIIS5iCxcupH379oSEhNC8eXPWrFnj13jO1XJfi3f98o/7IBYhhPBaZGQk\nRmPtbbMXERFBYaF3s2CXLl3KSy+9xJIlS+jYsSP5+fk4HI5ai80bsvyAEOKiZDQaa3VZXUXxft2a\nSZMmMWXKFDp27AhAgwYNaissr8nyAz6ybds2DAYDWq2W5s2bEx4e7u+QhBAXQFlZGSkpKaSnp9O6\ndWtiYmJ46KGHMJvNfo1LkruPFBUVccUVV1BeXo7ZbGb79u3+DkkIcQGc+AXx/fffs2HDBvbv309a\nWhoTJkzwa1yS3H1IpVKh1WrRarWo1Wp/hyOEuACCg4MBePzxx4mMjCQsLIx//vOf/Pzzz36NS/rc\n65CfCgr4bts2so8exZyfT8q2begUhcWJiYRrtf4OTwhRhYiICOLj696kfGm51yH7y8sZFRPD4Kgo\nrgwN5bXmzdlbXs5xu93foQkh/sb999/PjBkzKCoqoqSkhA8++ICbbrrJrzFJy72O6RIcjCMwEIde\nT5/wcAJU8v0rRF03YcIEjh8/TsuWLQEYOnQoU6ZM8WtMktyFEBeliIiIag1XrEn93tJoNMyYMYMZ\nM2bUWjzVJcldCHFR8naC0aVKfvMLIUQ9JMldCCHqIUnuQghRD0lyF0KIekiSuxBC1EOS3IUQoh6S\n5C6EEPWQN8n9MyAX2HmW60lAMX/t1PSyTyITQghRY94k9znAgHOUWQ10rXi8er5BCSHExSI4OJiQ\nkJDKh0aj4cknn/R3WF7NUF0DNDtHmdqbA3wRcTph1aqqr7VsCQkJFzYeIeqzyEioxV32iIgAbybB\nlpWVVR6bTCZiY2MZNmxY7QXmJV8sP+AGrsLTbZMHPA2k+KDei05+PowYAe3anXm+dWv47jvP8/Ly\nckwmE4qiEBgYeOEDFaIeMBqhFnfZoybL1ixatIiGDRvSu3dv3wdUTb5I7luAeMAC9AeWAM19UO9F\nx+2GQYPgs89OPf/993+di4uLo2/fvgBYLBZWrlxJUlLSWeu0Z2byyJQpBFT8l9ahQwdef/312ghf\nCHGePv/8c+655x5/hwH4JrmXnXT8C2ADYoFjpxecNGlS5XFSUtLfJrX6asWKFZXHgwcPprS0tPJ5\nq40OrFfu4UjREXKtuWxctZHhBYf4vvQgb89/i+xj2bz99tuS3IWog44cOcLvv//OnDlzzque5ORk\nkpOTzzseXyT3aOB4xXF3IAhP98wZTk7u4kwhx92oR0YSa42l5HAJiS8l8sAXawl7K5RBNwzi0NFD\nvP322/4OUwhRhXnz5tGnTx+aNm16XvWc3vCdPHlyjerxJrkvAPriSeJHgYnAiT3fPgZGAKMrntuA\nkYCrRtEIlDgterMebbGWoMQgCmMVpFdeiLrviy++4F//+pe/w6jkTXIfcY7rH1Y8hBDikrRu3Tqy\ns7MZOnSov0OpJJt11JZ58+DLLz3HeVdB1g1wwyTo0QNelakAQtQnX3zxBbfffjtBQUH+DqWSJPfa\nsmYNtG3rGT6zvgEsj4ebb4ZPP5XkLoQPRETUbLhider31qxZs2ovkBqStWVqU2Ii3HADdO0GMTFw\n9dX+jkiIeqOw0DP8uLYeF/suftJy97F8u40XD2VC584QHQ2HDpF2LJByZwNQqeDAAfjHPzyFU1Ig\nIwNmzID4eCDAr7ELIeoPSe4+lm6x4Cgr4xq73bMegVrN9rIyQu3h0KED/Pgj2O2ewhMmeLpt5s+H\n8HDOltzdwPgDBynIOUK+3c7Lhw4xuXlz1LX5m1QIcVGTbpla0C88nBd37+ZFo5EXmzalmcHguaBW\nQ9++npb7P/7hadl36VKR2Ks2unFjFKCpXk+8Xo9WUXgnM5NSh+PCfBghxEVJWu513JVhYfwMPN4k\nnkPY+EajQavR0OLPP0/5Zo7R6djds6e/whRC1DGS3H3M7XZTYC6kxFqC1ZRPqfEQZrsTl9vps/fY\nf8UVmJ1/1edwu4lfv95n9QshLn6S3H2s2FLMu+vfpfP+n9lp+ZWFqtlk5kyF0t48ui+zspxKUTC7\najaRN0itJkitrnzuqGE9Qoj6S5K7j7lx07lhJ0Z0MDDi8st5bfRoHp2+ja+cpXQJDqssNyM7m4Ca\n9JubzfDNN2eej4k5j6iFEPWNJPcLIFbjJsBZzKNx7SvPfZeXzbrje3hm+TM0y8tmhSONeMcQXlk1\nkd8K58FxmDF5BuyH7nTHdaJ1np0NCxaAVvvXG+zcCR99dIE/lRCiLpPRMn5iddpwOO2M7j6a/Uo0\n0cSjLrdzU8B1PNj4QQZEDWBpt6X8OOJHwPOLoNK8eZ7W+4nH4MGn1G2z2SgsLKx8uGtzRwMhBEeO\nHKF///6EhIQQFRXFI488gs1m82tM0nL3I5WiIlqJZuShDOIbN+ay0lIObN7JJtcmSktLGTVqFG+8\n8Ua16x0+fDi//vorWq0Wk8nEf/7znzqzgYAQvhL5RiRGS+3tsxdhiKDwee+mqT766KPExcVRUFCA\n0Wjk+uuv5/3332f8+PG1Ft+5SHL3seI9B8i/dyoJ5XZYtAhefZXisiRKy4by1ISnuH/M/biyXegy\nTGhtGqz5VqI0OgZ27UXWnhhGPj6WduZm7N2zh9+Tk6G83DOLqagISkq8isFkMrF48WL69+/PmDFj\nMJlMtfqZhfAHo8WIe2Lt/SpVJns/SfDAgQOMGzcOnU5Hw4YNGTBgAPv376+12Lwhyd3HHKZyGo34\nB7/na6FTJxg5krmLjLz2Vg6fr/qckowShn09jIdDFYqKY8l4PQO7PYj831w0Kndhn5RNhiqDvKJM\nzCXFHBm/FRUqspqOokz9G07FTc/Pe6MxBDK17VScZifO9HTcO3bgTkpCkVmrQlxwAwcOZP78+fTt\n25fCwkKWLVvGq35eIFD63GuBJjSIhOBgEiIjSUhIoHPLzrRt2JY72t/BlF5TaHZPM+atbISSFE6r\nt1uh05XRaLCa3OYq1PdGETMshvA2FvQhVmLGdwcg+5FJHFm5GEfTJsy67TMOFh7kuj7X8frrr/Pm\nn3/ieu45jhw54udPLsSladKkSezatYvQ0FCaNGlCjx49uOWWW/wakzfJ/TMgF9j5N2U+AFKBrUBX\nH8R18XC5oHVruPVWOLAfvaWMm46t5IDuMw40WsKBA8+SkzOH48f1pKVdybfrA1iSFkrm0nCOZ6s4\ndOivH08OHaia6zE0NaALdaJSOwhoFgAKxKhjaK1vjV7R09HQkXBrOG63m+VLl7N8+HCIivprRM0F\n5nQ6ycrKqnxYLBa/xCGEP7jdbm644QaGDh1KeXk5x48fp7i4mOeff96vcXmT3OcAA/7m+u1AApAI\nPFhR/tLhcsHBgzB3LjRvgUrvxhSnQjf2ZXSdr0Wni6Vx4x9p2DCNrKx2rNmrZ31WIPkbgsnLUPHq\nq+Hk2rfyxXdBmA/pmf6UnanPFbFy3amLiB37/Bgp/VKwpFv4s8WfvDP1HQDWx/t/Zup7771HmzZt\n6NmzJx06dOCRRx7xd0hCXDC5ubls2bKFxx9/HK1WS2RkJA888AA//PCDX+PyJrmvAf7ulvQgYF7F\n8TY8/fjx5xnXxUVRPIt/VcwazSSehHaTSEgYT0LCs7Rt25D77pvDkSN9+XVHY1ZlJJC3uinm8l/Q\n658mLmYcg7rnERpr5LY7vqR3n1VkqyOwRDn45Ze3ADdH3ztKzqQc7A3sZMzIYPTznm1rnSbfLWtQ\nUxaLhXHjxpGVlcWsWbOk5S4uKdHR0URHRzNz5kycTidFRUXMmTOH9u3bn/vFtcgXfe7xeDbOPiGT\nSy25V2H7P7azJmwNa8LWkPNpDh3XRrDEsISvnF/x24O/ce2yZXTu04c5c/7N3vQfib6yFQGGcmIu\nsxHXrjWK2sDwEYPJzCzF7YZly5axatUqTCYTr776KpYtngRqc9qYvXU24Kb/vP4cNh727wcX4hKj\n0WhYvHgxixYtIjQ0lKZNm+JwOJg+fbp/4/JRPacP0bjkZ81Yj1jpsqoLAS0DOHC0IUGGFjT6pD8A\nJRtKeKHPDl5yWzi86jAb2EAmmcQQg9KgEUFl8ahUe5kyZT6tWt3LjPtT+ec/MziaW0pKioOePUuI\natiXd39cglatZUi7ITy6+2c0Kg15pjw/f3IhLowIQ0S1hivWpH5v9enTh40bN9ZaLDXhi+SeCTQB\n/qx4Hl9x7gyTJk2qPE5KSiIpKckHb183FeuKOa45TqA6kEKnBYvbhE5dAICryMX+63Q4VCF0GNuB\nvoP7suSpJexxrUPVJxoON6isJzr6ZmAPLVpMRdFnotWOR6eLxmHZ5ylw1R+4mxagtTgJ3diXsdu/\n4+COgzw9dR6GLzdwePtGoptH/22sJSUlPPfcc9grNhGJjY1l6tSptfJ3EcJXvJ1gdLFJTk4mOTn5\nvOvxRXL/GbgLWAR0A5xAVlUFT07u9ZkFK4PuGETkskgUtYLTUYqiqFGp3qHcYeaV0n8RwdWAG0VR\nKh978zO4Zcm7WHcplDd30uidxVj3WmlBC/rMf5RFgxahUvTct74UjT2PD4C2xe+j+dFJuNHG46tT\nWOl8gkzLcqKLmhG7pQNbTFlkGY//bbwZGRksXbqUKVOmYLPZePrppyW5C+Enpzd8J0+eXKN6vEnu\nC4C+QDSevvWJwIlVqz4GFgPX4hkKaQXur1Ek9YgLN7GmWNLuSiPwskAyMt7g6NG3AVh8FPJXr6K7\n3YmiOvUHjtlm5ZFO/TAV9OTzdQfYOvo1Vq1YxXuz3+OQ8RBOtxNcLrqlZfHLzTfDvkUYdz5Mi09a\nY149nivV27lnS0/6j43h2bsuo/9TD/Nt+RAit6bBzJmeN1GpSL2uE6sKt1S+b/bBbAiAtte3JS4g\njqeffprcslwAIgMi0aq1CCEuLt4k9xFelHn8fAOpzxISnichwTPmdfvGGZSklGBUN0ZlTmPPnnuJ\nijKQnV1CgLucUEMoijYMlTOIRiGNiAyMBEA56baGXasltVs3WLSIPHV/mo7sQ9mDk3EEmtlWWkqR\nw8Fug4Hmjz6K8n+5GPKMsGOH58U//siq3M58m1BKx5iOABQYCyiyGPnH572J0kVhcVjo8mEHSh0W\n+kXfx5hmHwKe3eCdTs/goJNt3w42G8gqB0LUHbL8AJ7hhHaj/Yzz6mA12nAftVq3boX0dNocSmXV\n2v0UZSSR6VJYudzGhgwVmw46sQXrWWUZjLHoT5TmGTzx4Ycc2bsXN9DXPZpNb78LeXmn3K12293s\nG7EHAEe5i11j91G6r4y0146yZOwgXKq5fNnGzJ5rPTdaX15vY3P2Zu4cOJExPcYAsGbNDDboFvJ5\n3yAsFjODVTCvRylb0rsyfZuZD5Z63uvEvt6NGp360fbvhwMHYN063/yphBDnT5I7kHpHKiWbSlAZ\nThoZ6gK3y41rbyLDd+8+6/CfD1q0YKg3b/LggxARwXXhYbQtT+RAeRitCeOR/QZuTnPzjMlJaVQU\nK8waemzfiKroOK2PdcQRGckxYH/jSOaFhVGuV/HqgNbsc24AYPPnmzGYg+EHG25tOYH3PYx6lgXD\nTTsZHq1mrWoYSU2vZXCH6wGIDT/CjB+Pov9jOiierhpn8zw0Dj29ehSzbVUJdntj2sfNxcqbDFEC\nefN5C5pwDZrQqv9zmToVZs8GWVlYiLpDkjvgsrhI/DaRiGv/GvpkL7KzodkGcmw2uoeE8Enr1me8\nbmJ6OketVu/exO2Gd99F6dIF3bd57PvPAUqV7mgffxzN4MGonnqKn4HI+HjaJQ0neeZenpg6lcWL\n32FLWDHi0SVoAAAgAElEQVQ3tDzOwewiLAYnWT2LOZ6eAsDk3ydjumI4NHBw7SszKG3aCKdqMnsC\nbsUd2Al3v8/Qz0+kydImAGRYP8BRbienQMWJuUbFAXNwWBeyJnANVqxocXHoX4cJ6G9j4JcJbPp8\nLvrGetp83AaDoSl6fdwZH0+lgtGjPRN2i4uhY8e/rjVoAL/95t2fSQjhG5LcvRCgUtFIrz/jfPBJ\n+5gWrS1Cm2fmAZee5ofaY3K0YP/n89HF6Wg4vCG0LUHl2EyYu/MZ9ZhMqRQX/0FiEPSwFWGzZRMR\ncZBPPrmDdesWQ0woN4SkcCDQRKoanr2mGSVdSkh6L49Nz2zimcIifi5ZwbdvvsX05s0pjIhmeMtO\nfJQ+nVQC2NcymhWtEyvfT21zsnCRwvwl0LgxbFjmQj3TQZdN3VFaqFDFqegybxBrtn1K2eS3iNY1\n4+UXX2Z1w64oiuqUPndFgeHDPfuFPPAA/O9/sHIlvPWW57rTCd27++7fhRDCO5LcfaTw50IUp5uA\nHltoNXwxBTmRmMOOYTxiwXY0EpLyMZY9jH7DvyEiiGYP2VB/kMf+/XsJCcmgvDwUZ3AiNsVAYttm\nuN1H+OabXShKJ6482JcjDZ5la9k+9PrH6Np1BXv3PgJ8gsUyhpFuExuCcim738XQuAI+mhNJRJAO\ne0kZuAMgXIfSLKgyVhdw92S4bJBntz7DJlAUN+GXh2A2m3E4HCxatJXV6X1IL0vn+zu/x7gTPvss\nlZYtX6VjxyWVdd19t2fJ+UaNPK313bshLOyvlrvT/6sjCHFJkuTuQ84QLdnaLPIK1SxItrH4ltf4\n8wUnnZOC4d2RWBdOx966EYW/FLD3+6M4A2YSHz+Cyy9PomHDj0lWacnTjuChq3piMMCvv3rqXW1Y\nfcaSnM2aTQI+ISTkFb49kE6Z5QVCl9j5sYmV4uIsnn38TUr6HQQakJe3hPT0VGbOnIn6pF8bVdHr\n9YwZM4bk5GTSCtLY+MtGcq7LARphMLhwKhm8uKJ/5dZ9O3Jfwska8nT+3VJMCH9KSUlhzJgx7Nq1\ni4YNG/LWW29x6623+jWmSyq5F9ntlFbRlLS4XJQ5HHg/2fgs3C6mls3j8DEVcZEjuMGYxsvq5izv\nXQLMgt4qoACVE0oGtsSpCuHtafP5cuEqUnfuxH3TTX9bvUqrJT09ndatW+OyuNAqWo70DmC4vRXr\nytRM2tYU3UE12comHrMPpO3SR5ltWUg7dSe6bOhA6ZR8QqJDUKkCUBSVp8m9cSPatGOobG5ITkYF\nfHDbbRAby6fla0lZl1L5/jpdQ8z2crrp/qBRiGfIzA5dCQ53CbvzD501bpcLzjZ/7aqr4IYbqvdn\nFgKAyEgw1t42e0REeMb/noPdbmfw4MGMHz+eJ554grVr1zJgwAC2bdvGZZddVnvxncMlldy7btmC\n1eVCfdpA7RdKbUzdv58frm9wlleeyuGArCzPrndGFRxxJ2C1gtMBNkXD9maBfNHyct5o3g99RhjY\nTx1GMmDnTlx6G66jI1FObLDRpQv2zp1J1OnO+r6hcXHs378fm82GcbWR4k+LMT3QibdyDsDiaYzK\nfgnr9Z3p1SScu2Jb8dGOj9l6UIXd/j0Dt1/PtbPaYgouBkCvCeSr/EjazTyGOhrUpSdlYLPZ8z/N\nwudwup3syN2B0xzDvmlFxIdMxliWw1WXDQLAkKfF1vDsw0VVKnjvvar/H0xLg82bJbmLGjIaa3eI\nlpe7mu3YsQOj0cgTTzwBQO/evenVqxfz5s3j3//+d+3Fdw6XVHI32e3MMxiIVp26GGaRys73Tu83\nupg5E156CXhEwdQ7k9dnz+PeqZs4prPw3OOP0iliPTalGd11QfRpGHnG683xSSwrKGB986annNco\nCuPi48lKO/M9rTawOCEkshkAutAC1CFZ7A0KJDdGQ2FcEqMH3U5ZzjpSri3Bve0Fbkow82uegV62\nXEJGfcE3WU7ifwxEW+rG7DAT6M7Fec8QlM5NUf41E06sZ3HwIPTvT/sG7XG73byf9z75DTqzQbWB\npqH76dCqA0EtPX349qXlEAWc5TtJUWDcuKqv/fgjzJp1zj+3EHWau4ovGJfLxa5du/wQzV8uqeRu\nLCzkiddfJ8R2av/w/XtHYza3OOWcSqfC7XAT03A3jwHJJFdea3BNPKNHt2Ly6804YmoAXbqwssEL\npJTq+Oc3C9k0UkVMykt0G5XM2QyMimJgVFSV16pamGfCK+BqAd9+4mmsdLPDTTb49yYIrxiZwhtv\nEOA0E5/5PiVtzCzKzsa6+Q9cV1+L5YiG/PsiiH5lBgEh1zDgs17MunEWHVteRdBHH6E43LBxIyaH\nmVE/P8jHx4/w0ZvDUDucxBzMQH/tAFzh0KX1tdylLQf3956/E0m47Daa5soa7uLS1KlTJ8LCwpg2\nbRrjxo3j999/5/fff6dv375+jeuSSu49Nmt4Le9NAk8b1lhiK6XEoNBzy5ZTX7A6iAK7nStCQ5lf\nsfB+zmc5HJ/l6doIUqtpHxgIGRmsb6hGr6iIz89nmzMMrSnHp5tVu5xw110w913o0AFiSyDwODRv\nDkdK4MS+AGp1AE2bvkCO1cp/c7dwzF6AJqQvlnnNiHrsKAQFQ1gYZQFqXKEhbNm+nSW7dlFotzNr\n2DCKA5xsGpCFyanl/Y+z+A0Nb24IofyolsBIIwmzPmPUXd9QFOf5RbLthoVwcA9hpcXsyN1Rrc8U\nEAArVpw54/WEWbPAz9tQCnFOOp2O77//nrFjxzJlyhS6devG0KFDcTgcfo3rkkrujY+poJ2GxDcT\nTzn/+puvc726McMuG1Xl65oZDBcivHNyuyA62rOWS8EyyPoAxiyDUbthUNU/As5QUrIep9NEYlAJ\nP6dMIOXPFI67yykNVzP39lhsig1jYAEPXN6T5hs3ooSGEvDzLzx6bxxPPltK45GNmf2dE1eoGYDi\nglQ+xESZGw7/93VKNU2wWnMwmXYTFPT3O9H06wcZGZ4brqd78UXIrHLhaCHqnu7du7Nhw4bK5/36\n9eO2227zY0SXWHIHIExFUPugU06ZIk3EW830DA2tVlVzc3IYu38//PADo57dy55y03nd31mzxrO+\nV06O517RjBme8+0qBvg4cePWuLC6wO5y43K7sbpcOL1809DA/hQXr6O4eB13twij1JpK0GUF2Boo\npK1wcPvABABigq5G317PTsd63PttlX2KgZoQAh8bB0VFMH48AKOvyqMg7Eli8v7E+vsqjmpCKMnM\nZfOXI2icuojLPjj7aAFFgYYNq74WFFT1eSHqot27d9OyZUvUajWzZs3i8OHD3HfffX6N6dJL7j6U\na7czOjaWV7t146sO77GLQBQFtO4zFyHzxqRJnqQWFARWq2dCEEBbN9ySpGVB8WFsc3IIXQOXp7q5\n1QhXrFmDAtx/tr6Nk8SEPUF40wkAdKo4N3ToUHr1ao5OPZP+DYorzhaTFZpF+yEO7K8b2bv3AQbe\n2IQ8h53/XX4QnC4U44vYg66C6wegym6Dy7iB5vZospyNMJjNxO7JRtk8hfIPG+O8ohOuNs3Q6RoT\nENCsRn8bIeqyOXPmMHv2bJxOJ71792blypUEBwf7NSZJ7hVKS0vJyztzi7rQ0FAMf9Mto1MUgiwW\n1IqC6ozdBqtv3DhPH3RKyl8t99WzYf4jMeQXNaJLFzh2DArKC8halcX4vp3+vsKT5NvtDNiyBbvb\njfmwAUehluxDCRzQN8bpbIrRuByNBq7q6WJ78jzWv/w8mhArYfp+HDwUzI7QAhIaBoHKRZPyIzQp\nepFbb3uHH/9bhDUUSkakUrguFXOOG/VOAzr1f3F9CpY1QaSPj0GlMtC9u2crsvEHD/JjQcFfwZlM\naG02fs7KIt7h4Jq9sGke3PRuHw7p253yOfR6z1o1Eec9MUFc1CIivB6uWOP6vfTWW2/x1ok1N+oI\nSe5A06ZNmTp1KjNOZNMKNpuNPn368MMPP5zxmuzsbApWrqTUbucntxuj0UhpealnWGAdM38+XEEY\nD90VwA5HKzoEB7FntYaW7Z0ox+5jb94xVIWeXw6bN8OvI9Jp8kUTGto+ZrH1IbJuacvA0miCXA56\njd+IXl0MUz/m3+npfP14NB21b7Ez7VW+0z+KKsYF6o/5ftSrbP96O0/2UROVnkubNlNIS3ukMqbt\nZWU826QJV5/oChs8mNsef5z8ffuINxq5LQEGF+7C0m4Hx14+daPh/v093VaS3C9xXkwwupR5m9wH\nAG8BauBz4I3Trt9Xcf3ELbAPgc98EJ9vubX8sTaQ1wecenrLlnEcPz6OgIBTz7tcTg4enFZlVd98\n8zUts7/HAZhdLtrlHsPoKIRmoDWoqnxNdeTkwGOPeY5vd8C4J6GsBjP8g4KgcYdS2GOj5RNZpGLi\nmkaN6KeBa9rreOPBl8ls1YqA5Z5h7t26gcvswjjEyI9L70YXGkqPLT247s4o3tizGacN/rN3G+YP\nPmBDQQGFh4eSpj6AqgA27tyI/pgKDbC6dDVZjbNIzVdhPriVzMN30dNq5ZuDBwFIKy8nQa+n3YnO\n9dxcDDEx8PLLEBKCFtBOn07g3r1EnnZf9m/meQkhKniT3PXATKA3kAusB34Btp1Uxo1nO74nfR2g\nL7ndasIjnPzzn6ef9yS1kJBTz997bybbtlXdPHS73Yx95EMS7y9Ag42txalEEY1GfYyY/CjcDjvq\noL9fx+VsWrWCN9/8a3MMRYHERHBroTo34B1uN5cFB2ANsYIa8mJLcOqtGKOLKczO5v2xHxOZmkpZ\nZibxgN3lwq0Cp9t91vXrC8xmnlyxgodbtaKwpARruYlSlYnw4wrp76QzbMzDpCqb6R00CfWWNGLu\nSCN9Zwr5NhsaRSFa65nN+kRcHD1O/4MLIXzGm+R+BZ79UU/MrfkauJFTk7tS8ajzwsJdDBhw7nIA\nGs3fz1qdcfghjo5PReswcedXo8mwZmDDxdawI0S36YS+8ZnLBP/0k6dxWpX9+z2rNOp08PDDf51f\n/TSMfgTU1RiRGaxWE6PVctBsRtm7l21mNdu/KaHbFR14MiSEZSkp/LhhI00jBqI4IDyiCePu/J2r\nmsOeTbDh6gA2RUVRUlzM1E8+Ic88ApvVzJ/ftOIN91v03XMt15rNHCvTsC6yGQluN/8DUlJ3oXG7\nUW/ZRoPSQDCaUAGjwxpiP17KKOdKFJWCSq/CUgBFhuaEh/fx/oNVSE6GffvOPB8XB528vw0hRL3l\nTXKPx7Mx9gmZQNJpZdzAbUA/4CDwBHDEB/H5ntt9xtBBFZx1wlFpaQs+/DCdrKy9AOh3FBKW55nN\nWujMYcLOGTy24gEWduzGjpLt6FSbuCwsnI23bqyyvj17PJOQnn76zGsqleeaL4RoNKT27MlXt9/O\nF198wQ/KDxTM3c2O74K5p3FjiouLiT5u5Zlj1xH9SEPimsQDMP09Faabill1jYvCgW9jeuwx5rVs\nSfnzefwr2020qQE9d+dx171NWH0sl73v6jGl2Hhf9wy2wmfQ/LKUHt1+4q15wxln2s3VM9aT2RFy\nbygheFQiB1Rf43a4MISpaLJ6NyZ1Cc60myE9ik9Hvk9su1Do2fjsK43h+fXy7bdnni8rg+PHPX9j\nIS513iR3bwZRLwW+AhzAgxXHvc8jrlqzsbSUe1evrnzuBgZGRvJTFc29zp2NrFjh4LXXnsZk2o9e\n3xB7cRrXBNwGHAAgwBlImFVBo2hQK2pAQa0o6DVnttpPaNgQunb18Qc7i1GjRjFq1Cj+aPgHiwyL\nyLZnMzZwLGssa/hF8wsterSg6wd/BfP7Ahg2tJAejVR80/9u4rRaNl53HdfdGUXrB4/TKXIVhpgQ\nIq+PpCi9hCZBVpxj4IHhWr7RfIRNZ0X1p4sx346kqFxhPiY0mq4c1E6DvDS+TYugXKvn8uxyPlub\nzY83aBnasxXk7qYwrCGR+QGenT6eeeasn+ntt6s+v28f3Hyzr/+CQlycvEnumUCTk5434dSWPMDJ\na/7NBt6rqqJJJ7XGkpKSSEpK8iZGn9KrFJxJf635sK64mGcrbvKd7uabDXz55VNkZGQQEhJCaKgD\nrTkcq3UPPXoUc+gsHVFut6d1aa9iuPvBg3COlX1rRZfkLuxesJvZ785m2c5lAAzvP5y277Y9r3rV\nOlCrPPcrypvGEXHoEAW6rnRt2ousBf/hspi2cCSHDwYM5CXVPu7IDMLwWzsahpixhTfhq8YldBl4\nE0rqj8wc1J1bMkNIOPgxe/J20dxtReYyiUtNcnIyyScW8TsP3iT3TUAHIA7IA4YBj5xWpgGQX3E8\nGNhfVUWT/uantr+ogN0mEwNSUrCXlOAoLwfgH9HRTOjenV27djF06FCGDRvG0KFDeeLGJ9Dmanl3\nw7vEvJpQZZ0ul2dI4WkjKyv5Y9u5oHZBPPzvh3n43w+fu7AXfv31V5Z/8w2a406KS7dwIzcCYE1L\nozDLRsqPNtI/S4drehAbfg2/qQbxWlwquVdkUtS4jHy9A5cSwDiXiux1T+Nq14ZkzavsaKRmiN3E\nkK+HcI/+CibQDLfbTUnJelyuvxYnczgU9u2Lx2D4awZsejpYLJCd7dk+UIiL0ekN38mTJ9eoHm+S\nuwUYAyzHkwvnAVuBycBm4AfgGWAQnqGSRuDuGkXjB91DQvg2MRGn282dbdui0WiwKwpr8vO5PSWF\n9u2rXh8lN3ch9zY30jhgLgeaubA4FmL7I53c/p6bsCEhnn1F66v58+dTdOwYzWI70CWsLyNHjmTJ\nkSMcd7mwlZeTkZ5BjtXJd9tXsKPcjnnILXyeXs5VK/uy7TInIVftIkApp5V2L6sPahnQbzVfWSMJ\ncCrs7OnmM1UhuH9mXSuFjgP/h+rgIbTaIDImtcPSOpg1a7rx4ouv0Lbih4fidnNFdha9c5281gF6\n9vwr1uJWEZjiQ7nhhgvXHSaEv3k7zn1ZxeNkE086fqHicdHRqlRcH+lZ4dBltXLo4EGSbTbu7tMH\ni+Xsy9jm5HyMRuXGXhKNPg8UfRQKOsJTFI60uTSajZclJXFVp1u4akEu5aPKecUcwobSLmwxlTJ6\n3Wh0V8TSctenTCmy8J7TxdPvZLB5/wtERGTwdIsumHTZpDbOwbAoFP2mN1j8zxhuX6gmvFUpy0K/\nxmUqpvfAdA4nDMY+8Au6fduetgHPQZfBHDpUQufO6/njD89OH9YcG3+2OkRKYhzp6eAo8sQYmlsG\neVaWRISSkyPJXfje9OnTmTt3Lrt27WLEiBHMmTOn8trKlSsZO3YsWVlZ9OjRg7lz55KQUPUvfl+T\nGarn4c8CPQnFkeiPg6q4G4p1J3FLFIpvq94CZHVaeTnMnQvGB+HwYQjI8ixNWcHUWkv3zd1x2V28\nvy+N7A0GyrcaCG0Tij7+QYJ/moJuwgTQ6ghO3Y8SuxkaOWHrDxBaCJEW2ueHUmoO5ou2ReztswqV\nNZf08HRKmucSHGal1fD3ceJmdZu1OFR/4FqpEB6mZ/iAXnCooltG1QBNqIZus1qy8Dl45w/P6ayP\nsjDtMmFsA4fOvhOguAhFrl2LsRaX1Y3QaCjsfe5xIXFxcUyYMIHly5djNpsrzx8/fpw77riD+fPn\nM3DgQF555RWGDx/O+vXray3mk10yyd3tdtHn8ulEtS1n7965p1wzGn/Das3A6YQ//oglJFAhxmlm\n69ZeqNV9gdMm21itsHcvj/9eRMfs2WjL3CgZR1AcuQDk2urgGgQ18fTTMHGiZz88mxVKS6FhKLRu\nDevWecooCkGJntueuYqG0gw1rgMqdLFnTiM1u1y4VSoc/a7B/O5ALOb9FG/5hbiXWuB4SscHsVNJ\neEBHZHAHRq3OYkbhjcRuMGN7bCh7/hzDoN+vJyp5LYXm4xwe2IjWg9fz398GgsOBEtWI0IfDOGoP\n4boHDZgdMwnQBKCoFfK/y6dVYBnxFthasWS/olJoM7sNgZcFXqi/pvAxo8OBuxYHZShe3tQcMmQI\nAJs3bybzpHWqv/vuO7p27crAgQMBePnll5k2bRppaWm0bt3a5/Ge7pJJ7i6XjU5tlrDz2/GEhbU5\n5VpYWB/Cw/uhVnfiyiv3scZuI1/dn9at/4XJ9C8slkYYjb+Rk1OKVbcbd7gNq2IktZGKYGN3Wq5b\njSU+HJstlE8evZLj9SW5P/MMvPsuvPYa3BkFndRwTVs2mkwUlJdTZrFgLy3l4+xsADKtVk5eB89l\ndmEvsqOxaIgttNF+xXreDXDzn47bmPiHZ6iRi++5DoUJWvhO/zwvNTZQdOgenm2upUHjfDR2F+7C\nNNrpDZQ/9W9UbwVz+9e3oYl9nkaWP+neJRBd1jG0eeW03xvL4Z7Qo/ks9q29kS40oOHVcQQuSmTR\nt54brddVbPl34J8HsKRbJLkLnzl9u73U1FQ6d+5c+Vyn09G6dWt27dolyd3XXG41mZsG0qjR2be/\nUquDwKnFhQq7Jp7wiEFYbCsoNu3BWGTBrs5BHeYgLKchCxsVoLEkcO1KLdk6B3nYWdlez9Uh/ali\nG9QaUxlU/Nniz1PmALssLsKvCffhu3jnhshI8u129tntWB0OFKuVDSUlAFwdGso+lYpyQNdYx6EX\nDpE1M4urLVfTS1HQ61WY7SoML3enY4Jnuq25oYl9/XaSlaWw/X/XoHkqiq5d/2DZ75NYm2pl3hXP\n4DApaMK02LMzcGdDc+VVGu/QcDzdwTLTSq7M13NTSgAYb+XaTfdQ8B8DB1dOQpVeSMPgYHh1EoFX\nGPj9M1jw8BUUFsbzklHLC8Ngp84zeeynnzxLUAhRU6dPhDSZTDQ8bcOC4OBgysrKLkg8l1RyP6u7\n74b//c8zxbF5cwYqCs2MRgL7DuAylQqD2034ugLiX0sltDQUs7UvuctG8Z7iQu1Wsc49ikYZu2nW\noRmLhy0mNRXm+jC8Kw9fiav8zKUQNBG+/9en18PrI8OwqYNJ0EJuLvToAfkFetqOcdMnPJw+4eE8\nEBaGMzyc/1osHDrpxrO9tJSuKhVxj8YR92gcABMmTGD9+vX069cPi0VH7/y/vvpCOrbi9zAtBgOY\n0wJQFIXQkMt5/aYf+Xz/Qi77zMTQHj04MvUIilaHolJwHbdj1LrI1venue0fOBq7WH+Znms6BXNd\nIyv3m2/hpht+xlhShuvgMYr23EenTjczZco+goNvIibmdTKGwY1jIbgv3HknVLHasxDVcnrLPTg4\nGJPJdMq5srIyQi7QmkqXXHJPKM6BRYtOPblxI8yZAyNGwKZNaENC0Fx3Hfp33mGhYzPrn5tKSnsD\nb7YzYF5ViNqwhPUD1rB78wEMi/UYrFbshhCuatCHkhLPd4QvaSO0cIGWt12+HL48YOTnwkI+at2a\nnj1hyRJYoRwjM9R8Stm+4eF83ufUdWG+zs7mu4r5/9nZ2YwYMYKioiIKCgrIycnhlltuISLCs1Rr\nZmYm65YvIeKeFwkwW3ludSam4Wp2ajz/WTbaEkWQzoWzgZVGtzbAZfV8wSlqhfx20cz/fiOvTrkV\nxQ09VAolTjfOdW4+M99PcHF/fv7Px7T7fQMKDhS+49EboaxHIbtXbyR8971kuoOxKQ4KO8NqFcSW\nBtBFFjMTNXR6yz0xMZEFCxZUPrdarezbt4/ExMTTX1orLp3k7nKiAE2LM7F+ufqUS+4O7VA6d/As\nvxgdDaGhoNFAVBRbjmURE5lA5yvvxNarB1HG/xIcEswjdz/C+C03kBsXyNJD+2jlPsy6dcHEe5Zo\noVevC/8RfSE0FKLjXQTq7SQkgFrtWYwrAhdZpnO//mTZ2dnk5uYye/ZsSktLufPOO3nttdcqr69f\nv55HX3+d43EKh+9NZOW+Qq6510CjirWXd7VK44OOOoK7lZ9Sb5hazV2HoolcM5BVm56hx/+uZJ8z\nkH6RoVzZ8E3WdSxi9Y5fOJKyE9WIRFyGVI6sCkLVIZIb+qoxXx9E8Kq5lBi+wXRAxZBrwa6J5pmD\n41jZpct5/w3FpcXpdGK323E4HDidTqxWKxqNhiFDhvx/e3ceHlV5L3D8e2ZOMpnMJJOVQBIIYTHK\nEiySK4IsgqKCSqFC3Ytyay9tWh97LVqrLGJba3vFhVt6a2urUhVE0KJIQQnQCCo7IRACiQlJSMg6\n2Wafc+4fZwIhOzKZhPB+nmeeZM45M/ObN5nfvPPOe94fixcvZsuWLcyYMYPnn3+e1NTUgIy3wxWU\n3L2KNmXqs6FWFk788oJ9To+T2796st3bGmQDEab+OMOTiQ6NJtwUTkpMCiadjDFYT5xeor6+j3yJ\n6tPo9VJgt+NVVYrsdqrkb/evYjabmThxIlartc39RUVFqGWlvH64gMOVIRg++YDooCDsdjsD09LY\n7x0B40desOSoC/hYhblzdZwdWc2utP38UZ7OTcNlFuz9DftstTyV/iK/+PVXPFvyK/oteYgntl1N\nRmEuVuWHhB5czZP/vhND9j68xkIGS15C7tGzJ2sarFgBK1dCgOYiC5e/FStW8Nxzz527vmbNGpYt\nW8aSJUtYv3496enpFBcXk5aWxnvvvRewuK6Y5N40Hhbsms6/ps/F45sfGxUVxWn9aWa8PQOvy8vA\nlwYihajUn21k8hsTccV5GKUMJdh5Ard6fU8+hYBJNBg4ZrMx9dAhKt1u7j52DDk2lseaPpb4ybXX\nXssTTzzBi2Yz6q2xUKWgTrgVNSiIf2/dir2+Ho+1ggjTZwwb8iIAeXl51C5cSPGnnxJx2EbdVxUU\nq3ZW/3ECb/z+UbYHTcIx+iF+l7OLkkESu79voLp6FqUxeTRW/jdb3VMYuuIecqvLOWyejC1aT+3A\ntTxMJiVKf0p25PJ++ilOJGjJPToann/er09b8JNIWe7ydMVve/9dsWzZsnaXVpk+fTrHe2iZ0ism\nuTdpaNzHpEnPMnx4fzweLxUVdRw58idyF64h9fePsPOel7BaV/PDvx3lyetTSLnazHO7TmCp+TMR\nzvYGHKsAABVBSURBVGS+RTGky84Ei4Vvxo8HICE4mK+uu46EhAS/P47RaCR9/ny+ycvj0BgFquyo\nqakossz00aMhJ4f1uYlMv30s77+tLcJ/37338r7OhvmdPyNLElFAsKqiZmURn38Nk/pNonBrKEfS\ncnB6Hfzt9OfUnUpG5ziJEhJK+OavcKhfU6u7g111x6i7JZYSKYkFui8gJhZiYhkyBAwp2gJwP/mJ\nSO69VVdOMLqSXXHJXVbrGT7cwtq1t1FdbWfWrHcpK3sTnS4IVDf2mveJNidgMtoZO/INrrpqLDrd\nPBqkAqZaf8O6Ig8mk57MzPeIiyrijHppqype6cJlmddTUnjpEyjcX8b37oKUpnqHu3ezoXxY2zcc\nMUL7QgDA40FZs4b39u0jbcbteNeNwvSZEUflWqS/3EScaRT1NScJrxtI6aZ7yDPkUbT9Q+Kri5GS\nTlNaHI1O8vIf5jXUTT6OftzvCBvyFipw88IgnK7fYAiODUh7CIK/XHHJvZEIjMYhpKT8iYqKCvT6\nzYwZswUAnS6ckSPXER4ejk6nTXp+6inYuROOqPeyPWwI1sxNyLKJvLyF1Ksr0Ftr0QpVCZcqMdjA\n6pJmawQMGED8V3UEl5bC5iPatjNnICmpzdtfm5jI66//F488AiW24Tz4CPwh/J8MC/43S6w53G38\nI0xZDQUzICYEqVJhwmfXcNw1gQNn95ISsZuawU4key4hhVqtmUV3fsOh9yNJiliI/J3kcwVc3e4S\nCgtvotJto8HrvSAOBR1L+C2V+mRO33AD4d/y+wpBuBTivw6w22HXLvB4YNs2rah0XZ12hn1+vla/\ndPy8MNaPiCV4mopkUnE9otC4fCAWta6nw+8zpkZG8lLz9ZC/+IK/f/kVO6ptsGqVtu3kSdSBA/nh\n+vU0Vah1qypKkVZiQJZh0iQosCtIRi9p9dsZ849/ELvkEAnTp8OUKST88GlKlAeQIsqJmJ2F/uXF\nGGITWe+6nRufSSWWgnMh2H/8LvY5L5HjXYk324NHp321KwHFdVFkJL/NnJgYpkdGnbvNyZz72J2c\nyKjjOuyKQh9aaUi4jFx5yV1VoLoGZeNHKLW14HKx+/VsHnx+JC4XrF6tJYjycnjnHW1qoMUCN4SH\n8/2RI/mzxUJoWBgPJCfzB2qpp/sWLuptGhsbz816aXlyRreYOBF+PhF2AH+/BYAJq1bx9dtvs6tF\nOaakqipuqKiAFN/SEtHR2ru1xQJTpmhTXEeOhClTCIlRiVBH8P3yn1PzmwZ+6zqF/u4H+c+YeOpN\ncMtbYcRExqDTGfF6lzDhs18wZp+bv//IhisiAp0Ebq+bqmAremsIV0mVGO2VAGytrmZEYzWfZ6/k\nZm8iL+1/H1nSMTsmmihq8HiqkKTWLzudLoShQ/+ATtd+Ba/VJSW81GztkuZkSeKT0aMZ0jSkJVzx\nrpjk3lQVSfUq1OSXs2nuG9TixEsj0x8bxb6oMYxSG9lwdiLhej1j7dmsSvo9Y6++mnnrjmH44AMm\n5+Tw6cGDhPfvz+QtW1hfUkquo41yS33UnDlzOHDgAAaDloAWLlwY8BjS09NJT09vvaOhAUpKzl/3\nePDOns3/rVhB/4ICjttsvF9ejlRRwVwgxbgKxzgL1mon/5d7K48n/Jb8SZWUFA/kqhVfMWXwWFZ/\n/TYTBpcywC0zNOcgnxzTpsuqKsiyikdxIysKx8OdzLr/Gm2f0ctUQx3TBhQTF2NmqimS/Q0NVNkd\nRBmNyHI0oaHn1zZy17hxlboo1S/FWHgXsqqdrq436Qgbq/X5g4P7o9MFc8JmY35sLAv692/19O/O\nzqbc5RLJXTinK8n9NuD3aIU43gR+12K/AXgLGAHUAffRC4tjNw2LSnodkeNTmL3nIyoqKvjvESNg\n+3YGeb1w441a191shlmztJ+Kor2aVVUr9VNWBtXaGZYRpTUEOYFFi3rseQWSw+Fgw4YNTJ48uadD\nac1sPt9rB+IVhX5BQXhCQvCoKqqqUuV280hODm+98MK504id1mBOLorhwQdu4MvUF3CE7KHwLZU6\n92l0ZQZ+/Y9h6Hc8iRo0jKpJ2gyi21f+hY1X78Tl8hBRf4y7TjxD46u5eD06FAUcLjuKLotR/1jK\nBxteobIyH53Oil4CVIkBWQOpmnc/ScOH8OjbCcQe82JcfDU5cQ8AoEdCqlYxYMDmqaU8dCalYfdS\nXFtLmF7PTsXC/H5xyLKF0FBtyWOjTtflpnKWOlG9LUojqyDJEpL+wrMspSBJO0NauOx0ltwNwGq0\nYtdngT3AVuBgs2PSgVLg+8B3gVeB2X6PtDuNHq391On4d20ts268UativWiRtprUsWMwfz7Mmwe/\n/KU2VvPLX5I/5wEad5+B114LeMg7duzokRq0F2P//v0XdXx2trZ0fHOZmd/usYN1OvoFB/OThATG\nJCeTbTIxf8AAHrvmGjzN1gDZVWDjM+ULeOopxvMUxXXFbHtlPF4PKCokvyDx4eA8wnUGJj4ymo0b\nD+DGzUeTHiS8MRpL5SAODJtMkNHNlztexih7cYfUcXLAQcJrYceb3xBbW4eDeEqZA3hpNBr5ePt3\nGPvHHEKtwViH76Z0UyyyJ5Jt353NO0OHselemXlvNTIs9Esedr+HuXYvgw47GHedmfp6lRM1wTQ2\nHiUpSauZc7PzDLYzkeRUap+qouMepPg+O45cO+Uu17kq98YqBUOdSkOc9mYQLEmY9Xo8NR5Ur4oc\nfmFKcFe7GV8wnpDEkC63fcv/zaotVdhP2FsdF5IcQsxdMa22C/7RWXK/Hm0qSNPn3bXALC5M7jOB\nxb7f/wm8jvZ9U4uuweUhMzOTWbNm9XQYnepryX3SJDhyBNo6J+Wuu/wTj6zTcUfMhcnEXlWN17WT\nzMzpvi2J3BqzAo9HZY2kJ2m3mTtmLWX7pj0seehz1AM6vus5S8WbLzHW2Q+3XqJO8mC12xmKRHj4\nbsbUjMFWn4In3cThxlVIOgtmxYt5rJlXLZupDSvEPeQ77JW/QFG/Zs+Qg9QZG3jx6yJmv7IN75g4\nZM8b3LHup7iDnOyUVHKi9WTtsjEz/Ho+UhV+nDCAq2QL2Sc/4br4cYTLMmt9q5/drn5ERNEKvPfF\nY40CjwQxQTISNlRkbCFTkAw66rxeip0O7oyOQZL0DB78HAbDhUM+Xw77EsXRetG6jrT838x/Kh/T\nCBNBMUG8+65W59aoerjaUcwTCdrfw2SCAwcgpOvvIUInOkvuiUBRs+vFwNQOjlGAKqAfWk+/11EU\nlcKaQhZ/vBhbrY1GVyOV1krCHGGoTpWajBrynszDWeKk6JUiLP0tNB5txDrdSubpTIrqijApJjJP\nZ1LvrO/pp9NnpKW17rUHgtGsEhLr5qlmRSKLiqZjs9m5/vqzbDnkQar6gsGj+jGn9jaOh+eRerWd\nBlca2TYr21IkwkKs2Mo8JH/9IZOU33I8zI0kSfxi7XquOruPk3kzSR19gKiIGghqxOZK4igeEjc/\nzpwb3iN9WjXGFT/DdNSGRT5IfX4YslfioaMGiItkyPEiTLYaFuJlwa+/5pa4KIaVH0IJNnIg7gw3\nTNtHOCYkCZBlNuphbmEIczb/Cvfk1wkO9VALoDejj6vnVGwOBaUKIUoyJyYNJSuvjtv7fcz23Eys\n3lC8ihtUMFRWkvpQIms+yqW0QWXgwIGMHp3KfqeTkx43LjWIv/AoHs4P2xh0Ohb5xkBXr17Nrl27\n+F7h99jRfweVShVrK9/lzjt/yvxJcxnwqpFdu7TbjRsHqannT11oEhwMn7Ys8NnLtFdmz+12c++9\n97J//34KCwvJyMhgypT2lxv3t86S+2XZ++5IWJ1EZEUkt829Datq5U3Pm2yL3kaQEoQHD3sr9/Ls\n/mcptZfy8pGXseRbKDtVxob/2UDc5jhOnjoJgO6EDuW4QrC+dcWhvqasrAxJknA6nV063m63c+bM\nmVYzahRF4YyvsEcguN2df9ltMEK/O2pY98r555ax9TB/8Q21/c5shpWLz+0bGxrK+Py/gsvF3oce\n4u7qap5et07bOXIkzr/txenV7svkKKOsSGZlbjDx9fX0Cy0HRUKutnMkbRhHnaGoLgcJcgPxK5/F\n6VQpDpF569dreDpTR8V/JXM0OJrrsjzE5cRT+4WezIJ5UNDAN0AoDn514k1+tGsQ4PZdNGHIZErx\nnPlXKcjnlym9tcbJbHsRtcE6XPIJtmZej1evJyRmAP1iHVijHeglL6cTUpCkJK49GEdEfBVFcY3k\nlZ6l8HAmZSOux3L6LLP+Yx83O/6J2wNBkjbM0xgdzaZT5Wz44GXkYJlZM01YJh5lcoQNT5CHmXcO\nxuWwU2d7E1v6cP75aS6SCi8+L3GmMBxbbTxDLVfh0jlAUsg9a+Jnz7ZdtyAzKhNPTffNVpMjZW6s\n/vZl9gAmT57M448/zrx581qtGtnTJgEfN7v+C+BXLY75HBjn+10HVPh+tnQK7c1CXMRFXMTloi8t\nZZDRaps/Xez9P/PMM+qCBQva3JeYmKju3Lmzw9t38NxP8S101nPfC4wCEoByYD7woxbHbAYeAPah\nfZG6B214pqV2ziMXBEHolNrTAXRGVf0Sot+6950ldwewCPgXWm/8beAAsBwtmW8CVvm2ZwH1aFMh\nBUEQrii9bdilK/PcP/Vdmlva7HcnWo9eEAThiuWnnrvfdP3Mh64JQRvKOQjkAivbOMaANqUyC/gC\nSPJzDF3RlTgXoH1/cNB3eSRQwbWg9z3+pjb29Ya2bNJRnAvoHW1ZABzxxfB1O8e8ijb99wDwncCE\n1UoBHcc5FajlfHs+E6jAWogA3gcOA8eBG9o4pje0Z0D4qed+EO1v+7M29l1UW/p7+QEHMBmw++47\nE7gJyGh2TG846akrcarAu7TdyIH0GHAMaKu4Z29oyyYdxdlb2lJFS4zV7ez/HjAIGIn24vkb0BN1\n9zqLE2An4KczAL6114ENaH9bHWBusb+3tGe3aq/Mnl6vx+l0nuvRO51OHA4HIR1P5r8O7byijS22\n96q2DEXrHY9osf1ztCcA52fX9ORgVXtxLgACf+rphRKBz9DeeNrqEfeWtuwszgX0fFsCfAN0VA/x\nr2gvoiZH0Z5boHUW51TabudAigZOdnKMP9vzkmezXKyu3v/SpUtVSZIuuCxfvlxVVVVNSkpSJUlS\ndTrduZ+FhYVt3g/am/oMtM7mJbdldywcpkP72DAUbemCYy3295aTnjqLUwXmAtOAPOCnBH7NnJVo\n00/bWzW2t7RlZ3H2hrZsimMb2v/9n9EmAzTX1kl7ib6fgdRZnCraEEgW2iy2n6MNjQTScLTOxDq0\njtEB4MdAQ7NjurU95UiZHdIOf9xVu/ffFR2V2SsoKLjYh70HeKeN7b3lfxMAC/Alrc9oPYGWgJrk\nAHEBiqkt7cUZyfk3v4W0/W7ane4A/tf3+1Ta7qn1hrbsSpw93ZZNmtoqFtgP3Nxi/7/QltxosqXF\n9UDpLE4z2vdGoPX0vglQXM1NQDtrKs13/WVaLyroz/b0V4e810J7065A+7u3dNFt6e8vVJurBT4B\nxrfYXow2dtT0+NFoT6intBdnDZxbrP2vwJhABoX24rkL7YX7Llqv960Wx/SGtuxKnD3dlk3KfT8r\ngPWcT0xNioGBza73VM+oszgb0L43Am0hPxfQeh3g7lWENja813d9Pa3HgHtLe15O9tP2a/ii29Lf\nyT2a81+oGYFb0D46Ntd00hN0fNJTd+pKnM3fPe+k8/FFf3sa7Y+ZjPZRbTvwUItjekNbdiXOnm5L\n0L5bCfX9bkJbyrplfcTNwP2+38cCXs4vmhcoXYmz+epn1/mOKyewioBK4Crf9ZvRZsw01xva83Lz\nbjvbe7wtR6NN5TmENkSwxLd9OdqLGrTpe+vQkuluYHAgA/TpSpwvoE1Hy0YbRhgZ4Bibm4q24ib0\nvrZsbiptx9kb2jIZbVz6ENr01+d823/EhWddr+L8dLOxgQzQpytx/hTtb56F1tPrqQX2x6D13LPR\nkk8k3deePT1q0u3QhmWazza7pLbsXadUCYIgtM2X//ou3zx5v+Xk7hxzFwRBEHqISO6CIAh9kEju\ngiAIfZBI7oIgCH2QSO6CIAiXYNWqVYwbN46QkBAefvjhc9v37NnDTTfdREREBBaLhdmzZ1NSErjZ\ni2K2jCAIl4NWs2UyM6PweGq67QFlOZIbb+xo7TbNxo0b0el058rsNdVQ3bp1Ky6XixkzZuD1enns\nscfIzc1lR1tV4PH/bBlBEITLQat54RkZ3Tv3/WLvv6Mye6qqqllZWarBYGh3P36uNiWGZQRBEPxA\n7WQefkZGBqmpqQGKpntWhRQEQbjidFSs48iRIyxdupRNmwK3UrPouQuCIPhBez33U6dOMXPmTF57\n7TUmTpwYsHhEchcEQfCDtnruhYWF3HLLLSxZsoT777+/jVt1HzEsIwiCcAnaK7NXVlbGtGnTSE9P\n59FHH+3pMAVBEHqlS57NcrG6ev9tldlbtmyZunz5clWSJNVsNp+7hIWFtXs/+Hm2jJhTKQjC5cCX\n/87rLfPc/cXf89xFchcE4XLQKrn3NWLJX0EQBKFTIrkLgiD0QSK5C4Ig9EEiuQuCIPRBIrkLgiD0\nQSK5C4Ig9EEiuQuCIPRBIrkLgiD0QSK5C4IgXIL2yuwdO3aMsWPHEhERgdlsJi0tje3bt/dgpIIg\nCL1Pq7VYIiMjm9Zj6ZZLZGRkl9aW2bBhg/rhhx+qixYtuqASk9VqVQsKClRVVVVFUdRXX31VjYqK\nCtjaMmJVSEEQLks1NTWdVj+6FB0V32huzpw5AOzbt4/i4uJz2y0WCxaLBdBWjtTpdAwaNMj/gbZD\nJHdBEAQ/aO+NJiIigsbGRuLj4wM6LCPG3AVBEPygvZ6+1WqloaGBH/zgB8ybN69bP200J5K7IAiC\nH3SUtA0GA8uXLyc/P5+srKyAxCOSuyAIgh90NkavKAqKogQoGpHcBUEQLonX68XhcFxQZs/j8ZCR\nkUF2djYANpuNp59+mvj4eEaPHt3DEQuCIPQebU4d7E5dvf+2yuwtX75cXbt2rTp8+HDVZDKpERER\n6uzZs9X8/PwOH8+fDSYqMQmCcDnw5b/zoqKiqKnpvjJ7kZGRVFeLMnuCIAjdqVVy72tEmT1BEASh\nUyK5C4Ig9EEiuQuCIPRBIrkLgiD0QSK5C4Ig9EEiuQuCIPRBYlVIQRB6PVmW6yVJCuvpOLqTLMv1\nHo+np8MQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhMvQ/wNCf9tm+wIm6QAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(Pt_BJ2)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEnCAYAAACJ9akrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8VOWdx/HPJEPIlTBDEAooUipqEKxyaSuoI61WROsG\nRWuVCt6rVOp2K60akyz66rK6sioq29cqrbKIW1QsVaQWGTRWarFIEFguKihYEciEkJjbzJz940xC\nyIW5npk55Pt+vc6LmZOZ8/yI8s2TZ57zPCAiIiIiIiIiIiIiIiIiIiIiIiIiPUQmsAFYEXo+DHgX\n2AQsBXqlqC4RkR4nI8LXzQa2AEbo+WPAPGAU8AUwK/GliYhIrIYAfwYuwOxxZwL72319bOjrIiKS\nBJH0uOcDvwCCoecnAAfafX0vZriLiEgShAvuS4EvMce3HaFzju5fLiIiVnOG+fo5wA+AS4BsoA/m\n2HZRu9cMAfZ09ebhw4cbH330UQLKFBHpMT4CvpGoi53PkVklK4B/Cj1+FPjnbt5jpLPGr1qM6Vxv\nvI7X2L+nLtXlHFNZWVmqS4iI6kws1ZlYdqiTI5NAuhXprJK2IA79eScwB3M64ADg8SivIyIiMQo3\nVNLe2tAB8AnwncSXIyIi4UTb4z7unMk3U11CRDweT6pLiIjqTCzVmVh2qTMcq2eIhIZs0lNTg5/K\n3Er8OBizZyxFg/NSXZKI9HAOhwPCZHM0QyUiIknjdrvx+XypLsMyLpeL6urqmN6r4BaRtOTz+Ujn\n39jjFepZx6THj3GLiNiNgltExGYU3CIiNqPgFhGxGQW3iEgMqqurKSkpoU+fPgwbNoznn38+aW1r\nVomI2IbbDVbOEHS5INIZenfccQeFhYVUV1ezadMmJk2axJlnnklxcbF1BYboBhzdgCOSlhwOR6fp\ngA4HWBkpkV6/vr4et9vNjh07OOmkkwC4+eabKSoq4te//nWEbXX++7WeJ0w2a6hERCRK27dvJycn\npy20AUaPHs3mzZuT0r6CW0QkSnV1deTlHf0bel5eHocPH05K+wpuEZEo5efnU19ff9S5uro6CgoK\nktK+gltEJEojRoygoaGBTz/9tO1cVVUVZ5xxRlLaV3CLiEQpLy+PqVOnUlZWRktLCxs2bODFF19k\n+vTpSWlfwS0iEoMnn3ySmpoa+vXrx9SpU3nqqac4/fTTk9K25nGLiG24XOaUPSuvH/lrXbz88svW\nFXMMCm4RsY0Yl68+7kQyVJIN/A3YAGwH5ofO/xb4OHR+AzDagvpERKSDSHrcjcB5QEPo9ZXABZg7\nvv8L8JJl1YmISCeRfjjZEPozC8gEvgw9t/qWeRER6SDS4M4APgD2AWuA1vs6HwS2AguA3gmvTkRE\nOok0uIPAN4EhmMMmHmAOcBpwJpADlFpQn4iIdBDtrJJDwKvAtwFv6Fwz8DRQ1tUbysvL2x57PB48\nHk+UTYqIHL+8Xi9erzeq90QyRt0PM5wPY/asVwHzMGeafBm6xkOYvfd/7vBeLesqIjHpbtnT40U8\ny7pG0uMeBDwbulA2sASz1/0m4MYM8w3ALdEULSIisYlkjHsTcBbmGPdpwL+Gzk8KnTsV+CFQa0WB\nIiLpZsGCBYwdO5bs7GxmzpyZ9PZ156SI2IZ7nhtfo3V7l7myXVTPCX975uDBgyktLWXVqlU0NDSE\nfX2iKbhFxDZ8jT6MMuvGvR0Vkd2aUlJSAsD69evZs2ePZfV0R6sDiojEKFUfniq4RURi5LByqcJj\nUHCLiMRIPW4REZtRj1tExCYCgQCNjY34/X4CgQBNTU0EAoGkta/gFhGJ0ty5c8nNzWXevHksXryY\nnJwcHnzwwaS1b3U/X7e8i0hMurolPF3mcSeC1be8i4ikhWSFarrTUImIiM0ouEVEbEbBLSJiMwpu\nERGbUXCLiNiMgltExGYU3CIiNqPgFhGxGQW3iEiUmpubuf766xkyZAh5eXmMHDmS5cuXJ639cMGd\njbmb+wZgOzA/dH4Y8C7mfpRLgV5WFSgi0sbtBofDusPtjqgMv99PcXEx69evp76+nocffphrr72W\nnTt3WvwNMIUL7kbgPMzNgouB7wAXAI8B84BRwBfALAtrFBEx+XxgGNYdvsjWQcnNzWXOnDkMHDgQ\ngMmTJ1NcXMz7779v5d++TSRDJa07YWYBmcCXwLeB1t8LFgNTEl+aiIg97Nu3j61bt3LGGWckpb1I\ngjsD+ADYB6wBfMCBdl/fCwxJfGkiIumvpaWFa6+9lunTpzNy5MiktBnJ6oBB4JtAIbAKM8RFRHq8\nYDDI9OnTyc7OZsGCBUlrN5plXQ8BrwJfB4ranR8CdLs/fXl5edtjj8eDx+OJqkARkXRkGAY33ngj\n+/fvZ+XKlWRmZsZ0Ha/Xi9frjeo94TZS6Ac0A4eBHMwe978DtwJPY45zPwrsBh7p4v3aSEFEYtLl\nRgMOh/khonWNRnz92267jaqqKt544w3y8qLPjng2Ugg3xj0IeAtzeGQD8Gfgj8CdwBzM6YADgMej\nLVpExK52797Nb37zGz744AMGDhxIQUEBBQUFPP/880lpP9xQySbMqYAdfYI5NVBEJHlcLrNXbOX1\nIzB06FCCwaB1dYShrctExD6qtXUZ6JZ3ERHbUXCLiNiMgltExGYU3CIiNqPgFhGxGQW3iIjNKLhF\nRGxGwS0iYjMKbhGRGPzoRz9i4MCB5Ofnc+KJJ1JaWtrl2iNW0J2TImIb7spKfH6/Zdd3OZ1UT5wY\n0WtLS0v57W9/S1ZWFtu2beP8889n/PjxXHbZZZbV10rBLSK24fP7MSxcGtoRxfKqp59++lHPnU4n\ngwcPTnBFXdNQiYhIjG6//fa2Xd7vu+8+zj777KS0q+AWEYnRk08+SX19PWvXrqWsrIz33nsvKe0q\nuEVE4jRhwgSuuuqqpK3HreAWEUkAv9/funuN5RTcIiJR2r9/Py+//DJNTU0YhsGaNWtYunQpJSUl\nSWlfs0pERKLkcDh45JFHmDFjBsFgkK9//essXLiQc889NyntK7hFxDZcTmdUU/ZiuX4kioqKePvt\nty2rI5xIqjwR+B/ABWRh7u7+70A5cBOwP/S6XwGvJ75EERFTpDfHHO8iCe5m4HbgQyAf+DuwCjCA\nR0KHiIgkSSTBvS90ANQBVUDr7UHJ+QhVRETaRDur5GRgHNA6uHMHsBVYDLgTV5aIiHQnmuDOB34P\nzAYOA08Aw4Fi4CPgsYRXJyIinUQ6q6QX8CKwBFgeOneg3df/C1jT1RvLy8vbHns8HjwWLhAjImI3\nXq8Xb5QzZSIZo3YAvwMOAne1O38C8GXo8U+BC4CpHd5rJGt92lg0NfipzK3Ej4Mxe8ZSNDgv1SWJ\nSIjD4Uja+tap0N3fL3T35TGzOZIe9wTgOswPJTeEzt0D/AgYjTlFcDdwY8QVi4hIzCIJ7kq6Hgtf\nmeBaREQkAlqrREQkDjt27CA7O5vp06cnrU3d8i4itlHprsTvs27rMqfLycTq6O7OvOOOOxg/fnzS\nVgYEBbeI2Ijf58djeCy7vtfhjer1S5cuxeVyUVxczM6dO60pqgsaKhERiUFtbS1lZWXMnz8/6bNf\nFNwiIjEoLS3lpptuYtCgQUkdJgENlYiIRO2DDz5g9erVbNhgzpBOdo9bwS0iEqW1a9eya9cuTjrp\nJADq6uoIBAJs3bqV9evXW96+gltEJEq33HIL11xzDWD2th9++GF27drFwoULk9K+gltEJEo5OTnk\n5OS0Pc/PzycnJ4d+/folpX0Ft4jYhtPljHrKXrTXj0VZWVmCKzk2BbeI2Ea0N8ccrzQdUETEZhTc\nIiI2o+AWEbEZBbeIiM0ouEVEbEbBLSJiMwpuERGbUXCLiNhMuOA+EXgL2ARsA+4OnXcDb2BuILwK\n6GtVgSIi6cjj8ZCTk0NBQQEFBQWcfvrpSWs73J2TzcDtwIdAPvB3zKC+CXgV+E/gZ0AFMNu6MkVE\noLLSjd/vs+z6TqeLiROrI3qtw+HgiSee4IYbbrCsnu6EC+59oQOgDrOHPRi4BBgfOr8YWIeCW0Qs\n5vf78HisW/va641uQ4Rkr8PdKpox7pOBcUAl0B84GDp/ADghsWWJiKS/X/7yl7hcLsaNG8eqVauS\n1m6kwZ0PLMPsVddaV46IiD08/PDDfPbZZxw8eJCf//znXHHFFWzbti0pbUeyOmAv4EXgf4DloXP7\ngSLM3nZ/4Mvu3lxeXt722OPx4PF4YqtURCSNjBkzpu3xD3/4Q5YsWcKKFSs49dRTo7qO1+vF6/VG\n9Z5wwe0Anga2APPbnX8NuA7zw8nrQs+71D64RUSOV4ZhxDTm3bFDW1FREfY94YZKJmAG8wXAhtBx\nMVAGTMH8sHIycH/U1YqI2NShQ4d48803aWlpIRgMsmzZMlavXs2UKVOS0n64Hncl3Yf7hQmuRUTE\nFlpaWrj77rvZvn07hmFw6qmn8vvf/57i4uKktK8dcETENpxOV9RT9qK9fiSKioqSspt7dxTcImIb\nkd4cc7zTWiUiIjaj4BYRsRkFt4iIzSi4RURsRsEtImIzCm4REZtRcIuI2IyCW0TEZhTcIiIxWrp0\nKcXFxRQUFDBs2DDefvvtpLSrOydFxDbcbjc+n3Vbl7lcLqqrI7s78w9/+AP33nsvy5cvZ9SoUezf\nvx+/329Zbe0puEXENnw+n6XbhTkcka+DUl5ezty5cxk1ahQA/fv3t6qsTjRUIiISpbq6OjZu3Miu\nXbsYMWIEJ5xwAjfddBMNDQ1JaV/BLSISpdae/yuvvMK6devYsWMH27dvp7S0NCntK7hFRKKUn58P\nwKxZs3C73RQWFvKzn/2M117rdjOwhFJwi4hEyeVyMWTIkJS1r+AWEYnBzJkzeeKJJ6ipqaG2tpbH\nHnuMSy+9NClta1aJiEgMSktLOXDgAMOHDwdg2rRpzJ07NyltRzL35RnMjYG/BEaFzpUDNwH7Q89/\nBbzexXsNK6fuxKupwU9lbiV+HIzZM5aiwXmpLklEQhwOR6epf+k0jzteXf39Ws8TJpsj6XEvAh4H\nnm13zgAeCR0iIkmRrFBNd5GMcb8NdPUjzrodO0VEpFvxfDh5B7AVWAy4E1OOiIiEE2twPwEMB4qB\nj4DHElaRiIgcU6yzSg60e/xfwJruXlheXt722OPx4PF4YmxSROT44/V68Xq9Ub0n0nHqk4EVHJlV\ncgLmLBOAnwIXAFO7eJ9mlYhITLqbdXG8sHpWyfPA+UAR8BlQhhnUo4EsYDdwY1QVi4hIzCIJ7mu6\nOPdMogsREZHI6JZ3ERGbUXCLiEQpPz+fgoKCtsPpdHLnnXcmrX2tVSIituF2g4V3vONyQSQ3Z9bV\n1bU9rq+vZ+DAgVx11VXWFdaBgltEbMPnAysnmkSxc1mbZcuWMWDAACZOnJj4grqhoRIRkTj87ne/\n48c//nFS21Rwi4jEaPfu3bz11ltcf/31SW1XwS0iEqPnnnuOc889l6FDhya1XQW3iEiMnn322aT3\ntkHBLSISk7/85S98/vnnTJs2LeltK7hFRGLw7LPPcsUVV5CXl/w1jjQdUERsw+WKbcpeNNeP1MKF\nC60rJAwFt4jYhnYuM2moRETEZhTcIiI2o+AWEbEZBbeIiM306A8nDcPgGZ6mljr639ufnLxeeDye\nlMzLFBGJVI/ucQeDQZawmJMYyqmnnIbf7+e5555LdVkiIsfUo4MbIIMMfkAJN864lSlTpqS6HBGR\nsCIZKnkGmIK5q3vrLu9u4AVgAPAP4GqgxooCrRQMBtseX/bO/+LbvpE63+cprEhEJLxIetyLgIs7\nnKsAXsXc6X1l6Lnt+I0jwZ3nCGAYfvb6LbwtS0SOG7t37+aiiy6ioKCAfv36ceutt9Lc3JyUtiPp\ncb8NnNzh3CXA+NDjxcA6YHbiykq+pedcw5KWTGbz11SXIiLdcM9z42u0bu8yV7aL6jmR3Z552223\nMXjwYA4ePIjP5+PCCy/k0Ucf5Re/+IVl9bWKdVZJf+Bg6PEB4ITElCMi0j1fow+jzLq9yxwVkf/G\nvXPnTmbPnk1WVhYDBgzg4osvZseOHZbV1l6P/3CyzWuv4vz7RjKCQEtLqqsRkTQ3efJklixZQkND\nA3v37mXlypVJm+AQa497P1CE2dvuj/nBZZfKy8vbHns8HjweT4xNWiAQOPL4pZdw1u+hV9CAjRth\n7NjU1SUiaa+8vJzvfe979OnTh0AgwIwZM7j88sujvo7X68Xr9Ub1nliD+zXgOuA/Q3++1t0L2wd3\nWvvvp2lc+78Y85+0dhtpEbE9wzD4/ve/z7Rp0/jrX//K4cOHufnmm5kzZw7z5s2L6lodO7QVFeHn\nekQyVPI88BfgVOAzYCZQhjlFsAqYDNwfVaUiIja2b98+3n//fWbNmkWvXr1wu93ccMMNrFixIint\nRxLc1wCDgCzgRMzpgdXAhZjTAS/ChnO4j+KALQ1fsbe5haDDQZ163CJyDEVFRRQVFfHUU08RCASo\nqalh0aJFFBcXJ6X9Hv3hpL/1Bhynwa0fv82z//gIw+ng3qaPUluYiKQ1p9PJiy++yLJly+jTpw9D\nhw7F7/ezYMGC5LSflFbSVii4Wxy82L+Wle5q/s3wcTiouydF0pEr2xXVlL1Yrh+pc889l/fee8+y\nWo6lRwe3ETwyJPLJxJNoDP6D3KHraNynoRKRdBTpzTHHux49VEK7fB7z/hjyHz+B+nwDw5+6kkRE\nwunZwR3iwKDX4X04G2pwBIJktATCv0lEJEV69FAJoQ8ne9NMnx9cxMCmQ/TLy2PgX3fD1Y2QnZ3i\nAkVEOuvZPe7QtL9GenNo/Wb2LniE/QP6Yjg4+q5KEZE00rODW0TEhhTcIiI2o+AWEbEZBbeIiM0o\nuEVEYrBx40bOOecc+vTpwymnnMLy5cuT1naPDm6jdTGpzGamLp/Co+/8G7WBwwQxeHTdo6ktTkQ6\nc7vB4bDucLsjKqOlpYXLLruMa665htraWhYtWsR1112nHXCSIdi6WXDQyd3j72XKaSXkZOTgwME7\nn72T2uJEpDOfz5zGa9Xhi2w/y6qqKnw+Hz/96U8BmDhxIhMmTOC5556z8m/fpkcHdxtnC+MHns1w\n1zCyHJlkZPjJIBj+fSLSIxldLP0cDAb58MMPk9J+jw5uwwhCRpCsP17K1o8HU/fpLE7J2sol//QM\ntwxdRWPj7lSXKCJpaPTo0RQWFjJ//nyCwSBer5e33nqLurq6pLTfo4O7dZWp5u+/wchvHKTg5N+w\nvbmYP750CzUteQQC9SmuT0TSUVZWFq+88govvPACRUVFPPDAA0ybNg13hGPk8erZa5WIiMRozJgx\nrFu3ru35pEmTmDp1alLajje4dwG1QABoAcbHW5CIiB1s2bKF4cOHk5mZycKFC/nkk0+YMWNGUtqO\nd6jEADzAWSi0RaQHWbRoEV/72tfo168fK1euZPXq1eTn5yel7UQMlVi3j5DF2n8wPHs27PjqyPPG\nJti1C0aOTHpZItIdl8ucb23l9SP00EMP8dBDD1lXyzEkosf9BlAFzIq/nOQKtpvxd845cMopR54b\nQdiyJfk1icgxVFdbO4+72h5bo8Ub3N8Gzga+C8wEvhd3RSly9dXwrW8deW7lD3URkXjEO1TyZejP\n/cAyYBzw5/YvKC8vb3vs8XjweDxxNikicvzwer14vd6o3hNPcOeG/vwKyAMuBv6j44vaB7eIiByt\nY4e2oqIi7HviCe4BwHLMce5cYCnwhziuJyIiEYgnuD8BzkxUISIiEpkefsu7iIj9KLhFRGxGwS0i\nYjMKbhGRKC1YsICxY8eSnZ3NzJkzj/ra6tWrOe200ygoKGDSpEl8+umnCW9fqwOKiG24Kyvx+f2W\nXd/ldFI9cWLY1w0ePJjS0lJWrVpFQ0ND2/kDBw5w5ZVXsmTJEiZPnsz999/P1VdfzbvvvpvQOhXc\nImIbPr8fw8Kb+BwR3ghTUlICwPr169mzZ0/b+ZdeeomzzjqLyZMnA3Dfffcxf/58tm/fzogRIxJW\np4ZKRERi1HELs82bN3PmmUdmSWdlZTFixIiEb2mm4BYRiZGjw6JG9fX15ObmHnUuPz8/4VuaKbhF\nRGLUscedn59Pff3RWx7W1dVRUFCQ0HYV3CIiMerY4x45ciRVVVVtz5uamti2bRsjE7ywv4JbRCRK\ngUCAxsZG/H4/gUCApqYmAoEAJSUlbNiwgddff51gMMgDDzzA6NGjE/rBJCi4RUSiNnfuXHJzc5k3\nbx6LFy8mJyeHBx98kKKiIpYtW8Zdd91FYWEh77zzDkuXLk14+5oOKCK24XI6I56yF+v1I1FeXt7t\nktXf/e532bp1awKr6kzBLSK2EcnNMT2BhkpERGxGwS0iYjMKbhERm1Fwi4jYjIJbRMRm4g3ui4FN\nwBZgTvzliIhIOPEEd2/gKczwHg1cCZyViKKSqcNSA2nLa+Hc1URSnYmlOqUr8QT3t4DNwF7AD7wA\nTElEUcmk4E4s1ZlYqlO6Ek9wDwE+a/d8T+iciETg8GGoru58HDwINTXm0dh45HFNDVi4+YtEobut\ny1paWrjyyisZNmwYGRkZrF271pL247lzMul91c8/OsTnO2sTdr39+75se1y15h/s2XSIYG2QQ7WZ\n1B7w8/HfHmbz20VRXzfbDTl9HOFfGIV171by6CMN4V+YYsdjnUEMHAYEgP37wWEEyCqootbxDz7/\ntIH/q6rBb5h9oMzMIOMvPpm+BflkBgIEmgI0Adm5tfhbepuvaXIQCPQiGIAMZ5DeRm9aDmdhOMBw\nOHAEmjEyA2RlOPnzms/5omEjzUYWfqOFXvVF5OT6aWjMw/wn6CDTaKHByOOEohYamnOADBwY9KoN\nYDT2Jjc3j9ysXIJGJgZBsow8DMNBIDuDISeDYZgx0MuRDUBLQ4BBQwyCwUwAHDgIZmTSWNiPnGwH\nWTmZODj6/+8dn37Kmr//hV4ZWUedDwSD9M7q3D8MBP1kZmTiyDz6fFZGFoW93GRmZnZ6D0CluxK/\nz7qfXk6Xk4nVsW9dBnDeeedx1113MW3atE6rB6aDc4E/tnv+C+DeDq/Zifl/lw4dOnREfXS0hjWd\nziVStNe/7777jBkzZnT5tSFDhhhr167t9r3H+HvvJIx4etx/A84ABgNfAlcBt3Z4zTfiuL6I9GxG\nqgsIx4j/Q7KYuuTxBHcj8BNgFeZY+XPA3+O4noiIraRqKCTe1QFXhg4RkR4nAT3umFh95+Q0zCmD\nAeBsi9uKhR1uIHoG2IdZZzo7EXgLs85twN2pLadb2ZjDfBuA7cD81JZzTJmYda5IdSHHsAuowqzz\nvdSWknwJ7nGfivl9bD0OAXd29UKrg3sTUIL5Dzrd2OUGokWYNaa7ZuB2YBQwBrgJODOlFXWtETgP\n8791MfAd4IKUVtS92ZidinQe6zUAD+b3c3xqS0me7rYuA3OfycbGxk6PI7AN8/t4Fua/oa+AlxNe\nfBTWkH497vM4elbMvwD3paiWcE4m/XvcHS0DJqe6iDByMXvfxakupAtDgD9j/lBJ5x73J0A/i64d\n96yPaEV6/bKyMsPhcBx1VFRUGIZhGEOHDjUcDoeRkZHR9ufu3bs7XYNj/0C+CKjs7os9eQecrm4g\n8qSmlOPOycA4YGaY16VKBuYH6cMxf+vaktpyujQfc4ptn1QXEoYBvIGZJb8BFljZmNPlxOvwWnr9\nSBxr67Jdu3YlopQfAku6+2IigvsNYGAX5+8hvXsK6fzrp53lA7/H/DX/cIpr6U4Q+CZQiDkrygN4\nU1hPR5diTrHdQPp3Jr6NWWt/4HXg/zB/U7BEJDfHHAeygMs4xuduiQjuCxNwjVTYg/mBWqsTOboH\nLtHrBbyI2VNYnuJaInEIeBUzfLypLeUo5wA/AC7B/DC1D/As8ONUFtWN1tuP92MOj43DwuDuISYD\n72N+T7uUzPW40+3ez/Y3EPXCvIFIUxtj5wCexhx2SOeZGv2AgtDjHMyOR7p9fnAPZkdiGOavzG+S\nnqGdGzoA8jA/RN+cunKOG9cAz6eygBLMXmwD8AXpF4yTgQ8xw+ZXKa6lO88DnwNNmN/LdB03nog5\nBPEBR6YzpeNsmFGYtX2A+Wv9/aktJ6zzgT+kuohuDAM2Yn4vtwP/muDrJ/Jzx7RD18O1ecABjnQu\nupRuvWARkVahfDs+heaAx5TB2rpMRMRmFNwiIjaj4BYRsRkFt4iIzSi4RUSi1N3WZe+++y4XXHAB\nffv2pbCwkMsvv5y9e/cmvH3NKhGRdNVpVkllpRu/32dZg06ni4kTq8O+7uWXXyYjI6Nt67JFixYB\n8Kc//Ynm5mYuuugiAoEAs2fPZvv27V1uphzPrBIRkXTVae7zmjXWzu2O9vrH2rrMMAxj06ZNRu/e\nvbv8GnEsu6GhEhGRGBlh5pmvWbOG0aNHJ7zdnrw6oIhIXI61kUJVVRVlZWWsWJH4tfbU4xYRiVF3\nPe6dO3dyySWX8PjjjzNhwoSEt6vgFhGJUVc97t27d3PhhRdy//33c+2111rSroZKRESiFAgEaGlp\nOWrrMqfTyRdffMGkSZOYNWsWt9xyS6rLFBFJurhnfUQr0ut3tXVZeXm5UVFRYTgcDiM/P7/tKCgo\n6PIaxDGrRHMIRSRdhfLtiHSZx50I8czjVnCLSLrqFNzHEy3rKiLSgyi4RURsRsEtImIzCm4REZtR\ncIuI2IyCW0TEZhTcIiI2o+AWEbEZBbeISJS627psy5YtnH322fTt25f8/HzGjRvHm2++mcJKRUSS\nq9P6Hi6Xq3WND0sOl8sV0VolL730krF8+XLjJz/5yVE74NTU1Bi7du0yDMMwgsGg8dhjjxlutzvh\na5VodUARsQ2fzxd215l4HGtjhPZKSkoAWL9+PXv27Gk7X1hYSGFhIWCuIJiRkcFJJ52U8DoV3CIi\nMeruh0jfvn2pr69n0KBBlgyVaIxbRCRG3fXQa2pqqKur4/rrr2fatGkJ/y1BwS0iEqNjBXLv3r2p\nqKjg448/ZtOmTQltV8EtIhKjcGPiwWCQYDCY8HYV3CIiUQoEAjQ2Nh61dZnf72fNmjVs3rwZgK++\n+op77rnKavTpAAAAsElEQVSHQYMGMWrUqBRXLCKSHF1OobNSpNfvauuyiooK44UXXjBOOeUUIy8v\nz+jbt69x+eWXGx9//HG3bcX6jdEOOCKSrkL5doTb7cbns27rMpfLRXW1ti4TEYlVp+A+nmjrMhGR\nHkTBLSJiMwpuERGbUXCLiNiMgltExGYU3CIiNqPVAUUkLTmdzsMOh6Mg1XVYxel0Hvb7/akuQ0RE\nRERERERERERERERERESOG/8PY7je78a27eUAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(Pt_J1J2)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEnCAYAAAC0Z8hNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNX6wPHvbMtuekJIgDR6CZEmgkoxKigKiKhwVQQs\neO29/q4icNHrtVw7yvWqiGIBFawgFoiISu811EBISK+7m20zvz82YEAgG8juJvB+nmcfZzIz57wD\n8ubsmTPngBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIUSDGwJsBLYAjx3jeGdgObCp5pwRgQtNCCFE\nXUKAPUAiYABWAj2POmcWcFvNdhdgf8CiE0IIga6O432BzcABwA3MBoYedc5+IKpmOxrIbsgAhRBC\nnJihjuNJHNnCzgEyjjrnWeAP4B4gDLi4oYITQghRt7pa5JoPZbwEvAMkA5fj7WoRQggRIHW1yHPw\nJuhDkvlrH3h/YFLN9jLADMQDBbVPateunbZr166Tj1QIIc5Mu4D2Jzqhrhb5SiAd78NOIzAaWHCM\nSgbVbHfB271S/JdIdu1C07TT9jNp0qSgxyD3Jvcn93f6fYB2dWX6uhJ5NXAHsBBYD8wF1gBTgOE1\n5zwI3I73oegXwATAU1fFQgghGkZdXSvgbYEf3QqfVGt7O3Beg0UkhBCiXupqkQsfZWRkBDsEvzmd\n7w3k/pq60/3+fKEEsC6tpr9HCCGEjxRFgTpytS9dK0IIEVSxsbGUlpYGOwy/iomJoaSk5KSulRa5\nEKLRUxSF0z1/HO8efWmRSx+5EEI0cZLIhRCiiZNELoQQTZwkciGEaOIkkQshxCkqKSlh5MiRREZG\n0qZNGz755JOA1i/DD4UQTVJsLPhzRGJMDPg6GvCuu+4iKiqKkpISNm7cyEUXXUT37t1JS0vzX4C1\nyPBDIUSjd6yheYoC/kwpvpZvtVqJjY1lx44dpKSkAHDrrbcSFxfHs88+W4/6ZPihEEIERVZWFhaL\n5XASB+jWrRubN28OWAzStSKEOKFNm2DOnD/39Xq45x5v14aAqqoqwsLCjvhZWFgYlZWVAYtBWuRC\niBP6+mtYvBgMBu/n/fdh3bpgR9V4hIeHY7Vaj/hZVVUVERERAYtBWuRCiDoNGABPPeXdzswMaiiN\nTseOHbHb7ezbt+9w98qGDRtIT08PWAzSIhdCiFMQFhbGVVddxaRJk3C5XKxdu5YvvviCsWPHBiwG\nSeRCCHGK3nzzTcrKymjWrBlXXXUVb731Fl26dAlY/dK1IoRokmJivEME/Vm+7+fGMG/ePP8FUwcZ\nRy6EOKYbboC5c8Hl8u4bjd7/Ohzeh54TJsC0aYGJRaaxPfWFJYYALwB6YCbw3FHHXwIurNkOBeKB\nevwuE0I0Rrm58PnnsHIlVFXBlCnen192mffh55YtwY1P/KmuRB4CvAX0B/KBP4AfgLW1znmw1vbd\nQI+GDFAIETxms7clbjRCaKj3Z3r9n61z0TjU9bCzL7AZOAC4gdnA0BOcfz0Q2NlihBDiDFdXizwJ\n2F9rPwfIOM65qUBrYNEpRyWE8DuPphH322+Uud2At+90Xe/epIeHBzcwUW91JfL6PF24FvisntcI\nIU7Rpk2beOSRR9A0DZ1Ox6uvvkqHDh3qvE7TNCrcbtQLLgCg39q1lHs8/g5X+EFdiTwHSK61n8yR\nLfTa/gbceaLCJk+efHg7IyODjIyMOgMUQpzY1q1bqaqq4oknnuDJJ59k586dPiVy8A6FqBkVEdAh\nbOL4MjMzyazn67N1JfKVQDqQCBQAo4HbjnFeZ7wjVZadqLDaiVwI0XBatGjBkCFDePXVV4MdijhF\nRzdypxwaLnQCdT3srAbuABYC64G5wBpgCjC81nl/Qx5yCiFEUPjyiv4CvK3yNODQLOmTgG9qnTMF\n+EfDhiaEEI3fG2+8Qe/evTGbzdx0001BiUFe0RdCNEmxz8VSWu2/td5izDGUPFb3Wm+JiYlMnDiR\nhQsXYrfb/RbPiUgiF0I0SaXVpWiT/DdITpni2+PfkSNHArBq1SpycnL8Fs+JyOyHQgjRAII5F4wk\nciGEaACKP6dirIN0rQhxhqlcU8ma89eAB77XYGnkUs7POz/YYTV50iIXQgRMRbGD0L4RpJX1Zej3\noDpUVJca7LCaPGmRCyECYll5OXdv3MS4Shi8ZiWpERZQHEeetHs3fPIJY/ZC6keg2wc2NQRc98m0\nh8fg8XhwuVy43W48Hg8OhwODwYBerw9YDNIiF+IMYlVVuoeHMTA6mrIBA8jq2/evJ82fD3PnEqLa\n0FfbMLpsXPTbVAjSiIzGburUqYSGhvLcc88xa9YsLBYLzzzzTEBjkBa5EOKvzjuP97Y8Q6tbYNky\n6LLuY8zBjukoMeYYn4cInmz5vpg8eXLQpx+RRC7EGe4713c8d81zbLVW8O82bfimT59gh+QTX17W\nOVNI14oQZ7g1njV06tiJ+BEj+GHOnGCHI06CJHIhBD269yA8PR1N08jLy6O4pASrdTNWa0WwQxM+\nkK4VIQQAO//5T1xOJ++99x5tHA7WWTN5++0rOO+86cEOTdRBWuRCnOk0FT6dzZTduzHpdDzRuTPX\nX389bdpMxe12BTs64QNJ5EKc6VQVoqI4YDKhKQpccQVMmICCCmjeRC8aNelaEeI0lFlayiar9fD+\nZc2a0c5iOf4Fgwbx33070Q4ehAcegCFDeHj7Qn7bDnzfAsLc/g9anDRpkQvRyOXn53PeeefRu3dv\nevfuzffff1/nNU/t3cvPZWVss9l4/+BBPs7Pr1+lpaXMSvkHeUNuhrO6QRDnERF1k0QuRCNXUFBA\nQUEB06dPp2PHjmzdutWn6+7/NZQHPzBw1/s6Ul8sxbrNWvdFokmSRC5EExAaGkrv3r1JSEjw+Rrt\n+YOoVhU1RCH6j2pKFsgLNP7gdDoZP348SUlJhIWF0bVrV7788suAxuBLIh8CbAS2AI8d55zRwFpg\nA/Bxw4QmhDhViXcnsvfuaCp7hAQ7lIYXGwuK4r9PbKxPYbjdbtLS0li1ahVWq5UXX3yRMWPGsHPn\nTj//AfyproedIcBbQH8gH/gD+AFv0j6kO/BQzTlWwLe7F0I0anGuMC5c1594exTZjrsoebqE9u+2\nCXZYfyot9W/fvY/T0oaGhvLYY3+2cS+77DLS0tJYvXo17du391d0R6irRd4X2AwcANzAbGDoUefc\nBLyBN4kDyPc3IZqAykq4+27v9kezwG4Hjwduuw327IGwkgiiqsMojnQQod9A7qdVwQ24icjPz2fr\n1q2kp6cHrM66EnkSsL/Wfk7Nz2rrBPQAVgGrgSsaLDohhN/s3w9ffOHdTkkFvd7bCG3fPZ99iTaS\nuldQGVPKluQdROqXoQL/zc3lQK9cVrXMZU96Lv/NzeXLwsKg3kdj4nK5GDNmDGPHjqVr164Bq7eu\nRO7L9xYd0Bpv6/1qYDrSvSJEo6S43YSXV4DTib7wIB0iDgIwYACYTKDTwWzDUG4evINtSSsptBTw\nfv9/U20ox6VpfFZQQFXLSvLCKylrXsmyigrGbtsW5LtqHFRVZezYsZjNZt54442A1l1XH3kOkFxr\nP5kjW+jU7C8FPMBevA9FOwLLji6s9py9GRkZZGRk1DNcIcSpSH31Vf7vhZ85qI2h3dVXMLcMrqOL\nN4PXcKku5q7pwLbwi7HZwxmy8XrQZqF44O5VCt/NjOOsHgpLKqJ57Q6Vz6VFjqZp3HLLLRQWFrJg\nwYJTWh0oMzOTzMzMel1TVyJfCaQDiUAB3tEptx11znfACOB9IA7oAuw6VmHBnnxdiPooLCzkyiuv\nxOXyzjcyefJkLr/88iBHdWp01dUsGnIpaZX9yXrjINdcA4lZg/l657dUu6tRNZW8ylwOWjU22zaR\n6OkJEeGg2tnbsZjkx3fT115N6g4XO3p3BSKCfUuNwh133MH27dv58ccfMZlMp1TW0Y3cKVOm1HlN\nXYm8GrgDWIi3C+VDYA0wBW+f+DfAPLwjVjYDeuBxQH5FiyavsLCQ3NxcZs+ezauvvsqWLVuafCI/\npLgE5rwKBQXQQtXYs8RDCnvJVjzMOacIzoGLeBvwPgTbfSv8Hm5iyIoqPn4lgXu0MoK31HDjkp2d\nzdtvv43ZbKZFixaHf/72229z3XXXBSQGX+ZaWVDzqW3SUfsP1XyEOK1YLBb69OlDy5Ytgx1Kg8o9\n4F2C81CPyqYVw4nukQ2sZXJWEveWV7Lt+0GEbuvPH3ckcG/rMRjb24Ia81/ExPg8RPCky/dBamoq\nqhrcicVk0iwhzlCXXOIdZqgrUVEUN/aabhK9PgxzuSPI0fmgREY6HyKJXIgzQFVRER/N+oFk+3zK\nK9tD5UV8++1HuEL7o2oaas/3saXvQrcJxr05jpDcBLpZI8iKzAl26MIHksiFOANUFRZSUVFByw6t\nqT4Yj1pm5LffFhJ3bqx3jHFBV4yFJXgoIO6SOBLy3+OjMoVlViPx/D3Y4Ys6yKRZQpwhmjdvTpu0\nNCzJSYSE/Dn3igLocs/BmOudkKtbz26EtdxLSfM92EyNrF9cHJMkciGEaOIkkQsh0Kk6dNvHAvDF\nK1Y+W30rYfpKwtUdlJf/DhpYrVsoid0T5EjFsUgfuRBNTPH3xaz7et3h/YpeFadcZr+EDaywdgQX\n2DAwe8mNDN63EmviFmLwdrl4PCaKzAdOuS7R8CSRC9HE2LfbiXsojrD0MAo+LsC2ywbG+pURe+cU\nXk78DRJX8llVLu0ytjC8n5mHR0HxsDJKW4fR7LPz2ZT3C67SDTzRTUNZn4tuQSGv515FJXfRj+XA\nLX65R1E/0rUiRBMUcXYEMRfGYG5nPqnrzekrmTMnndeVe1B3dKBoZ1feW9QZPAZinW0pP9tJH/05\nTPluCldeOZKDUWGYundklg7ein0SuyWOpMotDXxX4mRJIhfiTKJ50OEBYNeuWLapnaEigph9Cnv+\nKAVNIUkJ/ctlbr0ec6Sb4nAH2fHJuJpXo0VbcbuKA30HjdL1119PixYtCA8PJzk5mYkTJ6IFcMFq\n6VoRopHasWMH+/fvZ/fu3cc8bvd42Fhl5YDDyT5PNd8X151UleL3SHd2IE9T0TQroaHetyM9DhNY\njn9dvi2C4eHPcMmEKkyeyzFqHtyag/XL36el7oOTur9TFbt0KaVut9/KjzEYKOnf36dzJ06cyPvv\nv4/JZGL79u1ccMEF9OnTh+HDh/stvtokkQvho2+++YaDBw8SFhbGU089dUpTlfpi3LhxuFwuIiMj\nGTJkyF+Or6is5KuiIpxOJ7mqk8s3buTSugpVnWwxXkqsMgNFCcNmbQYouIrjIOn4vwj+u3EAbYff\nxA9PP0v/XTN43LqDMM+3GOYvIqTaeUr3ebJK3W40P06FrdRjKtkuXbocsW8wGEhMTGzgiI5PErkQ\nPhg3btzhme0mTpzI/fffT4yPkyqdLI/Hw5tvvkmfPn2OeVzTNBJMRhIiwrEZI/nchzJVzUO5o5xo\nTcOlOVANlX+uHuN0AhqsXk31tS2YMdbAdlcqRYlGcpRm7C0pwd0P1rW9gbIvxxNa00UjvO68805m\nzpyJw+HgjTfeoFevXgGrW/rIhfBBt27dePjhh3n44Ycxm0/uAWNjoGrq4UXi9ehBM6IAyZHJUF0N\nQKJHT8iy5iiqwk4tggJrEuaqy7g81IZ+/gZSNt2GCzuq4gruzTQyb775JlarlV9++YVJkyaxYsWK\ngNUtiVyIM4xJZ0JBQacY0Hm8v5QiQg4tEKEQem5/Iha14YZPVJ40bWL0wS40X9ubl1JjMGwoJTZv\nAIqkjuPq168fo0eP5pNPPglYnfK3IYQQDcztdqP4c670o0giF0KIU1BYWMi8efNwOBxomsbixYv5\n9NNPGTlyZMBikIedQpxBdB6FtGU6SseB5lCxqG7QQNHXv/XoqIaqEnAbYdq0I4+ZzXDTTUes6Xza\nUhSFl156iRtvvBFVVWnbti3Tp09nwIABAYtBErkQZxJNoSIWFB0oJh0OnR4USBiXANN9L0YBIiIg\nzwGqHrYc9ZLnjBlw2WXQqlWDRn+EGIOhXkMET6Z8X8TFxfHrr7/6LQ5f+BLpEOAFvAsrzwSeO+r4\njTXHDy0l8jrwXgPFJ4Q4BZqmQc0bhhoaiqLhMnv/MaOAWrOEsj5CX3MOrKysxKaGn7hgBVJbg9IS\nTNV/bZHPm9egt3FMvr6scyao64tPCPAW3mTeDbgG6HnUORrwSc3PeyJJXIigC1cLwbmXFcs7cPG+\ndkRX/05FxR9YVRUrlWioqAnFaLo/hxC2Ki0FINfhwKToUAjcK+bi1NSVyPsCm4EDgBuYDQw96hyl\n5iOEOEVOp5NNmzaxadMmbLaTX53HpNkBA33P3cnPqbspM59PVOT5/JIdQ65+C5rixnX+RlS9HaXm\nn2+rkhIUYERcHClms4yEaELq+rtKAvbX2s+p+VltGnAV3oT/NZDaYNEJcYaZNWsWAwYM4Nprr8Vg\nMJCQkNCg5WtotHCnodNMhMzLwOBojk6RlN3U1fU36Mt3q0PJuyvwFfDRqQYlxJnK5XIxevRoNm3a\nxLp160hNlXaRqFtdDztzgORa+8kc2UIHKK21/S7wyvEKmzx58uHtjIwMMvw44Y0QZ7SSEvCY4Zxz\n4PoMKO4IzYIdlPBFZmYmmfUcjVNXIl8JpAOJQAEwGrjtqHOaA4U128OBHccrrHYiF0L4kdMJigW+\nXwi5K2HBbuRRVtNwdCN3ypQpdV5TVyKvBu4AFuLthvkQWANMAVYB3wAPAZfjHdFUCoytd+RCCP9o\nFgvFIcGOQviZL+PIF9R8aptUa/vxmo8QopFQNe+DzVf+eIVNHiN9PG4KyvNpE6EecV6IaveOM/91\nKXg8HJESVAjJCYFSN+YKDWdedWBvQvhMHlcLEUA5OTlcc801jBw5kpEjR7J+/Xqfr7XZIDsb7HZY\ntgxW/GRAdR77n7Bbc6KhodfpURSlZupaBYOiR18zSkVBI8pT6k3kO3dCrYUQFB1YE620f7A9+k9K\n6bLQyd6p2aAqeI5Tp/Cu6mQ2mxk7NrAdE/KKvhABtGvXLrZu3crTTz/Nq6++yvr16+nevbtP1377\nLSxcCFeqMGc2fL0/jOvTzFD7JcxVq2DiRAx3jQDiuKfvPVRmZWLUbSU5MhmDYjo8bhxAUxTvhCg3\njYWPZ8KBfO8BRWHJm0toFdEKz/yBrM2rpOOkTtAB0BpHX/vS2KW4S/231JshxkD/kvq9PXrXXXfR\np0+fgM58CJLIhQi4uLg4Ro4cybx6vseuqpCUBC0c8NTLkPemCy3vqJMsFrjiCpytEo6Tb1VwOEBV\nUZxNu6vEXeomQ8vwW/mZSma9zv/000+JiYkhLS2NnTt3+ieo45DvSEI0cSW2EnaV7AKgVO/iu6gC\nCk01r95v2EDrDRtoZrfTvLycVmVO728ERYdmNFGibx7EyE8fFRUVTJo0iZdfftk7v02ASYtciEbu\npm3b+LKoCOe2OKrtdiq1I0eh7C3ZgDl0A7MYw6uxBcTZ3uP/CEXRpqFdcw3nt4uhrOQSlNJSdM2c\nrI6Loz3g0fR4FEkBDWHixIlMmDCBVq1aBbxbBSSRC9HoZVdX837nzhTujeZRgx7PUYvWGxQVkzGK\nR3mero5J9OjyD2ZExPGAMZqKBAMPjr2Si3+oIN8dxm+Dm3PJDh3tDS5UFUJDg3NPp5N169bx888/\ns3btWgBpkQshji1Cr8duMBzxoPJIesrcCSwOjeWPnSXYo9tyj+pm10v7GRP5LJHto2ir99DdYiU6\n/SPUsua4XCbCTzBbbYghhGd+fQbX1uZU69K447vbQdMosBV450UVAPzyyy/s3buXlJQUAKqqqvB4\nPGzdupVVq1YFJAZJ5EKcFhQKvvmGEVYrf+/UiUv792ed8iuaQWPxvhmkvVCILkGhe5s+rMkpJH5z\nCtbqV4g6QYlPXfAUE3pN4NHiMJYVunjigkksUu7B6XHVOkuhWvVw7urVR1xbNAXmlCdyf6sWfrnb\nxuTvf/871113HeBtjb/44ovs3buX6dPrsVLHKZJELsRpIszjwahpRBgMRPm4us2JmA1m2sa0Jd5c\nTb6rgIf3laAB+S3aQYW3palTYE5aVxwh7Y+4dtDsQjadUwmc/oncYrFgsVgO74eHh2OxWGjWLHCT\n20giF+I0Md+0lyxPATPXzWSpaSnnOfsQfeigxwNlVVBcXO9yk8xmHklJ4fa0rnQCNEV/xPEOoaGE\nhx/ZttcXVQL2k7oPXxliDPUeIljf8k/GpEmT6j6pgUkiF+I0Md28GTsuQvQhhBpDMShGQMFYHYU9\nwsG+1i35/GIdzfLCuCTfRvX4i3G7XHWWezyKzQ7VDti9CwwG76dDBwjQqI36vqxzOpNx5EKcRlrq\norj2rGt5YuAThJaFomhw+VtuHEpLqhzJHPjQxu7v1rHqwC/ovlzKl+npJ1WPwwD6klK07L04770X\nxxVXoHbrRva8eVRWVjbwXYm6SCIXoonIr8qnylmJ1WVl0uJJrDu4jkpHJdXu43RhaBqaovDhv1pS\nHWlGbzNSvu9Riiu/YY06F23Nhww5yX7cqhAdxW+8wD6zmcvs1Zyl07FeUbhzwgTuu+++U7hLcTIk\nkQvRROyv2I9H9WDUG+mf0p/48HhMBhMpUSmYDKbD5+2x21lVUYHTAG69nkq9E49RwWBwEmJRGXDb\nA9ze9hbAc/gazaFh9BjrHZOmaTz11ESysrLo2aMH99xzD06ns+4LRYOSRC5EE6JTdJh0Jga3G0yr\n8FaE6EOItcQcHl/uVHTcu3Mnt2dlURoGlaEWtoeV4bGAoeLYZerD9Ox8YCd3L7kbNFBi6p/QRXBJ\nIhfiNKKh0MxoZFXv3iSUQ0xlFb0r4one5iEk99gPIZsNa0bn9zrz8oUvgxH0fWJPWINFVwVoWK1b\n0DQP1dVHz9wlAk0SuRBNjOLSsO+2Q5kbs1XDY1PRXBqqqkNTAY9G3g4XBU4TaLB8YktK9yehUzx1\nln0iFktrAOJMB9E0DwWFn6OqDg4ceO3Ub0qcEknkQjQhpmo9pkIPe57aA0utJG7yYN9djfOgg7Kc\neOyFJlxFLjJ7r0cDUOCsuwtpddYWUlI3nVLdoaEdwWVif3V7FMVAm9ZPoddbKC9vy08/7aNA52Bf\nvgKEEGs52BC3K3wk48iFaEIUQA1RSJuVBm+a2ZWXR6oplBDVTGTKQcoSwJpgoveq3qxP+x2A0AQ3\nRnM1Ok6tRX4sRUURdOxYjtXan23359NSyeFK9NwY+wELPF/hXYlC+JsvLfIhwEZgC/DYCc67GlCB\nXg0QlxCigTU/2BwqVdr+0XCr6nzzTQ+uu24PI0bsY+BLvcieN5F7711Idmln9NqZM3olIyMDi8VC\nREQEERERdOnSJaD119UiDwHeAvoD+cAfwA/A2qPOiwDuA5Y1dIBCCN9sLG5FYUklzhIYNw4ernVs\nZ5cSIivNUOidYjVyUCRsO7X6CqwF2EJsaNF72FOqJ1VT676oAS1dGovbXeq38g2GGPr3L/HpXEVR\nmDZtGjfffLPf4jmRuhJ5X2AzcKBmfzYwlL8m8qnAv4FH4LjzbAoh/CjfFkkzSxHWMHj6aTCN//NY\nTptyMG2Bcj1L7rBwrlMPb5x8XRZ9OP9e+m9WdF4BqYPp/d8yVu9zQMHvUNadcO04Yx0bkNtdSkaG\n/+b+zsysXyoLxjzkh9TVtZIE7K+1n1Pzs9p6AYnA/Jr94N2NEGe4UJMbYwhcfDEYfRgO7nK5UFUV\nt9uNqv7Zoq6qgpUrvZ+cnL9e1zasGx9d/REZ6zNQXtvJ00njUV1OSEgAg5FQzdqAd9U0PP7448TE\nxHDOOeewcOHCgNZdV4u8rqSsA14Cav3ulxa5EI2d0WhE0zRCQ0PxeDzMmTMHvV6Poii0bAlRUXDn\nnX+e/9BDPhSq00HbdrDL7Le4G6sXX3yRrl27YjKZmDNnDldffTWrV6+mU6dOAam/rkSeAyTX2k/m\nyBZ6BNAVyKzZbwF8DQwH1hxd2OTJkw9vZ2RkkJGRUc9whTgzvLf2PbKKswDYpTuH/xX/wK7shhtk\nZrFYGDhwIIsWLWLMmDFcfvnlXH311URHR5OcDH/88ddrrGdeI9tnZ5999uHta6+9lo8//phvvvnm\npBJ5ZmYmmZmZ9bqmrv8zVgLpeLtOCoDRwG21jpcDtZfhXgw8xDGSOByZyIUQx/fs0mcZ0WkEcaFx\nGDwGwpVw2sUksku//bjXtKuworPawG5nxz//SXVRDwxo5P32DVV7tpLU4vRf5KGx0DTtpPvMj27k\nTpkypc5r6uojrwbuABYC64G5eJP0FLytbiHOSKtWrWL58uUcPOi/F19uO/s2Hu//OKlRqVx31nWM\n6DwCoz6cD6rfo9MVnfjl66541D+H+D24ZQ9hFVXgcLDvjTfAbqda0VO+cwM6o5Fhw4Y1eIwO1Ts2\nfS/g0ulxn4GPyMrLy1m0aNHh5w2ff/45P//8M0OHDg1YDL58V1tQ86nteEtgXHhq4QjR+F1yySU8\n+eSTlJSU0LNnT+bMmeOXepxO7zDCTbmtmRwaiiMfWiX+H69Y+9PzvTS6Xn32EYlc0cAWHgbR0fyz\nSxem7EzAbW5G5/FP0O3slgxt3brBY1xvrQJgtgJXmUPYarWiAqqi4DlDkrrL5eLRRx8lKysLTdPo\n1KkTn332GWlpaQGLQd7sFKKeZs+eDcDcuXOZNWuW3+qpqtQxbx6kPlXKhc0NnBVuYsO2Mpq92IwW\ncS2o/YXa47ESNcyN/nsP53oW0v2CbDhrJgZjpfd7tZ8c6j14TIMwl4ttNhsFqoeC2GhWV/t3CKLB\nEFPvIYL1Ld8XcXFxrFq1ym9x+EISuRCNWEgIxA8u54LUaC6KgYP/87bAK6rLQbERYp3DloJsHM1L\nsITqUBQLiqai02mg87Bz/cNYW8cFJNZQl4tRzePZodMTU1mFO9a/LXJfX9Y5E0giF6IJKt+9lVCX\nh5Fbq1iLi92xkPRuAnZ0LHZlsH32fjIqbmZXRl+01jKB1elOErkQjcXGjXDvveDxsFGnUvTWWPAs\n8b6dk5veweLrAAAgAElEQVQLMTVf9VUVZds2VODjnuNI3PATHm0hy5z/w2N/FIfDQa9evTD+5t8F\nIvY9t4+7dlyFU8sibEO8X+sSJybT2ArRWJSWQlISjB/PBZNbU+Vsi1ru4OKnC1Auns2uR3aQuPw3\ndBG5FO/5FIDCtr+jDv0eFZWlpuZEaaFERUfz0Ucfodfr/RaqNqEt8dfGsyVyLyY8ksiDTBK5EI2J\nTgcGAyURevb3fwjNEEJ1x1ZoxmoM0Xp0/RejWezouvQEwGYOwew8iIbGAdX//5xdmgtnYS7Tf/mY\n/2z+D99a57GNSL/XK05MErkQjZhiVPjtphAwVGEI16Nu7YZWFkuMqQ8Au0L6E+fo7j05JAR0/muF\nh4aG8mjU7URZDbAa+BEui74cALe89RlUksiFaOQs5RpK9lVYt9ox7onGmp6FoWXN+PGwUBgxwjvD\nUVg46Pw3HE9RFB68OhVPy3j+NuZvPPrEo7QYfzUo4JFEHlSSyIVoCnQOOr7WlrLHllM4aiH6yIZf\n7ccX4a0qKY+GmJh9xCdsZWu/oIQhjiKJXAjhu57evnlmzIBbb4XcPACicppTUnkHLVa1ZLDdEcQA\nz0ySyIVo4r7/3vuGZWUVuFxQVQmPPQYlJbD26CVgTtWIEWgK8Mor8OijoMGvNKMgLRuDPg/VqHKZ\nzYlH0+Ox6sjK8k41cCb49NNPSUtLIyIigjZt2vDrr78GrG5J5EI0VQpU7jIz9xsdoEPVexeG0CkQ\nG+sdADNsGLRv798wChQzeb12Exn6Je5u+WiajipXJKVrwujbF956yz/1xsbGoiiK3z6xsbE+x/L1\n11/zxBNPMHv2bCorK1mxYgXt/f0HX4u8ECREE1VtCsF6QxZ0yIHf9Dgnb0S9WyUlxshjd8Oyt+G2\n2+BfAWyuNWtWhcNShNFUStyASoaX+q9FXlpa6tfl1RTF9wfHkydPZurUqZx11lkANG/evI4rGpa0\nyIVoqhToGmmBZ1uhuF1kntOdcJ2eF9u1C3ZkZ5SqqirWr1/P3r176dixI/Hx8UyYMAG73R6wGCSR\nC9FUfPut9+1PtzvYkYhaDn0z+Oqrr1i2bBk7duwgKyuLiRMnBiwGSeRCNAUmo3ekSEEBREf/Oe+K\nn3z33XekpqaSmppKu3btyM7O9mt9TVl4eDgAd999N7GxsURFRXH//fczf/78Oq5sOJLIhWgEKioq\nKCgtpcLz5/hwT+wWNJ2TNNdCCNFx8H+jCG2rhx49oCZ5lHz9NX8umdtwsrOzGThwIEuWLMFisVBU\nVNTgdZwuYmJiSEpKCmoM8rBTiCBzu93Ex8cTabGA1cr9qakAOM+ajqYMI9W1GrSelJb+hFPfnPKQ\ns8EKLS+6EFt2NhBO//4NH1dERASpqamEhIT85dicggLWRkdz0BScF5Mam5tuuolp06YxfPhwdDod\nr732ml+W1jseSeRCBJmmaXg8Hgq++gqefBL+8Q9mvD4DAEU18/4vPZns8NDr089wayrwHZ9U6Em6\n7BlsffpRMi+Zfv3+XKnoxx9/JD8/nwpbBd3p3qCxhuh04M5h1r1pGHRDUNxuDIYzZKD4CUycOJGi\noiLa1TxoHjVqFFOnTg1Y/b4k8iHAC4AemAk8d9TxO4Hb8M724KzZXt2AMQpxRjv4zTdAd4aFD+O6\n9J+ItZTVHHkQbMBicDhAh5lBUYPYV7KP+fPns7hwMbdya4PGoigKDBvA+gnlMPs7XJtXsPWKr9m6\nPHALDR8SExNTryGCJ1O+rwwGA9OmTWPatGl+i+eE9ddxPAR4C+gP5AN/AD8Atd8X+wB4s2Z7OPAS\ncEHDhilE47Rt2zaeeeYZdDodt956K3Fx/llWTdHpGH7JcCLKf+Sdyk9Imj2fX885h6wDByh6TuWN\nN1LpnxTJsOhh9Hm/D7m5uXSf27Ct8cPMFbRrB8RX4sopID+m0D/11KGkRJZ6O6Suh519gc3AAcAN\nzAaO/tVbVWs7HMhrsOiEaMTOPfdcrrrqKmw2G++++y7Lli3ze516FPbEN2f7FVeg6fVcdMNYFOV5\n7rrrLr/XfcK4ND0lRjdzij/DZqymwuSgrGglHqTbJRDqapEnAftr7ecAGcc4707gQSAMOL9BIhOi\nkWvVqhVPP/00AOvXr/drXToN4tdsx9TGQ6a9GmN1NRfpdNzashWf+bVm31xlH0QL238ZENmfEI8J\nXEac7lLc2AFTsMM77dWVyH19//XNms91wHvAhacSlBCnYsWKFbz99tsAmEwmnn/++cNjfZsqi9ND\nj6ffZ9PrdnhlKtiNcM89wQ7rMDMhRHj0tDS2xKHqMGg6FPzXfy2OVFcizwGSa+0nc2QL/Wizgf8d\n7+DkyZMPb2dkZJCRkVFngELU1+LFi8nJyeGaa67hiSee4L777qNTp07BDcrtBqvVu5Cy2w2qWu8i\nVt//N0Ii34fv5oMxFtata/g4RdBlZmaSmZlZr2vqSuQrgXQgESgARuMdlVJba2BvzfZQYOvxCqud\nyIXwp+7duzNhwgReeOGFYIfidc898P773ikJ7XZ4+eUjj2uQ+60GB3vBO7n0/70/2sAdQQlVBNfR\njdwpU6bUeU1dibwauANYiPfB6IfAGmAKsAr4BngI7ygVHVAMjKt35EKc7qqq4O23ISUFxo3z7tei\neTSK/9DwlLfg3/95kKziLPbtK8fmrEZ3INfnahwHHGy7eRsFtgI01X8zA4rGxZdx5AtqPrVNqrXd\neDrqhGiqdBrm+z6lcPF3LPy4hF6jFdIt8Sxfb6DtXXfC83UXYeloocPrHdBcGvZSO4aFBsytzbDP\n/+GL4JI3O4VoDBQVt74Mt8VNaKiBcwbpGNRyJB/NshB/ySXw/IE6i9AZdbQY2wIALVdD9x8dij5I\nDxw10KK6M/fcHYQYDcyv6c43KgqzunQh3iQjWRqSJHIhGonE4tsIXbIbgyGfLw6aGNn9ThrrvHbj\nvxzPBWt30Hb/Qdyqi0V7FnG96gYFLI4wwkqM3PZuEeH7YeO4JK4eoAdgwvbt5Dmdp1UiDw8PP+IN\nU7vdzp133slrr70WsBgkkQsh6uWra7+i1F5Kh2Z6YoshTynEo6m4VTdadDWLz17AhQYHq1svZWzm\nCJy5Fi6MCQMgXK9vsDhiY73Ts/tLTIx33dO6VNV63mG1WmnRogWjR4/2X2DHIIlciCDKLstm/Lzx\nALyz+l26l+6isNqOq8zFP5c9QtWgCLI22NAYG+RI/3RFpyu8G6tcuIpc5Os20TwmHHQaHrWavS22\noxmrOdh1LZ522YSEm7BaQwGIV7PRtM4NEkdpqXfRaX85mWlcPv/8cxISEujvj+koT0ASuRBBtKt0\nF7lh3lEpZyV0JSrkD8wRGope4dLWw/klR0dU7AF0ip6zW/VmA+8HN+Cj6Dx6FHco4TdPxbXBxYED\nr1BkUzEmuBkXpWB56ElSokPYvNnbRfSIfRce208QEdhEFygzZ85k3LjAD9xrnB1wQpxBOjTrAEDf\npHNpHtoMi8FCVEgU16fdhHnbeBKShqBTdESGRAY50r/Sewy0+mkpVdP/hXGfiZSUx4kPG4q7NJRb\n11qw3v8RWZkrOeecTfTps5lcXXvQXMEO2y+ys7NZsmQJ48ePD3jdksiFEA2mzW+/MXTHDlrPc/Lg\nEifO6gpeyskhJQATigXbhx9+yIABA0itWRgkkCSRCyEaRFlcOO6QECKcTixlHs7OgxaOMq4LSaTI\n4WLDBtBU2LfPO1vB6eaDDz4ISmscJJEL0ei0c7r56T+FRPfvytKyrrx2440oLhcYjcEO7YSqYsJY\ne911fNq1K9nX63mjlxGPB35Y6F344oYbwOGE556D5314wakp+f3338nNzWXUqFFBqV8SuRABdMDh\noNRo5MeYGPIcDopLrWyevxlNg/8t/pKZ+fnEuz049QqV78zhlvA5vDh5Mu7ISBg8ONjh+0yvB7MZ\n9AYYMwYsFtiwwfuzSy4F12nWTf7BBx9w9dVXExYWFpT6ZdSKEAH08v797DGbeT45mWUVFYQXluPc\nux1Ng2252ZhcLoZdOQzbwk/wdO7KdgOYk+1UK1bu37WLyz0q/9i9C5eumCyb7YR1uVwuNm7cSEFO\nDvGtWwfmBgMoJubkhgjWp3xfTZ8+3X+B+EBa5EIEkAa0qa7mxw0baGexAJDUIwmdDv4z5j6mtW//\nl9XXKzwe3JpGrMuMAsS4zMS6zNwRnUKyLeKY9URGRtK6dWuuv/56Pho7lt/+d9zZpQ/T6XS43W56\n9OjBv/71L4w+duUYY41EfNmTA+vfZ+vYreR/ZaXaHY/mqP9UvfVRUuIdR+6vT1NaSU5a5EIEkNum\no7AsnOeXnk9B3haq7N2JMmQDG457TVk5qG6FNy9Kptc7Ot69ORGrNRaA14G0tL9eEx4ezsqVKwHI\nePBBVB/6MkwmE9u2bTv8pmKbNm18uqeUf6SwPPxZery3gM4PPU323M2Y9OU+XSsahiRyIfxs79N7\n2T97LHxu4HrPRqa5jKz9qSMm3EB7TLvPAf0CbCE2FL0bu8uO5zwPhYXPM2IEWCz7CLnGzYqpy9m7\n1862bfV/7pnndDIjLw97HQtatG/fvt73pygK6EBRNBTdob4OmUI3kKRrRQg/cx5w0vqstZz3ai6/\nXBhJCB4+enImMSM01OQDtLjgDVQVnv5iJP8Xtoy5/7kFzw0e3O5cIiKKCFfKUCLLcbmKSEl5HIMh\nql71t7NYMOt0LCkvx6NpjIiL89OdimCRFrkQAaAzuDFYNNyGQ/saWk0zauqGLBZr8LprMMrq1TBs\nGL+aZhEfP5VZsyKIPn85/d6vpt3rF5xU3a3NZlrFxTG1c2cWG438LT6e3UctbCGaNmmRCxEMNht4\nPCg1PRCqDnj0EejYEd55p9GPGT+e6OhoPv76awaOsWFzO3C73bz737eDHdZpTxK5EAGytXArdnc1\nAI7/vom2ZTOmShu6k1iIubEaNmwYzqwsFn1gwWIIQWcAW4fluPd+yotLX0TTTp97bUwkkQsRIP/5\n4z/Y3HY0YMzbl5KdHIkjRI9CkFbx8RODwYBBrzCiYjA6XSXvrr+dBTeOoveA3oSVeIId3mnJ10Q+\nBNgIbAEeO8bxR4DNwCZgCeDbuCUhGiGPx4Pdbqe6urrBy44xx6Cg8Pnoz2kd3RqzwdLgdTQWl1YO\nIDHuQwYpCxmeqefAmAPoPKfXL63GwpdEHgK8hTeZdwOuAXoedc4yoBeQDnwMvNSAMQoRUJdffjlR\nUVH069ePVq1aBTsc0QRkZ2dzySWXEBERQbNmzbjttttwOp0Bq9+XUSt98ba2D63+OhsYCqytdc6v\ntbZ/A25ukOiE8IM333yTmTNnAtCsWTPmz59/xPGKigp++eUXzjvvvAavW3M70dDIzs7GZbMxpEhH\npftFFPVu1twO+sQ0qsrK8Giw0laGq7MHl066I44l9rlYSqv9t9ZbjDmGksd8e73z9ttvJzExkeLi\nYkpLSxk8eDCvvvoqjzzyiN/iq82XRJ4E7K+1nwNknOD824CvTiEmIfxq5cqVDB48mGHDhvklWZ9I\nwfJlePAwcOBA8goLGebsSWj4O2hWFZ0ZHup3Dfbdu5mkqjxXsBfbmDBCdG508n7NX5RWl6JN8t8f\njDLF926gnTt3ct9992EymUhISGDIkCHs2LHDb7EdzZeulfr8SY3B28Vymk1SKU437dq1o2/fvn6t\nw+128+GHH7J161Z+Lyhk+x4ParUdPXqys7NJGzIEAItxFyhgjAAVhcwePQjV6/i8dQ+iJvYisToc\nnSrjEhqzyy67jI8//hi73c6BAwdYsGABQ4cODVj9vrTIc4DkWvvJHNlCP2QQ8AQwEDjmxA6TJ08+\nvJ2RkUFGRoaPYQrhXwcPHmTevHmHtxvC7t27ueuuu3ih5QuUVlZRqOqIiEvAcSCrQcoXjcfkyZMZ\nNGgQkZGReDwebrzxRkaMGHFSZWVmZpKZmVmva3xJ5CvxPsRMBAqA0Xi7T2rrCUwHLgWKjldQ7UQu\nRGPy7bff8tprr5GRkcGwYcPo2LHjSZXjcrl49NFHsdvtFGwvwFxpppOtE4rant5l1/Cdls13LG3g\n6INEp4OFC2HoUAbs3Uil6cwckaJpGpdeeimjRo1i+fLlVFZWcuutt/LYY4/x3HPP1bu8oxu5U6ZM\nqfMaXxJ5NXAHsBBvV8yHwBpgCt4k/y3erpQw4POaa7KBK32OXIhGoF+/frz11lunVEZJSQnTpr1D\nePgL2Kq+w8lofo9pxfi2nzEp5Z/sdk2H7xoo4GC75hpISADgj61z2RGtHnNs8ukuPz+f1atXs2jR\nIoxGI7Gxsdx888088sgjJ5XIT4avHW8L8LbK04Bna342CW8SBxgMtMTbMu+JJHFxRgtl2rTbuWZg\nKmGGryg66juqqrj4bPNnlFV5B4K5lZpharZaC1lqUPlzMWc7i+i6xh2guOspMhKGDoWhQ9lzfhoF\nybHBjigo4uLiiIuL46233sLj8VBWVsaMGTNIO9b8wn4iT1CEaGCapvH29n+yvXw5qloKaOws3olL\ndWHUylH1Vby1ZBy28lWAiqbXvO92ZmVBzTSwmlsjb+JOBlfncc4SJ9u7RQfxjsSJGAwGvvjiCz7/\n/HMiIyNJTU3F7XbzxhtvBC6GgNUkxBlCRUXVVFqGt2Sbsh2AGEsMD/R9gCd/87a+59+0g34/3Aro\niDN0QVE2wKDBoPM23zUgol8M/55/FrFPraPr2iTuD9L9nAqd6sGiubBUV6NzN+x4+BhzTL2GCJ5M\n+b4aMGAAK1as8FssdZFELs4IHo+H1atX4/F4KCgo8Ht9bWPaYo7IR6foAIVmoc1IbJkC5AFgNifh\nUbyv5ztUBQ2ocDfSLpST5AkJJ6F4M4Wshive5ID7RjZd6aF5/ibyuPCUy/f1ZZ0zgSRycUY49BJQ\neno6AJ06dQpKHAaXC5MHmDeP5Px8lA4K1vRstK9V9nb4hJ4JKvl5WaA0/WXmq6NSeOKecl5++f+w\n/DCUt9/ej0VZhMHV8HPYnOkkkYszgtvtpnv37ixd+ufQP00L/OuSKQU57HMBH3xAzP79KH9bjjUm\nEeXrEiyJm0mK1CgrKyGybDwep7kmzoCHKZoYSeRCBJKm4dYB8+bBuHHAx/yubMCjxrFx5uP8dKWb\nx28ZyKWOfNLVcoo1KNkFA5rgs05H98+oyGoGaIzSPsJR3YbTd67H4JJELsRR1lVWMjM///B+j/Bw\nxrdocVJluTQXO/mJn8u2c4OadMJzY6JBb4CqSiieCfk/wP9+hG4ZcEPqSVUfNPFftiEn2kX5qmLQ\n4LrPKtlZnksT/H3UJMjwQyGO8mNpKeuqqkgJCUHTNKYdOFD3RceQ3sbbH7+FudyS9Rl9p3SmNOvE\nY61V1Tt45bnn4OefQa8/qaqDrv2yKvr9eyaJ518KisK4IbdhDI0MdlinLWmRC3EMvSMieCA5mRUV\nFfxeUXFyZXTqTby5OR9c9iajvupPj5Tp7FF3g+0EF6lw/XVQtrqCsM1WLvu//Syy20/uJgIkJyeH\ng3sOUmwtpry8nKianxujjejM3qXdqiIVFAUUTePtAWFsYynTa81UcFF0NJ/XPIgW9SeJXAg/i4uD\nm1ucTR57cBorudjYiy8LC/m1vJxrE+Cz1G2ggFXzoOng7LNh0o48bmoRTteuGt2UJM6OiAj2bRxX\neno6pigTJeUlLP5oMUNHd2WyrZC7PhvF5h3jjzg3psLKUxu3sEdty8ibjBiaGcmy25h2YCea1gVF\naaJfQYJMErkQDcBxwMGux3ZhjjCjuBXavd6O/bUmCb29ZX8Sb0lhxo+7aHXQwpelpRxKWZ0rYlkF\nGFGI/zEZ4whvj2d6WBijUlICfzP15HK5WLdyHa/MfIWVi1YytMNQwoyrGJ02mhtKdx8+ryI5D9Z1\nJ7rbYrqzhJxlCmHpYRg9Hv5u30RFRWeios4N4p00XdJHLkQDcJe7Mbcxk9L8JxRUWqrf0jp6HsbY\n47952MxoBOCs0njQwKToCM1pvC3vE2ke1pxzk88lOSqZoR2HEmYMZVTXURh0f7YVcwauImzBCop/\nfZpVv/9K2PQZ9Or1O6GdfiRP1wFNa7ovRK1fv57zzz+fyMhIOnTowJdffhnQ+iWRC3GqZs+Gikq+\nWvcery18CU2n8MTfh3D7Da0p0kr5I/93SlsdZH/498R59gY72oBTdDrsV1/N/97dQp6tlHnzJlBY\nsPHUC46Nxdvx7qdPrG+TgLlcLoYPH851111HRUUFM2bM4IYbbmh0KwQJ0aTNnz+fn3/+2beTP/wQ\npk2Djz+Gfv3gqPU8/8Juh+uv5+aI/nTXxZF8zjlEJD2F02zi8d1zCceGx1OFM8SJw1B86jfTxCiK\nwhWjHsFw51wGDhhItCmO6Og22OwN8GdRWup9W8pfn1Lf1gPdsGEDpaWl3HPPPQD079+ffv368eGH\nH576PfpI+sjFae2GG25g2bJlAIwaNaruC1avhnbtoHt3KC6GrVuhQ4cTX2Mycd6Vd5OREkLyA8m8\n0nMfbvaTUFWFARObSWfQ3gpSyvrzvaGcDkcNW9lf05XurtRT7TiZu2y8jClrKNh3E54d6WzqeBYl\njn2oulYogKvERdHXRbhtNswRTff11WO9IayqKps2bQpYDJLIxWlt4sSJ9b8oNhYSE6FtW28y97M1\nawAN7DstRCceXqvhtGDp/h0zX5tE9w27uTp/MYZFHkChMtRDWFoYee/k4XK7aXG5iqebm6b4xlC3\nbt2Iiori5Zdf5r777mPJkiUsWbKECy64IGAxSCIXoh4cqopL9Y6NVhSFMB+vy7/+E4qbu2kzxI2x\nt8qFRV+w3bYbdCo//awQGgERPat45j5o3tJ/8QeM0wkbNtAl14Uue99fDlstGulzvePGV1VUUD6L\n+i3z3oiYTCa++uor7rrrLqZOnUqvXr0YNWoU7gDOZimJXIjj0eth0SJv18oDD8CwYST364fV40EB\n7KrKL2lp9D9BEa5wFWz7qOq6mYM5QyhdFUqn5e0pr26LWvg+fDAM3eSQAN1QgMTEeL/R3HADrxeV\nEf/2pfDd6bK+3bGdffbZh7vwAC666CKuuuqqgNXv68POIcBGYAscc1m+gXjX8XQBVzdMaEIcKSMj\ng6SkJJKSknjkkUf8X+H48fD005CUBJdfDkuWUOnxUNSvH1UDB9Lh22/55733MtDxN7q+3pwOj0YR\nHe0kf2MiSoh3EYWqTm5U625Q4MeiSnaUFWPMNaBt6gllscSdm46iP80WLY6KgpUrYcMGBj3UHDwN\nu6BEY7RlyxYcDsfhlYH27NnDjTfeGLD6fUnkIcBbeJN5N+AavOty1pYNjAc+btDohKhl06ZNzJ8/\nnylTppCVleX/CsPDoWdPiIiA9HRwOLyjGQoLwWYjZ948WqSkEKck06PjD3Tv2Z5LLknmiy9a8FHa\nxezNyAEUFHNLFE3hnfhbiEsfQsc+W1j7RBT27maaj2yOovg/kW/dupW5c+ditf65LmhZWRm//fYb\nhYWFfq//dDdjxgxatmxJs2bNWLBgAT///DPh4eEBq9+XrpW+wGbg0MxBs4GhwNpa52TX/FdtuNCE\n+KtWrVoRFxcX+Irj42HjRm8y79EDkpMB6Hf55RS9vJio9grhhp5EdezFd5FR/EwHFrw+FX3S7uMW\naYmI4JZbbuHWW29FZ/DfhFL9+vVj7dq1zJo1i0GDBtG8eXPcbjfh4eE8+uijKIpCx44dT1jGH3/8\nQVFREcnJyQ2yqLDLBYemsKmq+d1is4GxAkwmMJt9KCQmxjve219ifF/q7YUXXuCFF17wXyx18CWR\nJ0Gtd40hB8jwSzRCBNC+au9KNRurqjjgcJx4oYk+feDgQViyBH766f/bu+/4KMr8geOf2ZpKGiSU\nJCBFQguCBI6i0pUmwoGIqIB6eiqi3Ol5VoiKXlE5Bc/2U/FUBEVAQQQVCRCKEJCWBEJAAmmQtiHZ\nlt2d+f0xERJIAzZsdnner9e82J3Mzjyz7H73mWee5/vAlCkAzN88n/vkfhRbi8m2Z7Bz5w6cLTvT\nvPvzaOTqF7yzHoHS2yA5GT76CDSWFwkMfAeAM23LoHJ+T3cbOnQoQ4cOrbauY8eObN68uUGvHzNm\nDKtXr+bMmTPY7Xb27NlzyWWRDeVUhOewPieZqGEOJFsYkr4/39wH90yHlDT1Aig3twE7KxZTvf2u\nIYHcS+8lC0LdeqakAHBnejpHTpxgcEVFg153ermNirzJBLk+Yei33TEp/WnmKqNVWAe6XDuOwRMe\n4V/55Re8LjoGWsZBPxNMmwbd/DTc+65a9dxptXH0Lvedmzu9+OKLAOzdu/ey2n17R7RAkk/japVH\nws07iYnOY1nqMg49aebkYrA/fwBLEJS7QJukvmZJ165MiYy87HPwdQ0J5NlATJXnMVSvoZ+v1sA/\nb968s48HDx7M4MGDG3B4QWgcv3cjPJCQQPx33yE3cE61U8usRGgcODUSBeGlREpl6MP1xGkcdPpx\nKcZda3jc4SCn7DRF31SQwSFyn1X4W8a96J5VyL/3XoxGCAg4d/Ue4GP3O2vSu3kLck5dR2y4gVGt\n7mTi+IksS11Ge72ePEliVY/u6ENvIrYtmErgkYwMihzeP3fpxUpKSiIpKemiXtOQQL4L6A60AU4D\ntwMP1rKtVLnUqGogFwRvFtksBZsksTnhAAM2xlAacT3tj5jQlxVwKD6OI1Y73UKasUx7jHsj+oAk\nccfQo3z8bStaGgxwBfNwNDUjTMdZf+edHACeHgz3JBr508IuaCUJrSQhyaCVQHMFbgI3RedXchMT\nE+t9TUMCuQ14CFiP2svlU9SuholACrAaSABWAGHAWGAe0OMiyi4IXi8mpjnJTvjWoiPD4iI/OIYu\nd4wkuKQDZgnKiCbYeHUP3fhSP42Xh6dxQ8sxALzz46s8ExnJTtGAe1ka+qn6vnKpam6Vx7uo3vwi\nCApPxc8AABhESURBVFfcpk2bsFgsHDp0iEg3t6uuSF/B1+lf4wibSW5ZMZG2fOwBNlpZzkWg9h2i\nKJkGPfz3YZZdhGh1QAoF5sVgjkFR6u7t6/CTODTjEBkPZjDLDJoZvjfJwib9MPIevYuWlR2YXzO/\nyt3LPFsmX3B1Vw8En1FcXMzw4cMZPnw4AOPHj3fr/tceWYu/zh+NpCXQLxh/hx9Gh4u/7dJT2vLc\nmHqNAbTdDvPy8RNs792bTIuFD+/cRWY72PiXrYRuUbezyDIfdu5c7Rgr5/nzUOU8n1Fbt1EwuoNb\nz6GpsNuhssOQ4CYikAs+QZZlQkJC+P778y8c3bR/p4z2kBbKfyRZUTjy8ERcb/8b/fyncCYNQcn5\nqcbXlTidBOm0zHDFUvh2K1auOPe3EF31r59LL2FoYQCgNBQ0et/LMh0RcprBg9WsYIoC0X8GRVFv\nOp8qKOKLD/IJCICXXoL0DgXEdLGpw/2FOolALggNYMo2se7VdbgG3MCO1tuRtlUwKEGitfVB9uT+\nBXu5P/9MG8/IG7/g//5+kHHp8G/jFpwahbh0BeMELXq7nlC9p8/Ec5oFDeAfT04nZJA6PXNJSQh/\n+gZklxk59zryix6mXx/o0wv8gyR64KJZSSm7p3/k4ZI3fb73ky8IVRR8XUD63elnl/xP8y95X+FR\n4RiefZZnHg3j0/nb0L6yA31CGrGxT1Hhmky/deqI01v1ofSNi2DE7bGMmtqO6+Z3Qr6hRZ37DtRq\n2V5aSlhyMmHJyfhpfOOrKUkSCgp2p50ntiRT8eS/eCkjgn3STOLjvwWXjhLZyq9fjiDvrv9Qct9/\n0E3+gp4F+3j6t62Yiq/DJVvqP5AHLVq0iD59+uDn58fMmTOr/W3Dhg3ExcURHBzM0KFDOXHiwkyQ\n7iBq5IJPK/quCMkoEXpTKGUpZRSuKKTl3S1r3d4hO0gvPMSB4zaePPoueVIIJ7XdKakyNZnTpWXr\n7iCO2ZP5k+0+bGYtbYJaUhT+MCHAuDe7V5urEuDID3WXs3dwMMWDBuGq7Mtu1Gh8ovvd8snLkZ4b\nhk6jY0q3Keg1etqGtGX90fWMjZ5B8NfrCNaMZUO/DYy8+U0WprzG1OUj6F1xLtuHrpbLmPDkZEoa\nMVVsmE5H8aC6cluq2rRpw/PPP8/69euxWq1n1xcWFjJp0iSWLFnCqFGjeOGFF5gyZQrbt293e1lF\nIBd8XsiAEFre3RJtkJZT/ztV57Zl9jKySssI0Hcl0i8SmxyIXtYx7tpxrDWupftPCqYtD7Bhq5Zh\nHQ1sjEvAVD4ZXWcTUuUFrp+h5q9V5aj+WjXT+d7XsX9Mf8yA1uHk1je+I9k2jZHvD+G38mwyv80E\nUyQaPQSWB9La0BmDK6LB+y5xOlEacVCh1MBBORMmTAAgJSWF7Ozss+tXrFhBr169GDVqFADPPfcc\nCxYsICMjo97cNhfL9z45gnCZDFoDvdv05Yn2d7D9xOc48nYzLiaCbw1nuGdJEdYWCnEzFtIuNJ8B\nLSw0H/0DmlMOLBp1NiHZh1PHmc1mfvnlFwB69OhBQEBA/S9atgy0WrQjb6TLmkWcymyHTj5DoEWD\npBmI4lJwmb0/1e35uXpSU1Pp2bPn2ecGg4Frr72WgwcPuj2Q+0ZDnCA0ApfrDBW/zaSTcydnzuzg\n+Mh8rLZi3hxygu5T3+K31hpKDSGsKcxns6kQRedC2jbM08VuNFFRUURFRTF79mxuvfVWFi9e3LAX\njh4NOh3SjOlEfT4Tx+gicvr+Sqv8xUgapY6x4N7l/HTEZrP5gh+6oKAgyssvzMNzuUSNXGhSZFkd\nvV61Vtu+PRgbcRKdtII07E4bZocZk80FVBlMpAlgmf+LfNjeAL98jxxwDf0z45CHf8j40ldQZIVZ\nN11D2Z4ytk7bQvSIehrDvVirVq1ITk4GYPbs2Zc2ldm4cWS0K2d9RgVjjzngFPhXOJly7BDdlify\nyIlkIstaqTnfQxqSy7bpOL9GHhQUVC3/O0B5eTnBwcFuP7aokQtNSlIS9O4NEyeqy8CB8N57jXMs\nm1MdlTLpy0lklWbx66l0vio/hiYkGnvFGb5LX8+OXDuD/voT7zzyCTIybU4qyGe8vxmgqciV2rCj\ncxs1SZMio1EUom2lFCYlYTabcTqdmEwlni5mg5xfI+/WrRv79+8/+9xut3P48GG6devm9mOLQC40\nKRUVcMMNkJ6uLvfeq65rTGmPpDHW1oUhyW3pt/4fPPn3PgTMWMwDi//Mt7kOvhu7hrUjfkafG4jc\n2kjoyIZPOCDUrULWkXxtJEsDwjh4yxMs7HsDZXot677/nuLsLMxmDakHG9AO70EulwubzYbT6cTl\ncmG323G5XEyYMIFff/2VdevWIcsyL7/8MvHx8W5vHwfRtCIIACT4FbB55I9o5yShtUkkTrQzfxeV\nSZmT0QLzY2IIa+aPRdKhABXvfYTGasH+6Roq7DGE2aai6AwePQ+vMm4c7FLA4YSjWfDLL2AELS4U\nYOqEKCJzbcSF1ZU12/NeeumlsznbAT777DPmzZvHCy+8wPLly5k1axbZ2dkkJCSwdOnSRimDCOSC\nz9u2bRvzF82nh6kHfYr7cE/vexg4cCDcNvbsNgoVaMwtuOG7qdC8OaWGlxjwWEdWTFfH1Dd//XX+\n+vNmklOP4vfjcTQ9ZfR5J1ga+jBbNfcTqXFws7EU4xN3eOo0vc/06TDfCv4BEBGujtmvQhcZjrZA\ng1FT8yVZmE7X4C6ClyKsgd1B582bV2uK7mHDhpGenu7GUtVMBHLBJ7yVnY3Z5WL2kSM4FYVYo5GW\nBgMRFgupBZlo22lp16IdIb+EEDM4hhVfryA2fgzHgfKD5fxyOI2002U8cWIzgfn+zJad+PsZ0Wje\nweUqo+DPZk6Oica5bTG9ejlRkJCm38MdbVvwdKJ6s/Pw/Ye5bkDTbgZoahTAiUyhwcgePz8qFBkk\nJ/H8iY7DTmN4SoNDZ63xtQ0ZrHO1EIFcaLIURSEs5wzB5TIlP4PiVFDkmhNX/+fkSTSSREd/f/aW\nl5NmsXDIYqGrxcJvVgvHgo7ROrY1QelB9E3tS1pOGs/MN3AvkHZHGt90PIkUHs17w3rh75SoCOxA\nyPX9OJkzB+sPTyE5FVyujhiOOEjt7ceu9Im8fU17qKU8QsM4FBmbLJMT4M/XwcEUFldAi5X8nPUx\nSXev4wFjBB1nva/OhiDUSgRyocmyn7Dzh6/2Ym4XQlYGuEpdWDJrz7vhp9EwOzq62rrl/rtJB8L8\nw5jYdSKnUk4h+UnoY/U88oENhkPc7jiUWfGE2wp4SNcXgv3BfycDOg9Gztai/+9w9swPw2qFLVkQ\nFeXH0ZWR0MXUyO+A73AoCgtOqm3d+6wBODmXa90gaehpKqFTWRnvAs2j7JRnZXP9DB0VGY8z+JNw\nYLlnCu4lRCAXmizFpWALMpLx5+u49QlAB1/lnSLdVMgxq5Xvi4oYFRGBoijqAgz/fAybjlfODq/I\nLNvxPtEV+Qy1tCB1wYfwWyyrhy4h/f4CSFFnLGy9KJ4efuEEkM2MsiWYioKIKNnEocy2aA0SGq2e\nbrHxFBTAxzvhHwEw6xjQxYTlkIXCbwqxHq358l8Af42Gv8fGcsJuB2ClNRgp/whjPh+DzbyStQce\nIq9E5sg3oQTeYCHNeQolAdakr2Fz6W/sbb3bw2fQ9IlALngNRYFla52U5Bg5laFl+hN2Hm1fyLul\n/6C8f39wONjQ/FGkFo/hZzRSIcOxtxQyHZNIKb8TP8nIzc4igs/M4Ymtds4EyrzPOMLbJjI8byb7\nNM3Itp7hdFkFfs1dpKVl4zA9TVczvP++Wobbbz9Xnmb9m1G2p4y8j/IAaD6xuQfelaZPI0m8eM01\nZ59vNpXw8MjXuNYg8WLhFuRtxzmRV0yzFodpU55FhEWBIuhk60SbID+WRnzhwdJ7BxHIBa9i/ymS\na7sVIBt1mIHXXw/B+IAGY1EJ+jMuXh+bxtOul/kg9F3u/L9WtJSzGcNP3GL+gSJLH3RvJXOLn4zO\nZUVnD+T9r+AL/Uy+tSm02V9B1x0WuhqctJCD6Xb6Tew5dnZ/uJvVq8+VYedO9d/wkeGEjwz3yPvg\nzSQkekb1pE+zZsRPz8RvdADxDz7IOp2ZE0G90ZhDWVhYwL/Wfs1rkyehu+5jwL0zPvmahgwIugU4\nAKQBT9XwdyOwrHKbrUBbt5VOEM6nyIwYZCW2nZVWUzJRFBmd7MI/KBCNpEU/8B0CpDI6hryKhINo\n1wkCA05REleOtW0qhJQyr+gRji5RUB5dCMDRvR9g3TeWPGNvMpX2nGrdC7780sMnevUIj45mwYAB\nJAzvTvu/zOYPT04i5b12DP1xOqvmWDBsmuDpIjZ59dXIjcA7wCDgFLAd+AH4tco2s4A8YApwG/AW\nV+HPZ1JSEoMbMaWmJ9V0bocPH8Zkqn6zr2fPnvj5NWJ+DEXB4beJAx8ncjo0h3H5e/lPt6eRI0x0\nlr8hNfAMc2520LFFD/7XvpjZpk84PV3hWFsjud3GYCvxp7v+NCmnJ7Hq55WkF6lTjv2Y2YE0y3j2\nHt/BNhahSZXQjDeyZg30bd94p3OleMtns2OOlT3pe0jf+CXlkywsf/xL4vef5pX913EfezxdvCat\nvkDeD0gFciqfLwPGUD2Qjwb+Vvn4W+AD1HxmV1W/LG/5slyKms6tT58+xMXFoamcyebo0aMsWLCA\nu++++6L2vb64mMmpqQC4ZBcuAzj+AsGb4R2HhpAKDanLl7IqbRWgEDpgLVutMRQetLM/dQirX3oK\ng9ZFaSnco4FV/a3QX/14WlcUoldkigLOEGK7ngOZEsv8H0R6uyNKWASKmnWW5V/9jMsVTVyMme3x\n98OAAUzb+jAFBYAI5FfGH//INVt+IlIJJLhtJ2yRhxnTWYsScpLQlMOeLl2TV18gjwaqjo/NBgbX\nsY0MFKGmj6s7g/9V7M3sbJJLSy9Y3zUggMQqN4U8ZenSpaxZswZFUSi0FpKZlsnqru2xxsSe3cb8\n73/jaBvPH+yBzC2O5PGPHqdwYyGmG1NJNjj43qSOxlOcMo58BY0SRAganqxQMwuerlhDRbM8DmNg\nokbPbdYcnj38X4KL25BnDUYZ+Edey87lmdYJbO2VzuTbVsDXDv4yfi1pB1ysPynz11ErKbE25/1d\nDzN8x3a0ZT/QZuZ1nMiez7EOGygsD0PT5gxr2k+g63f9+HSpjN8/DzLn9gDKVgaePZfZMatoXW5h\nn91Ks/LO0K8L+p1X9j2/6o0YQWivXgTm5dFp6nh0vz1DS8VCSZQTeyeHp0tXp0WLFrF48WIOHjzI\n1KlT+fjjjwFwOBxMnTqV3bt3k5WVxcaNG7npppsapQz1BXK31qpzc2teL8vgjVMUKooTh+MYACZT\nEcePZwBgc1r54vD/qKgy5Dhce5KW2kNEBbZhhfNWumtOEaspRaNtjcbQlRKXwleFFVy/dS8UnJdd\nTwHpGj1KqBYFF5J04ZulKAouhwat9oI/AeByqe+xxVHOEdNBjCV6QqUs9FoLMhIul4xW0uAXUMRX\n644y9ZSFngUOFGQWFVnZ7Szivs8+Jr1zOXkOM+xzEOfsy5bYfryS/Rmhg0+Qw2Yynn2BLYOG4afT\n0enUCXSSi4IoDbmBEvujhvDeifcJwUncNeXknNESZAhmkM4PU0U+z3WCqIAjlJki8De8iLODAb9X\nlvFGkI3i4jYo5UW8uuoBji9JxyylM/PVEVQkPUJI8+d57f67sG/eyZpp2+jxxi7avzKfDV8aUK4v\npsvoAuY+bGfVWh1h/nrmzIGjX52bicZmsWC98UYUrYL9tXcBCLTaKT0GOQEVuOTqn92Cgkv5tPie\n0tJScnNzkS9hJo0Ch4Ncu51yV/XPuk2WKVSaEdxuEQB5m94gd+27wIVzXSaHJ+Msabyp3nRhOgYV\nX/pUbwA33ngjc+bMYfLkyRdkR7ySbgDWVHn+JPDsedtsAPpUPtYABdR8EzUT9YdBLGIRi1guejnf\nRjZesM6dLnb/zz33nDJjxowa/xYdHa1s2rSpztfXce6Z1KO+GvkuoDvQBjgN3A48eN42a4G7gBTU\nm5zbUZtYztexvsIIgiDUQvF0AeqjKG4p4iVV2+sL5DbgIdRMBxrgU2APkIgauFcDiyrXHwDKgDsv\npSCCIAjezJNNJw0ZEPR95VLV3CqP7ag1dUEQhKuWm2rkl8QTtxj/itr04mtD4t5AHTSVhnpfIaLu\nzb1GfQPCvFkMsBn1/A5zrhutL9GidhdeXd+GwuVphBp5IpABHELNGlZrjuQrHchjgBFA1hU+7pWw\nGvV+QlfgIPCcZ4vjFr8PCLsFiAcmAb08WiL3qgAeBnoA1wP3Az09WiL3ewz1R7jJtzF7q9qmegN1\nnk6bzXbB4wboCNyNGlPiABcw1e2Fv0RfoQaE3/C9GnlV4wBfGON9I9V7LT2Bb/xA1WY5MMrThXCj\naOAnYAjeXyO/7F4lF6uh+587d64iSVK1JTExUVEURWnbtq0iSZKi0WjO/puVlVXjfqj+YxuOepUY\nhtoEvhoYXtubcyWTZo1HHVC0v74NfcADQONMzndlNWRAmK9oByQAMz1cDndagNpluJmnC9IYdGE6\nkqSkRt1/Q9Q11dvx48cv9fDFwOuoHeitqB1OfqptY3cH8h+BljWsfxZ4GhhZZZ3nbvFeutrO7xnO\n1XieRb1k//xKFaoRXS2X40GoV4uPofa88gVjUbsM/4qP/vg2ZLCOF+sAPI5awShF/XxOo5a44u5A\nPqKW9d2Ba4B9lc+jgd1AX9QPm7eo7fx+Nx01F83QK1CWKyEb9b7G72KoXkP3BXrga2AJsMrDZXGn\nAcCtqLmQ/FBr5f8D7vFkoYQG6wtsQ015ArACNXlhk6og+mIb+S2oCcZ8aXYBP+A46oAwPeoAsd6e\nLJCbSajBbYGnC9LIbsIH28h9DdWvgBNQO034o35OP0Ht8VcjT2U48cVL9oWol+g/ol7O/tezxXGL\nqgPC9qHWCnwpn+hA1FHJQ1D/z35F/UH2Rb74nfNlu1Bvvu9H7X5oBN6ubWNvbKcWBOHqU1lp9V2V\n/dAvKSZ7Yc5BQRAEoSoRyAVBELycCOSCIAheTgRyQRAELycCuSAIwmVYtGgRffr0wc/Pj5kzzw0M\n3r59O0OGDCE0NJSQkBDGjx9PTk5OHXu6dKLXiiAI3uCCXivJyeE4nSWNdkCdLoxBg4rr3W7lypVo\nNJqzU739PmfnDz/8QEVFBSNHjsTlcvHYY4+RkZFBUlJSjfu5nF4rgiAI3uCCATQbNzbuIKGL3X9d\nU70piqIcOHBAMRqNtf6dy+jrL5pWBEEQ3ECpp5/7xo0biY+Pb5RjX8nsh4IgCD6rrokl9u/fz9y5\nc1m9unEyJYgauSAIghvUViPPzMxk9OjRLFy4kIEDBzbKsUUgFwRBcIOaauRZWVmMGDGCF154gWnT\npjXasUXTiiAIwmVwuVw4HI5qU73pdDry8/MZOnQos2bN4oEHHvB0MQVBEDzusnuVXKyG7r+mqd7m\nzZunJCYmKpIkKUFBQWeX4ODgWvfDZfRaEX0WBUHwBpWx7pym0o/cXS6nH7kI5IIgeIMLArmvEWls\nBUEQrmIikAuCIHg5EcgFQRC8nAjkgiAIXk4EckEQBC8nArkgCIKXE4FcEATBy4lALgiC4OVEIBcE\nQbgMtU31lpaWRu/evQkNDSUoKIiEhAR+/vlnD5ZUEATBsy7ITRIWFvZ7fpJGWcLCwhqUa2XFihXK\nqlWrlIceeqjaDEEmk0k5fvy4oiiKIsuy8tZbbynh4eGNkmtFZD8UBMErlZSU1Dsrz+Woa6KIqiZM\nmABASkoK2dnZZ9eHhIQQEhICqBkSNRoNsbGx7i8oIpALgiC4RW0/KqGhoZjNZlq3bt1oTSuijVwQ\nBMENaqvBm0wmysvLmT59OpMnT26UqwgRyAVBENygrgBtNBpJTEzk2LFjHDhwwO3HFoFcEATBDepr\nU5dlGVmWG+XYIpALgiBcBpfLhc1mqzbVm9PpZOPGjaSmpgJgsVh45plnaN26NT169PBwiQVBEDyj\nxu56jamh+69pqrfExERl2bJlSqdOnZTAwEAlNDRUGT9+vHLs2LE6j3epb46YIUgQBG9QGevOCQ8P\np6Sk8aZ6CwsLo7hYTPUmCILgLhcEcl8jpnoTBEG4iolALgiC4OVEIBcEQfByIpALgiB4ORHIBUEQ\nvJwI5IIgCF5OZD8UBKHJ0+l0ZZIkBXu6HI1Jp9OVOZ1OTxdDEARBEARBEARBEARBEARBEARBEARB\nEARBEBro/wFU3kwdc8R/qwAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(Pt_JNotBest)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEnCAYAAABmN8IVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvnZlMSSZl0oGEEDpBQIroKkjsYkNEVJq9\n7LrWtf4UBBZd11XXsqDYERFQQbAiq0AoIlINHRIgkEB6L1Pvvb8/hkWQlkCGtPfzPPMwd+bce947\ngZeTM6eAEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghWrBEYBmwCdgBPHmccm8CW4D1QO8zE5oQQojj\niQPOOvjcDuwEev2hzDBg/sHnvYHfzkxoQgjRchlO8n4+sPng8ypgI9D6D2WuAj45+HwDYAIS6itA\nIYQQRztZ8j5cO+AcYMUfXk8Asg87zkGStxBCBFRtk7cd+AJ4GKg8xvvKH4710wlKCCHEiZlqUSYI\nmAvM5Pe+7cPl4P9i89eDxwkHXztCr1699PT09FMMUwghWqx04Ow/vniylrcCfABsBV47TpnvgVEH\nn/cBVGD/UbWnp6PreoM+xo8f3+AxNJaHfBYt8LOIikIvLPQ/B3RNa7mfRRP6e8HRg0SAk7e8LwBG\n4/+icsPB154B2h58/g7+VvlF+IcKuoE7TnJNIYQQp+lkyXsFtesXf6AeYhFCCFFLdRlt0uSlpqY2\ndAiNhnwWv5PP4nfyWfyusX8WfxwlEkj6wf4bIURDiI6G7dv9fyoKaJr/T9GoKf6f0VE/qNqMNhFC\niAYVGRlJaWlpQ4cRUA6Hg5KSklqXl+QthGj0SktLae6/uSt1/C2oRfV5CyFEcyHJWwghmiBJ3kII\n0QRJ8hZCiCZIkrcQQpymkpIShg4dSlhYGMnJycyaNSvgdcpoEyFEkxQZCYEcPehwQG1H7v31r38l\nPDyckpISNm3axMUXX0yvXr1ISUkJWHwySUeIlqIJT9JRFOWooYKKAoFMKbW9fnV1NZGRkWRkZNC2\nrX/Zp3vuuYfo6GhefPHFOtR39D3+73WOkaul20QIgdPpJDMzk8zMTCorj7VkvzienTt3YrPZDiVu\ngJ49e7Jly5aA1ivJWwjBc889x3nnnceAAQO47777GjqcJqWqqoqQkJAjXgsJCQn4f4KSvIUQeDwe\nxo0bx+TJk/F4PA0dTpNit9uprq4+4rWqqipCQ0MDWq8kbyGEOA2dO3fG6XSyb9++Q69t3LiRs846\nK6D1SvIWQojTEBISwg033MD48ePxer1s2LCBuXPnMmbMmIDWK8lbCCFO01tvvUVZWRlRUVHccMMN\nvP3223Tr1i2gdco4byFEk+RwBHako8NRl7IO5s2bF7hgjkGStxCiSarD0tfNkiRvIZq5DRs28OWX\nX0JNDef+979cM3JkQ4ck6oH0eQvRzM2dO5eVK1eyV1X5z3vvNXQ4op5I8haiBbjooosYZbE0dBii\nHknyFkKIJkiStxBCNEGSvIUQogmS5C2EEE2QJG8hhGiCJHkLIcRpmDx5Mv369cNqtXLHHXecsXpl\nko4QokmKfCmSUlfg9kFzWB2UPHXyaZxt2rRh3LhxLFy4EKfTGbB4/kiStxCiSSp1laKPD9w+aMrE\n2i2cMnToUADWrl1LTk5OwOL5I+k2EUKIenCm9+iV5C2EEPVAOcObOUvyFkKIeiAtbyGEaILOdMtb\nvrAUohnLr8onryoPi9eCqmu4VHdDh9TsqKqK1+vF5/OhqiputxuTyYTRaAxovdLyFqIZu+OrO5i7\nbS5fbv+SGq+TDbkbGjqkZmfSpEkEBwfz0ksvMWPGDGw2Gy+88ELA65WWtxDNmE/zMbjjYFJapRC8\n+CV03dPQIdUbh9VR6+F8p3r92pgwYQITJkwIWBzHI8lbCNEk1WYCTXMm3SZCCNEESfIWQogmSJK3\nEC3YDTfcgMPhYOrUqYSEhDR0OKIOJHkL0YJlZWUxb9488vLyuOuuuxo6HFEHkryFaEG8mpchs4cA\nMGT2ECrdlYSFheFwOM74JBNxeiR5C9FCGBSFHrE9uPPsOwGwmWxUeasaOCpxqiR5C9FCKECkLZIh\nXf0t767RXRs2IHFaJHkLIUQTJMlbCCFOg8fj4bbbbiMhIYGQkBC6d+/O/PnzA15vbZL3h0A+sOk4\n76cC5cCGg4+x9RKZEEKcSGQkKErgHpGRtQrD5/ORkpLC2rVrqa6u5pVXXmHUqFFkZmYG9PZrMz3+\nI+A/wPQTlFkKXFcvEQkhRG2UlkIg19Cu5eib4OBgnnrqqUPHgwcPJiUlhXXr1tGxY8dARVerlvdy\n4GS7fMoYIyGEAPLz89m2bRtnnXVWQOupjz5vHfgT/m6VRUCverimEEI0OV6vl1GjRjFmzBi6d+8e\n0LrqY1XBdUAC4AIuB+YDyfVwXSHEaQqt8mIqrwRLCWhaQ4fTrGmaxpgxY7BarUyePDng9dVH8j58\nlP9/AQ8QD+T9seDha96mpqaSmppaD9ULIY7n5RfX8m6JCuafIToaAry7S0ul6zp33XUXhYWFLFiw\n4LR20UlLSyMtLe2k5eojeUcDRQef9wVCgIJjFWyIBcuFaMmCvBq5111Mp5Tz4Jxz4N//buiQmqW/\n/OUv7Nixgx9//BGz2Xxa1/pjw3bixInHLFeb5D0LGIQ/SWcD44Ggg++9A4wA7j147AFGAvL7mRCi\nRdi7dy/vvvsuVquV+Pj4Q6+/++67jBgxImD11iZ5n6z2/xx8CCEauby8PObOnUt0QwdSHxyOWg/n\nO+Xr10JSUhJaA3yfIDMshWghOnfuTOfOnZk+fTpXNXQw9aGkxD/OO1CPksa9zZrsYSlEC5GcnMwX\nX3xBTU0N0bLxQpMnLW8hhGiCJHkLIUQTJMlbiBbq/675J/G78mHUqIYORZwCSd5CtEQ2G//+7FEK\n20bDgQMNHY04BZK8hWih3HYrukHWlGuqJHkLIUQTJMlbCCGaIEneQghxmkaOHEl8fDx2u53ExETG\njRuHHsiNIpBJOkKIJipyxQpKfb6AXd9hMlEyYECtyo4bN45p06ZhNpvZsWMHgwYNon///lx77bUB\ni0+StxCiSSr1+dADuKy0UotlWf+nW7duRxybTCbatGlTzxEdSbpNhGhBNJ9GyU8loEHkqkj0KoVi\nT2dW/LiC9bnrGzq8Ju3+++8/tHv82LFj6dOnT0Drk+QtRAtSvamabaO2oXt1un3fjaByM3nui8i+\nI5vz3j+PUufJtqsVx/PWW29RXV3N0qVLGT9+PKtXrw5ofZK8hWhJNLB1tKFYFC5bdhlRnSNIDp5P\nh4gOxNnjUHW1oSNs8i644AJuuukmZs2aFdB6JHkLIUQ98/l8KIFcaxxJ3kIIcVoKCwuZN28ebrcb\nXddZsmQJs2fPZujQoQGtV0abCCHEaVAUhX//+9/cfvvtaJpG+/btmTp1KgMHDgxovZK8hRBNksNk\nqtNwvlO5fm1ER0ezfPnygMVxPJK8hRBNUm0n0DRX0ucthBBNkCRvIYRogiR5CyFEEyTJW4hmalV5\nOa8MH80GxcpPpaUsLys7ZrnlKSmU+HxURV/KigpnwFfDE/VDkrcQzdTMggI2JXfEAOR7PHycl3dU\nGQ2YcsWVuDUNr7UNc0sqqda0Mx6rqDtJ3kI0Y4PS19FLd9HFZjtuGZOm0spsxpHzMaFGSQlNhfyk\nhBCiCZLkLYQQTZAkbyGEqCcZGRlYrVbGjBkT8LpkhqUQoklaEbkCX2ngtkEzOUwMKKnbLM6//vWv\n9O/fP+ArCoIkbyFELXxbVMRrOTmHjodER/NQQkIDRgS+Uh+pemrArp+mpNWp/OzZs3E4HKSkpJCZ\nmRmYoA4j3SZCNFPWPJXui65EW2ondE4FF91XSsbDGafUKlxXVUVri4VnkpIYGB5O2nHGjLdUFRUV\njB8/ntdee+2MjZOXlrcQzVTwAR+2ynCUs904o6zsvMzGlYmJqLEqDKr79dpbrVzicFDu87Gxurr+\nA27Cxo0bx913303r1q3PSJcJSPIWolnzmd0orb14E8zsT7US1TWKmpqahg6rWfntt99YtGgRGzZs\nAJCWtxBCNAVLly4lKyuLtm3bAlBVVYWqqmzbto21a9cGrF5J3kIIcRruvfdeRowYAfhb3a+88gpZ\nWVlMnTo1oPVK8hZCnJSmwY7FNuZEwK8VZvaXh1HVDuz2ho6s4dlsNmyHLT9gt9ux2WxERUUFtF5J\n3kKIkyrfb+LLh2LxXQX73VY2rg7mv0lwww0NF5PJYarzcL66Xv9UjB8/vp4jOTZJ3kKIk9J1CIlW\nmTPHwJeFFTw40oyuhzdoTHWdQNPcSPIWogVQFIUlZWWM3LoVn9OJT9bsbvIkeQvRAnQLDmZ4cjIA\nW0tKUCV5N3mSvIVoAYKNRkbGxQGwTNd5sYHjEadPpscLIQ6p9FSyrXAbDy14iNmbZzd0OOIEJHkL\nIVCrVN5X/kXKJh+d1pXzzNBVxI/61zHLVpaUUJP7GcuWzWD58uVnOFLxP9JtIkQLVxGqE9wlGNvs\nJPru30pGSDd2hj+KcVv5McuvWbiQyt2vsdLWgwULtrNz584zHLEAaXkL0eJV26HXwl6cPT2ab26s\nwjIwHNPD2RwvPegelZCw87lt2D/RfbrsNt9AJHkLIerE+lEp5xaUEjYpHeceJ4WfFzZ0SC1SbZL3\nh0A+sOkEZd4EtgDrgd71EJcQ4kxasQIOW0RJNxgw+TQ47zz/Y/Xq38t6dDZHhlLxUj+MoUbUGrUB\nAm5cUlNTsdlshIaGEhoaSrdu3QJeZ236vD8C/gNMP877w4C2QHf8ifsj4Ox6iU4IEVgGg//x9NP+\n4wH+WYvVnZJwO6rh9df9iT03twGDPLYVKyLx+UoDdn2TycGAASW1KqsoClOmTOHOO+8MWDx/VJvk\nvRxod4L3rwI+Ofh8w8FrJgA5xz1DCNE4GAxgNvsTNMCLB0eAG414gwz+VndREeTuBcDtdlOSl4fP\nXcn777+H0+lk9qzZPHrHo2c8dJ+vlNTUwPW3p6XVbVOFM933Xx993glA9mHHOQdfE0I0M+Xl5biq\nqzBYLPTr1w+TycSK/yX+Fu7pp5/G4XBwzjnnsHDhwoDXV19fWP7xvyj5+lmIZkoxGDBYzJx9dm9M\nJhltDPDKK6+QnZ1NcXExjz32GMOGDWPHjh0BrbM+PvkcIBH49eDxcbtMJkyYcOh5amoqqamp9VC9\nEEI0rL59+x56fssttzBz5ky++eYbunTpUudrpaWlkZaWdtJy9ZG8vwdGA3OAPoAK7D9WwcOTtxBC\nNFe6furj3//YsJ04ceIxy9Wm22QWsBLogr9v+07gvoMPgLn4k/UW4H3gjlOKWAghmqDy8nIWL16M\n1+tF0zTmzJnDokWLuPrqqwNab21a3iNqUeaB0w1ECCGaIq/Xy5NPPsnOnTvRdZ0uXbrwxRdfkJKS\nEtB65dsGIVogDfi/3bvJdbsbOpRTZjI56jycr67Xr43o6OiA7hJ/PJK8hWhhugYHE6QohBmNmBSF\npxITGzqkU1LbCTTNlaxtIkQLYzeZMCkK/5eURJzZzPUxMQ0dkjgF0vIWQpyWXr5e5LzpHx0cOTiS\n4E7BDRxRyyAtbyHEKTPajVQoFTgzneR/mk/+jPyGDqnFkOQthDhlhmADHwR/QKc3OxF1VVRDh9Oi\nSLeJEOKYrNVWdj+zGzLNdM2JwaRrDR2SOIy0vIUQx2SrsmEINmC06nRYH0WU6mnokMRhJHkLIY4r\nKziLQks2qkHHUKNR9nNZQ4ckDpLkLYQ4SttObQFI/zydHctLULwKilMl44GMBo5M/I8kbyHEUbom\ndUUxKDy44gGS3/oXJkcJSmgWux8bSoVegkH3NXSIjc7s2bNJSUkhNDSU5ORkli9fHtD65AtLIcQJ\n6HiUEmrcIWS732D8kyGYtfVEWW9r6MCIjIyktDRw26A5HA5KSmo3i/Prr7/m2WefZf78+fTo0YPC\nwkJ8vsD+ByfJWwhxQq+8orO9+iGqjDkk/ymBv+4fx6c3w7PKZ3g8LtQnnmD4li1cXuLm0ojarQdS\nH0pLSwO69Zii1H7dlAkTJjBp0iR69OgBQMwZmLUq3SZCtEC6rlNeXo6qnnzn99/S4VrLtcR2eJJh\n3mFgCsNcEUFUZTYGzU3Qzyu4NCKc9OrqMxB541NVVUV6ejpZWVl07tyZ2NhY7r77bpxOZ0DrleQt\nRAsTFBREdHQ0bdu2JScnh4iIiJOek2hMJLj8di7cdyGoCjHZZuJyl2HwFWNYtoCe1e+egcgbp//9\nBvDVV1+xatUqMjIy2LlzJ+PGjQtovZK8hWhhgoKCyM7Opry8nOLiYtq3b1/HKyiUGtsRFXklJlME\nRqMNVW2ZrW4Au90OwAMPPEBkZCTh4eE88sgjfP/99wGtV/q8hWjBfFU+8qbl+TcvBJK3yCzKunI4\nHCQkJJzxeqXlLUQLkpubS+fOnUlOTiY5OZmrOl1F+hPpOHc7qUqv4oJvfOTt38+MGTPQdZ1PP51J\nE96v4Yy54447mDJlCmVlZVRUVPDmm29yzTXXBLROaXkL0YKUlJSg6zqLFy8GYPdXu9nzf3u4+o2r\nceW44AuNTevX8+k33/AE9/HdF1+gFUNoENzNdDqwhxzrUPqXriL9lwKcTgVcf2fRTy17TfBx48ZR\nVFREhw4dABg+fDiTJk0KaJ3S8haihTGbzYda3rGxsUe8Z1IU9KAgip58El0xMGLUSMJ1MOgQotdg\n0mpQgA7GXVxTtANVceIdsJTJG7bgVt0szVrK1LVTz8h9OBwOFEUJ2MPhqP2wR5PJxJQpUyguLqa4\nuJipU6disVgCePfS8hZCHCbYaMSmGljTty+LScOn66hAuRWmhP6Z2IptVOPjQFwCHfKSMGi70NmI\nx90N1QBOr8oT/32ckfpI9jyz59B1Iy6OIOn/kuo11tpOoGmupOUtRAtSXv4rPl85eXkzyMubQVnZ\nCnR+n+ii6yqa5mLDhkEoaITkPX/E+ZVV/j8NQQbOzf6Z1lUuFi8uZ2baBixelQvTsulQpFG9pRoU\nSHwyEcflDkr/G7iZkC2VJG8hWpDdu59GVSsoKfmBkpIfKCqaC/rvE3X0g8+Tk/8OKLgdw4++iAK5\nfbpif+sVDDEOXrQk8Wn83XgNFgxeN0ml/hEr5tZmIi+LJLRf6Jm4tRZHuk2EaFF0zOZWpKTMACA7\n+KGjSmhWnY3lCjqw26nAMWaJ+ywWOPdcsNlYXhFBUkgfziUPzWwLcPzif6TlLYQ4xKv58MTqjF08\nFl3XWbrnc3QFjLoJn8uEyVIMuk5+lexV2dAkeQshjmBwwrI7lqEoBsb0GY+igU0LxuYKItrtBaDM\nVX70iQoUF4PHDS/+AxYsgIED4eGHYP0GmD//DN9IMyfdJkKI4woKMqMDVTU1VFDJddzNlJh3uLHD\nbHbv/hafr5AHHqjBHj2WVmFOzB0O0NuicmU7YAOc8wzo6+HAP2HDBrj++ga+oWZEkrcQ4rhCwsKw\nWCzYw2IIJ553ChdS3XE54aG7CAm5CEVZTEZGKPbK3ljaFKPUFNO9u0rHKqg4AN0GQqkPSqwNfSfN\nj3SbCCFqR1EIIQjFY8K6py0513XCm21m4bcqWzKvZdvm6/CkdUXXYM+ek19OnB5J3kKIY9NhyWwz\nqg88NQZ0I3yuZKObfeTGueixoAfm1mYU9vP66x8SHAxRUf5TtRa0vpXdbic0NPTQw2Qy8dBDR4/i\nqW/SbSJEC7Z/f2u8vkSefhosFeDzHdmem9VJpzDcjk9XSb1oC+7SGIJqdqMZwBxpRjHWfreZ+hYZ\nCQHcBQ2HA2ozibOqqurQ8+rqauLj47npppsCF9hBkryFaELWrl1LYWEhBoOBQYMGYbWeXmfy1q1d\nSNZC0PXFeL0GvF7jEe9XpGgE+7zsHWrmrHId90YF7+BqaqwNv9RgaSkEcBc06rAL2iFz5swhLi6O\nAQMG1H9AfyDJW4gm5PLLL6dPnz6kp6czbdo0rr766tO6nsXaFsVwgPvuW0XlbjvTPwJFMaCqTui2\nlZ4qZKlOrLfk425noODGDXTuvxZvUAvqF6mDjz/+mFtvvfWM1CV93kI0IZqmMWfOHM477zy0WnYs\nO10m1qyBd9+FxYvHUF5+9aEWqzkoGkUx0L79C7Rt++jBMxTy82egPP8sI+2T8dp9JJVPoWPJJPrd\nPxNLzE62+RL9JRUFr6oycOA0Kl0ulttDcNpjWaYV8VtVFc/t2UOW0xWAT6Lx2bt3L8uWLeO22247\nI/VJy1uIZqxKq2bpimrKKyrZsWMpFRXdyc29jepqOLh71yGWYdfgUHtxVbaK68FHoO0lfNjuCpTC\nx3l13RTM2e3o/8RSrnwmg8/7hDARf/L+4ZYHiHnWw4Z3YzAUhRAUVI0p6VNCgn048w1s9wYRfqmX\nNm2WUVzcgaio0/ttobH65JNPGDhwIElJ9bt64vFIy1uIZqxAK6SsrIL4eBePP57Brbc+htV67I5i\nQ/Zeyg3B/BBnZNstE0FR2BnTG09MGzp0hG5d4W9/O7ov2KAoBBlhQEQEfTeo7NlZQ/vgQuKi8zjL\nlI/ZtA9jbDZhYWvIzHz0mHU3B9OnTz9jrW6Q5C1Es2cymYiNjeHuu+/muuuCMRp//1LSaDTh8/mI\nioqivLwcHfAaFc4+P8R/ri0Ie6hC507QvTv06HHiuoxOO8Of00l+QiHs2R5sn5dA3rRuhL96OVl7\nxgbwLhvWypUrOXDgAMOHH2MVxgCR5C1EM6XgxdRnPeDD4ykkN/dDVLXm0PtvrHqDdSFvEJzg5PK3\nLifIFgQmD+agVnWuq7x8GcXF35N/fghDhpvJvPgCuHAgXHstXJSK1V2GQgCHhjSw6dOnM2zYMEJC\nQs5YndLnLUQzFWLKxHLdN+gre6CqlZSXryAubiT/W+N1Wvo0enArViWCK7pcgdG4EjxmbDVd61SP\nYc1AWrVKpiQoCo/dzaZIAwWeXbS2ngexFnB4ApK2HY5TG85Xl+vX1tSpZ2brt8NJ8haiGdNLHSgE\nYbO1p2tXf7dFRIT/od4Dvq8HcFOYkc6dL2RdyhxYZ0azWNlZU1PrhKuUxJKQMBRfWBYGY9XJT6gn\nLXwXNOk2EaKl2bsXnE7o1QvefQdat4aRW7fywrBh6BYNZ2wN35cUA9CmUnbBaayk5S1EM6dZnWwO\nnkz3t2Yd8fqukl1Y25jQ8W8y/NInnzC75mLC9kTwSEIiO9lCn/2tWVKHuhRFAaOHuZWb2JUzl7fW\nlNFzs53zCWcvy+v1vlo6Sd5CNHN6kAeDbuTzGz8/4vUgYxCxW2PZze5TvramQ7HXS6uVKxmWrWLx\nqijz5nPFkKWc3fEKDvQw0dblA1ZQRe5p3ok4nCRvIVoAA2a6x3Y/6vUypey0rqsd7Blf37cvRQuy\neWNPFkp1JHaDBbvRTrjVQqjZc1p1iGOT5C2EOILPB1lZUPtvLKGVxYLbZDrWXsUiQOQLSyHEIUYj\nVFfD55/7c3ebTmpDhySOQ5K3EALwj/4ODobwcHjySf8Y6rMGeE/7uvkeDxXBIZTbLTg1jZXl5Wys\nOnNDCpur2iTvK4FNwFbgqWO8fztQCGw4+LizvoITQjRtve12drtc7GrTmsx2kRR5vTy+axd91q7F\nqUqr/nScLHlbgLfxJ/CewI1A7z+U0YFZB1/vDXxYzzEKIRpIRk0NLk0jz1O7Lx1bH1A4R9ew7Pfv\nh3ZTbCz/6dyJ3hkZ9N2cS6LFwso+fbAYDDSnFcH37t3L5ZdfTmhoKFFRUdx33314avmZnaqTfWF5\nLrAF2H/w+DPgavwt7P9RQL6nEKLJWLQIVqzwP98bBvvaQ64BjpFs5hUVUej1sr2mhptOsm5HaP9Q\nQr9RuEFXMedGEjEqIhDRHxL5UiSlrsDtg+awOih5qnbTOP/85z/Tpk0biouLKS0t5bLLLuONN97g\niSeeCFh8J0veCUD2Ycc5QOofyujADcDFwC7gQWBvPcUnhKhnB8ZPZdtWnd227ljdOtGVOsXF8FXY\naJyZxSgH1/RQgFV9+9LZYmHuWWfRKTb2hNeNGhzFOIMXz1VWpjz4DdfcEdjlUUtdpejjA7fYlTKx\n9m3SzMxMHn74YcxmM3FxcVx55ZVkZGQELDY4ebdJbT6Zr4EkoDvwFfDp6QYlhAicwgNt0Kr+Qqfg\n3iSeV0HwbTsY2G4TZ080Yu+7kb59s6msXHvCa+i6zrxt86j21KDrOpklmSet1+kCrxf27PHvPZmV\n5X++Zw9UVNTTzTWQwYMHM3PmTJxOJ/v372fBggWnvUXdyZys5Z0DJB52nMiRLXGAw39v+QB4/XgX\nmzBhwqHnqamppKam1iZGIUQ90rwh+KJ8JM9bT3HFHELsPehbUUpsZAhKx0z0ojJUNRnW9jvm+QaD\nkaSIJFbumINLdaHrOpNXT+b1K4/7Tx+AHdshpxu8eUMBA2/TeX5GPjWahV+VKHr1goULA3G3Z8aE\nCRO49NJLCQsLQ1VVbr/9doYMGXJK10pLSyMtLe2k5U6WvNcAZwFtgALgJuC+P5SJwT/aBOBa4Li/\nKxyevIUQDUc36pjsRmJDhpOcPJExa9cyyJ6MceFUwi7aQPfus0n7Oe2Y5xqAs+PP5qWkc7nslStR\n3LXrXvjb36CdV+eB6u38lK5z48WllMwuhEWpNOXUoOs6V1xxBcOHD+fXX3+lsrKSe+65h6eeeoqX\nXnqpztf7Y8N24sSJxyx3sm4TF/AXYCGQDnwJrAcm4k/UAI8BG/F/sfkUMKbO0QohmhVVrSIrayJZ\nWRPJy5sOgKb5x4ybY828OtZA+2ldaj+LsxHLz89n3bp1PPDAAwQFBREZGcmdd97JN998E9B6azM9\nfsHBx+HGH/b86YMPIYQAIC5uJLq+y3+g+wcFen2leLQD8PDjPKdpZGyNhBdKgChGjICdOxPp3Pmt\nhgv6FEVHRxMdHc3bb7/NY489RmVlJR999BEpKSkBrVdmWArRTLXb8BsjXyvgnqKd/PnXbGjXDtq1\nIzZ3A5piPOn5x6MAayor+VtmJsXeY8/AjI+/leTkiSQnTyS+1e0AeIikU8wsjGlD+EG5lpj4u+Hb\na4B72bTC6v6YAAAgAElEQVRpJPn5M085poZkMpmYO3cuc+bMISwsjKSkJHw+H5MnTw5svQG9uhCi\nwYQVFpKXGMRnuYmYOzh5+bM0ANIerEbZdepTMy7JzeWl9u3JXb+eNR4vwV4353+3EbpmHVVW16Gw\nwP+8tNSI13IZxvRYViseIiLPh18igFQyM+u+uqHD6qjTcL5TuX5tDRw4kNWrVwcslmOR5C1EM+a1\nGKgwmgmyev0tb8AZkk8wxccsr7k13DluCj4v4HhTIMO8XkbGxZGxdClvl5VhVnyc//1maDUT+vY9\nouzChTB+DEwFXn8jmnfTYHbr+rm32k6gaa6k20QIAYASaSK0byjuHDeFcwqJuisKl8eFpp1gIrvN\nhtdiZXv7C6jIsdNxhw46uHJcALjd0O8cf9GJEwtITGwW31E2CtLyFqIF+bqoiM87bKN/EfyYlYWC\nxvS9aQCE2oNIeDCBsNlhtHm3DXFxcSgzFMxmM6Ghx97LUlF0XO1dBK+7gYxtDu79SedhHXbeu5NL\nb+l5RNmOS7ZyYfUCDFo4qAaYNx+IDvAdN1+SvIVoQYq9XpIqw+iWa+HOpCR0XePddheiKApGRSH9\nYDmXy4XD4SAvL+/EF1Qg8+1Mur/+KX17DmVA374oV4GuHtm+Lgk30GnxFgzV36AwFHw2mPo26GMD\nc6MtgCRvIRqpzwoKeHzXrkPHw6KPbqVmZGQwd+5cAHr27MlVV11ViysrKLqCQVHQUTAZAt97eiDe\nwNYXbmLmyKf4l5oOFg888yx12t1YHEGStxCNVJbLxTVRUTzTti1LysqYVVBwVJl58+Yxb948OnXq\nxNdff31U8vZ0VDk7OBdztJeMjIeJrK6mb88awhxGiot3Ehl5Zd2CMhj8qxJedx1s3VqnU3eW7MEZ\nvQr3Af/Gxel56UCvutUvDpEvLIVoxMKMRhKtVmKCgo5bZtCgQdx///3HfM/dQ8Vm9VHlDcJma4/P\nnERVdRvUogTi4kYSFzeqbgFdfz1MmQJ33w2PPw4RtVv21W4ykl6wjfIub1LhKcOjepmWPq1udYsj\nSMtbiEakpAQuv9y/tHahNx4VnZs/xb9u5ykqKAlhX4iFhISH+TE3lx278mi9xELClFOYARgW5m91\nA2RkwKuv1uq0KIuJ72/6kMv+3oEYWzpWk4dHzn3k0KJIou6k5S1EI1JSAvn5MGMG3Px6MbYIjb2n\nsDr+XXfBjh3+56oPqirBaoV774WsPRBkrt+4xZknyVuIRsZigZ49oVU3L5bQU9vnMS8PWh+cDGM0\ngT0Uysr8PR4XDIDu3esxYGBf+T6+2/kdXtWDpusUqqX8deVKsgsK8Koq2s4EdlxVzj15W5tl1klP\nT+f8888nLCyMTp06MX/+/IDX2Qw/RiEEwKf9e/FLp16orSNxxaZw755tTCvKpb4HlwztOpQesT0I\nt0ZwY3ABmAz82/0yU4cM4ZknnmD62l+xvPIOrZ628WVUe6Km9qifiiMj/VvcB+oRGVmrMLxeL9de\ney0jRoygoqKCjz76iNGjRzf4TjpCiCZqQUpnYipKMVS7MDpLuNTh4M+tW3NNVFS91pMUkUT/Nv0Z\n0PYCZqfehb2tmQjlC2wxWYRGfIhbdbO0dANLSpeyTgtibeHG+qm4tNS/eEqgHqW12x9z48aNlJaW\n8uCDDwIwYMAALrjgAj755JP6uc/jkOQtRDOWVLQfpbyGoMo8bo2P59b4eNpYLAGts/2osTxr20a7\n/9vH3z+s5pZblrJwYRmff/49lZUV3Habf2/LLGMQOrCPGmocNWiaTv4vpVSsqaByfSW61jQm0uv6\n0XFqmsbmzZsDWq8kbyHEISEhIXz11Vd07dqVkJPsFn885vAiuhqrsKfU0L2vzqxZb/DSS235xz8c\nREUZAZ2eplweDHagKwpj2cS2G7eiVqn8cvsWMu7PYMOFG6j4tWlsbNmzZ0/Cw8N57bXX0DSNtLQ0\nli1bRlVVVUDrleQtRDPkdvv/9PnM6HrtRwQPHjyYgoICdu/eXa8tx44dXyci4mIMBn+rf2rIh3ye\n9REGXWc659L3vX4oKCya6qDvmr6E9g5F9zWNlrfZbOarr77is88+Izo6mueff57hw4cTWcs+81Ml\n47yFaIZWrQLVZ6CsshWaZiFEcVK6xN+HW721+oTnOhy1X8e6tiIjLwUuxWTyJ2S7vTelnHzH+aai\nb9++rFq16tDxxRdfzA033BDQOiV5C9FIuSorqS5ax/r1NlrH2P0TZE7i15xfWZe7Dk8vUEwdCHbs\nwRim0rVoINtv346tvQ2AmJtiAhq77tK59hUX3vAcMiz+af3mODPQ9qiyiteDUfP4DzTNP0OpiS0c\nu3XrVjp06IDRaGTq1Kns2bOH22+/PaB1SvIWopFK//prCrZO4YuaJNxfltF11qyTnvPiihdx+Vzo\nMe2Jy2+P5o4l3F1DojeRuNFxtH+hfb3GqKoqxcXFmN1uQu12AFxWFyEvhVCy34cSbcZms6F5NfaM\n3QOJ/uT98MNfEe90Mho4/wobc0IMrHrIAnPnwmV/h/bfAvUbayB99NFHfPDBB6iqyoABA1i0aBH2\ng59HoEjyFqKR0jWNkJgr+fOfH+H1d4afoKAOv/4KpaX0W69xSfIlhPzwJzp4grCmdCGmYj8RSgTh\nF4TXa3xhYWE4nU46d+5MRVkZBc88gwNAAetIKz/neBjeMZaE8HBUl+pP3ih88MGHVFa+zJJNZ6EB\nZr0aO06+oi3qDcMhwgMzfScPwOHwj8cOlDp0H7388su8/PLLgYvlGCR5C9HEVRWtZlflcqo9BgYm\nqCjqav76XBS5ER2psG9kz0KVc0bGEXVV/Y7vjouLIzc3F4B4ux23rxYJF/9+jwbDd+yp9C/YYjSG\ncu65+Sg2J5cZhrHmvFKcXWezXQ3BuOYEGyWXtOxt0CR5C9HEubzZWL3BKKE2vrU4SA27lnlf9uLX\njBfIyPXg1VVat66njSMDxOMJpfS+6Ux+2UWoqZybPrWxYlQIB7oaCVIUYGRDh9joSPIWoonat+9L\nsrLWU1mVi7HQR3m5j3avPEtJQRQpFZ1JC7HR03QOZYn7ufPOOxs63EOeeAIU5SZ2FJVz3WFfTKp7\n2jEusTMhP72PK7Mzt8b2xtjVzqht2xow2sZLkrcQjYiqqng8PjZu3EF5Xh6qx0tVVeVR5RITE3nq\nqXfRdQOXp/pwexRKSoLwhuss+tMiZqcNw90B+me3Z/CTddxwIYDefx/27oWCgkw6qUXwc1dUdNbc\nvxp9hcJ/9uXwZUUFG1SV5JBgIsLCCD4DO/00RfKpCNGIrFy5kpycHEaPHs26L76guriImTNnAjpX\nVk9E02rYvv0eHnignM8/D6d798kMPDccTQ/H5TobVY0ke9+NeDzBAHQ0tSe5XZuGvanDDBoEt94K\nQ4euZ8hV+/wvPqvi2nYhhOawYsWV/GPZP9l3wM1110Js7O9L24ojSfIWohHx+XzYbDY2btzIxQ8+\niM3hQFVV0DW6uRdg8ELbt4pp91oRnvv781HYQnqYarBaQFX9u5SFhsEFFwR2IMbJrM9dT6Wnkl0L\nZ1P6xEPw90ngU49Y7KmNPQKDbsD6jxD2ja7AUJmAvdcXtA1PIipa4+PpsHHj77NFxZEkeQvRRPgU\nC7h9BMf3gy6ppCX+xue2RexrHczbl/VCTc5BjQwhbqSNTu9tb7BpLpcmX8p7699jX3k2xTPfZ13a\np2A0+v93SU//vaACtAniS98X7Oq1hiBdoyY7E031YjD4R+rFxjbQTTQB0uctRAPbvt0/nR1g5cr4\nk5b3DB9OXttQ3sybwpT+/6HQ8A+Cwjtjc5XQMT6e1tFxuMLtfOMzYvYEOPhjeO3K1wA4b906ukR1\n4cf4Ui569hl44cit4hUFlM3dGXP99XRyu1m9+if49DFyTPvpcIyV+sSRpOUtRAN7/XV45x1IS4Ps\nbDuJiQtPWL5///50O6sHus/H/TePxFXdjvyNdkI9ISQHh3JlVBR3tmpFiNZ4/3krioG8vA/Rd93I\ni897eeedCGzBJkJff71Bu3uaksb70xWiBbntNpg2DR59dCMdOsw56v2KklI+eNuOU9dRDMvBsgWw\nsXiZgjHJyYWX6HTocMbDrjVFUdB1A7/9DX67+DfKHr4EwwcPwSfXs8o8goiIi0Gv3SSfxmby5Mn0\n69cPq9XKHXfcccR7ixYtomvXroSGhnLxxRezb9++eqtXuk2EaEQM2wzcs+QefnH8QMfyPZj07bxc\nuo3/hKi4/lvCo3bYc97j/DnsPqwrxxC6/zt6XOZkmaFxdzMYLAb69H4fdfS9cHYSkAT0If2SdDJv\nCycsrO5rX0euWEFpLWd1ngqHyUTJgAEnLdemTRvGjRvHwoULcTqdh14vKirixhtvZObMmQwePJjn\nnnuOm2++mV9++aVe4pPkLUQjohQpFNuLSb3geyw70ind2ZUL9Biefu4H2iQF4XbHcW7IZiKqx1IS\nUo47NJbQAg/a+hrYuhWMa+HZqZDyzJkP/uuvITvb//zxx496OyzsAPQBUv1rhmzZsoWP+Zi971hY\nMKgd/jdrr9TnQ09NPa2QT0RJS6tVuaFDhwKwdu1acnJyDr3+5Zdf0rt3bwYPHgzA2LFjee2119i5\ncyedO3c+7fik20SIRsZr9GIOLsIdZseoBXFLx7uIi0zgp5+uYGToKwwzf4T3jhmM0D9itG0mB56a\ngS/bymaXi7s8/2HM1q/R9+49s0HbbDwdGckD+flkZWbC6tVoXi9eVT3mNmEA8+bNYx3rcO7fz5Qp\nn53ZeAPgj/e5ZcsWevXqdejYbDbTuXPnetvkQpK3ECfg9XopKyujrKwMTdPOaN26rZzdZhvG1vmY\njTauSr8Eg7ENj7k6AvCGqT+LevfCADxaVsN348fz564PsMB54IzH+s7773POLbeworCQtXY701au\nZM355zNk+md89u0BAP6WmcmISZMYNWoUew/+59KLXsRfd90R1/IYwJpfDLeMQOnckbvWfnlG7+VU\nKX/4prW6uprg4OAjXrPb7fW2PZp0mwhxHOU+Hxdccw07ly9H1zRufPxxZj3//Cld6/XXX2fTpk2o\nqkqbNkm8/XYnvN4+GI0p1NTAhx/CW2+9xaLFi6ioqODCKieKSWW3NZgtw3bQv5WKWTFg1E08cnUK\nW5RfuPeyBIxWI78ANkVhYPfuhKUloXDmh2sMGTIEgCVLlkBZGeVOJ3E338zYmnImrVzEL+XlTM7P\n55rRo1k5fz5frVt33Gv9s4dC1/Iw5g3qQ2HbRNIWFZ+p2zgtf2x52+12qquP3LWoqqqK0NDQeqlP\nWt5CHMeGykoyS0sZ8vbb9Ln3XuYf1p9ZW1mTstg8bDOTn5uMbZUNs9fMjh07KSubRFVVd0ymGM4/\n/1IuvXQWkyY9gerdx3b3Fv4SHs8r3W9Au7CQ77sPJR87PoOGydkE2lsmE3z3HRQWErx9Fzrw5t4M\nVEWh9fn98EVG8lNZ2XFP19YG4VbDWbarDSsLOrBLacTDaA7zx5Z39+7d2bhx46Fjt9vNjh076N69\ne73UJ8lbiBOwGQzc27o1F53ivo4FnxUQPiAcU7iJgfpA/jHiH3z00SyCg7dTWFjIf+d8wZ7Nv6G+\n/28MTpW+SgQJQdGU+MyctWMZ7F6NY+UY4qjCpBr408u9UYu9KMcZXFLhrgB0/vLd/ZS5ygAdk+EM\nJ/zRo+GRR8DhoPTZRym3wDcZ32LQNHZ+ORqzVnPM03R0Wuv7MO41YNfjuDrpOtLfegp+furMxl9H\nqqricrnw+Xyoqorb7UZVVYYOHcqGDRv44Ycf0DSN559/np49e9bLl5UgyVuIeuer8OHOc+POc6N7\ndRyXOTCGGQmKCTpURtdr2LatPSXzrkQvLcawYh26C6IKqrB6FDCFUWVPQSnuw4D8T9FrYvBpCo9t\nWE1Wj98ojQHF9HtLT1MNFP5iojzXjY5CL8YT5grBqBjp17rfmf0ArFaIiQGTieikbnSP7c6Is0ag\nKAoXtbv4mF9gGgxm0OFRdRKa5sbrLaSocB6qeuLNkhuDSZMmERwczEsvvcSMGTOw2Wy88MILREdH\nM2fOHB599FHCw8P5+eefmT17dr3V2wR+BxOiafm1468AaIBuNLCnMAi3G7Kcbhbt2cOO1vtxTVS5\nUfkKc+cdlNifZmzKLjxr2xDxr1UY3le4tu1mqqtg9znw8JAfURSVv/V6nnbXdqBT6i5mqgo3rV8L\nPXui6Rqrd+ZhXebBYw0CFGy/RBLsMhAWsuvMt7zr6JzP3WzaA4rPxoYPp6Jol2Ext0JR9qGfYOKO\nw2Sq9XC+U+Ew1e5zmzBhAhMmTDjme5dccgnbArQeeeP+qQrRxOzbtw9nuZPVT6xm0qt/w26vIuQO\nHzk5kG/18id3CJd5HWz/zMVfrg9h9YJtfG21sODGHfCpj5m/PUfh5qW8dsH59ApTcNt3cdFF0yn0\neBmSXIC2+Hv0OZuY6PWgf/Y5+quvopNAOy7FG2Vnr9WMUq5z2/NBTH8ujO670oCxDf2xHMHpc+H6\neRm+mbPQHD2p8bTHYAIUhdIoBd2rowPnrG3L1qszmRZj4vbCo69Tmwk0zZkkbyGAyt8qqU7//Vd0\nxxUOsNT9OosXLybeF4/H48HnM3DuufcTHh7Ejz9CQaxC/Bcrcc09wAd6MAtf/JZWVauIqvJySe5Y\nftA1tAOLMFd7ealDZxbn5LBXMWIwmImzmpmYnAzbt/Nf1xauaPUTpkRYPv8Oqq76nm5f2VE9BrLP\nNcLuevxg6tlArQ0ve7ajVFWy7E+tWck+uvQsx+E1ohQrLBhmgPdg2+AOVO5eQ+rfeqG9VAxLGzry\nxkeStxDA3ol78ZZ6sSZZqVxdibfUC7fZT+laitHE/MGDUc/6jfXx91JdXUn1il+YPkplZPKjFO41\nYa9uw5/CKyjKNTPvRzc3xRaw0GBiUPDFzNEWYNHdVHmrcflcZOxaQ+zO/YRbw2HfPtzucH745gfC\nyr10ybaQHRSEuyyWsO4a34wLhvn1/OHUF0Whz9yVxFX6sFhCGHjOTSzZ8PExFx6vcljIia/Anmoj\n6BNzAwTb+EnyFuKghIcTiBkaQ8YjGbU+Z/v27UyZMuXQ8bZt23hCeZqONhvbX+jA/WO/5+Np88iv\nqqHPwm3od1cxfXo4vXc+y15HId4tm9F4j/en9qKmKovlP+7Crek8vH0HVLlJ2biFTh374zQrOPv3\nByC37dm0jvVy9p9+gHPP5Y527VgybS4xY4YA9btDfH3wer3UFBb61/ReswYGD4bUVDhw4Kiy6gEr\noZzNP//1LuBm9uxWRPka9+bJDUWSt2iRsoo9PPSAAe/B9a6Hr9E55zKIqeN1li9fztq1axk5ciSb\nNrVj3bp/oGnrSfvWiLo7hATVR4V1PR6qaeXaiKIb6eawk2jI4Ny2Gj36+EidHUS/gQNZ8cMPhJ3V\nndDqXC5fO4de1TEUnH8BB36cz8VfXodHLwCgx9ZcHgy1Yguthmgfha0UzCGVmA6fzHfzzVBWBh4P\nmBuu5RrmcFBaWsq8oUNxtGpFUFDQEe+bDCa8mpc1+9fgiV2F+mwvwq1Lae3TGf3gQ1xqG8KBQgO3\nvVd/q/E1F5K8RYs0bFkGv/3YibhH9lLm83HpTzr7sqHHCc4xeSF/dj7/26LGFq8RtW8fg+Pjua3n\nAD7bBmF9MjFX/cr9bbZy5x2rqfq2gOkhxfzFq/CXAz+gagrXrLMQVKgR/9teakJ/wm214ultxWwz\n07p9Tw6sWYa90kCwy4g7RyUjOZ+p+ru/B6JB7M0n2GJGUWDpUhgzBh57DJKT6+UzOxVBrVuzZtcu\nHt+1i9SICIKCgghSFL4pKuLbPXvQYy7C4dOI3a8zK2YI3d77kJzBg8Fo5OblrdgcEoHiNsN7DXYL\njVZtkveVwMuAEfgYeOkP71uA6UAKUAGMBM7wqjiipfm6qIilh83SGxEbS7+wsFqf79V12kQY2Te2\nE3dv307Q28ee9WLLqWH1lWvYr+9mqK6wZeYWnL1dxDji0Tbv4zLXm/Q2mdj33Z30V1z0Dd1P+edV\nxFR0YaVtOz4VnIBnmc6qC6yYVgaxtNJE8iUXcf2SlTir3RhdP5F6flve0VX6vVnFeoOXhJIhFOGh\nYnc+CY8kkPzikQlYMSpwtwFefRVeftnfHXHrrYfef+C119iZnd2g+4g5TCbu2bnz0PHouDgAWlks\n/LNnT9a63bhcLi4bOJCJ6Rv59oXRKBW6f2VCs5mfDZfzakpf4k1WHuGFhrqNRutkydsCvA0MAPKB\nX4D/AhsOK/MAkAvcDFwPvAkMqfdI60FaWhqpAVxCsilp6p/FtLw8Qo1Getrt/FBSQlhJSZ2S9+Fy\nV6+mJ/7V33RdZ5fTiavCy5pSL3g0dkbplIX/huL1sbtzKUqQFy7JxHpRDDPahVPt2U+r+DLyK8Jw\n6Rp/0gy8oz5IeUgpOS4XrXftpUBdwGvuYfyj/bn8fUkf7vpvKZFZXs6zXwe//cS6UeD5XGNTNy9Z\nhgOcr2cQa2lFzdl96PDycaaHT5gAW7aAxYLnnXfwDBiAtmMHz77zDnFuN7169aJfv7pN0KnPvxeX\nR0byxvnnH/M9o6JgOPhQrFb/lPqIcNQqKOjVCYOuo304iz1lUSTEd62XeJqbkyXvc4EtwP6Dx58B\nV3Nk8r4KePLg86/x/4KjQIPtf3pcTT1h1aem/Fl4PFCxy8KgqCjsK3eQ+9VMvg4pYv/BBX/uuece\nzjnnnFpfL3f1aqAXTpePBc9+wA9FHQivrGHDzwcwG72Y4ovJiougNMbE3gsGUF0Swhs9niD/3aF8\nMcCGwVWGYjCgRxhAs9BnfCQxz/fhr50TOTcsjD6hoXT4rBvG1FTuuOUWAKJmp9FlfxfoGUSQqtJx\nRQ5BPh2HeRNn51aTEhlJeZduJw48MRESE4lfvZokpxPWrMGoKLx5882cfYqLHzXk34vruw7l8fJf\nKcpMx1BVjbI2i/zqfECS97GcLHknANmHHecAqScoowHFQCz+lroQp+3xzEyy3e5Dx7t2wfotGr/W\nFMGqGKqqxtFv1JfYwmz8vGoVn674GSUhGadrF6s3f8/PmWux+GqweqspKYnE4xmIJU7j7JQ1vPPl\nv4g5UECrO3PIbZVLtFJGr+gUEvRfuSQxl8fiFLoMmYI704Nbg8tD05jxBUz4zkji2o1M37SX8ogI\nyM9nVteJbKqJw/qLwp3rMjHv2os7rC2lMV3Bq1Ne4+HxdT8DEOSF9OR07vvkPqwX2rlh96080nYs\nN33xAOufzoFrroHycjhsYaPj2XJwFEpTZzIYMRiMpMSkQEgNClm0HXo7eWUVDR3aCU2ePJlp06ax\nefNmRowYwUcffQT4R9mMGDGCdevWsXfvXpYsWcKgQYPqrd6TJe9G13o+VSUlUFEB+/cf+bqqluD1\nlmA45iovGooSgq4rGI11r1PTOM51wes9/nm67j/vWHXquv+61l+WYKipPOp9VdUh+sgxEzou0MFn\nDmaJyctUs5u8zN9YvPBj9CATXsxUA0+pIZh1MDprDv3gTUBQjYrm0sBkQjcdHLmguMFkQNMLqPTM\nRFF+D1ZRNHTXSACKq6sIMpejKDUouk5oTT6qy4nitOLz2DAAVlclQc5CSm3lGIyg+QxomhfFp1IY\nGsSyS0dy9YH5RJqL0YERB2ooiQmjIDISQ0+VYFONf6EmXaHVtTYU0klb619DIsmyh769CyhVwzF7\nnOiAwhLMGijnqxS7o/C47ShlYRhtKttjgnFsC2JjUScWzwsmL93Lmo2P4074lSLdzZKvO7O65guu\nanMT8z0v0jPu//iu7Tp6hTn4//buLjSqM4/j+HfGaRMw7rzQQsla7Y03pUrr6k21LhG0rmw3CJuy\nrEtVKLYpQiq0NyrG6UUvd0GldG+37FL3RYWUXda2ji6yXqzU1tTYigTDptbd1kyMxo5xZp5ePJPX\nect0zsw5J+f3gQeTmck5T4L8z3Oe83+e/9dX/st33z7MN2YRd94dY9yMc2XiCl+Mf8FEepy3Xpng\niVCGUAg2G7j4fBSAbDbLjRs3yM4o6ZVOpxkb83bQKmdkZITbt29X/MytW7cYGxvj4TmZMHljuHH/\nPixaRObRBP/e/xLDN/8Hr/++6BjnEufIphtXBi0Sj7B+5IeXQQPYsGEDe/fupaurq2jXwUZ7Dvhg\nxvdvAvvnfOZjYHJiLQx8Q+kNrz7FXgzU1NTUam5zpUgVveakWo9/4MABs3PnzpLvLV261Jw9e7bi\nz1f43T+lhGoj7/8ATwE/Bv4PvAi8Muczfwd+A1zAPqg8j50+mevpKucSESnHuN2BakyZcm81mvfw\nvFrwzgDdwD+xo+n3gE+AJDZY9wFHC6/3A3ewqYIiIoHS7GmR+eR5/6PQZuqd8fV97IhcRCSwHBp5\nz1sQizH8FhgotA/w4mYQjbcFe6c0AHi7TEljPQ78C/u3+JLplNegWoRNA+5zuyN+1OyRdxCDdx92\nHv9J4HO8ttlx400uvNoCrAJ+CTzjao/cMwG8hl0V/xPgZSis1gmmHuwF3fPzy15Srgwa2LqVmUym\n6Gup3wvAn93uRJNtYHYG0RsE7wJWzl+Bn7ndCZcsBT4COvDmyLvubJBazff4vb29JhQKzWrJZNIY\nY8zy5ctNKBQy4XB46t+hoaGSx6HGi2Zzx/ne0we8D/zR7Y400a+xKaDdhe9/hV149apbHfKIJ7Bb\n/j+FffAeNH8B3gZ+hL2gv+Bud4oU4ts0r+R5O6Uw7eJYtolffQg8VuL1fUyPKvZjb5uDFLhBt8Sl\ntGGDVw/BDNw/x6YCX6R4BbVnNTOwetFCDd6bqry/A7tHy8Ym9MVrhrEP6iY9zuwtEILmIeBvwJ/w\nbg2aRnsW+AV2n6JW7Oj7D8BLlX5IpNm2YDfbesTtjrikFbiOXXj1EHYh1mo3O+SiEDZI/c7tjnjI\nT5E5aE0AAAN8SURBVPHJnPdCQ413xUHMNjmCvU3+EHub+I673Wm6mQuvPgOOYxdeBdE67OrgDuz/\nhYvYi3vQaWrNB4L+wFJE/KEwOF24an1gGcSRt4iI7yl4i4j4kIK3iIgPKXiLiPiQgreISB2OHj3K\nmjVraG1tZdeuXVOvnz9/no6ODmKxGNFolM7OTr6aW8qrDso2ERE/KMo2OXcuQTabbtgJI5E469eP\nVP3ciRMnCIfDU2XQJmtYnjp1iomJCTZv3kwul6Onp4erV69y5syZksepNdtERMQPiha1pFKNXbhT\n6/ErlUEzxpj+/n7T0tJS9n20SEdEpPlMlTz0VCrFqlWrHDvfQt3bRESkqSoVY7h06RK9vb309Tm3\n84BG3iIiDig38r527Rpbt27lyJEjrFu3zrHzKXiLiDig1Mh7aGiITZs2cfDgQbZv3+7o+TRtIiJS\nh1wux4MHD2aVQYtEIty8eZONGzeyZ88edu/e7XY3RURcUXc2SK3me/xSZdAOHTpkksmkCYVCpq2t\nbaotWbKk7HFQGTQRWYAK8W2aV/K8nVJrnreCt4j4QVHwXmi0JayISAAoeIuI+JCCt4iIDyl4i4j4\nkIK3iIgPKXiLiPiQgreIiA8peIuI+JCCt4hIHcqVQRsYGGD16tXEYjHa2tpYu3Ytp0+fdrGnIiLN\nV7QXSDwen9wPpCEtHo/Pa2+T48ePm5MnT5ru7u5ZlXRGR0fN9evXjTHG5PN5c/jwYZNIJBzb20S7\nCoqIL6XT6arVa+pRqbjCTNu2bQPgwoULDA8PT70ejUaJRqOA3XkwHA6zbNkyx/qn4C0i4oByF5JY\nLMb4+Djt7e2OTptozltExAHlRuqjo6PcvXuXHTt20NXV5djdgoK3iIgDKgXllpYWkskkg4OD9Pf3\nO3I+BW8REQdUmyPP5/Pk83nHzqfgLSJSh1wuRyaTmVUGLZvNkkqluHz5MgD37t1j3759tLe3s3Ll\nSpd7LCLSPCVT6xppvscvVQYtmUyaY8eOmRUrVpjFixebWCxmOjs7zeDgYMXz1fIHUSUdEfGDQnyb\nlkgkSKcbVwYtHo8zMqIyaCIi9SgK3guNyqCJiASAgreIiA8peIuI+JCCt4iIDyl4i4j4kIK3iIgP\naVdBEfG8SCRyJxQKLXG7H40UiUTuZLNZt7shIiIiIiIiIiIiIiIiIiIiIgvS9/lA3baelh77AAAA\nAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(Ht)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEnCAYAAAC9jGg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvnZaZTNqkEUgooRN6XRWQWEDRRQXBn90V\nURQLuvaCgNhwsSKiri6ICthWwYLggqH3GmpoIQkhvU9mJlPu74+JSAmSwCSThPfzPPfhzp17z30n\nxjdnzj0FhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIRo0I7AR2AqkAG9XcU4A8BWQDKwGWtZZdEII\nIc6JqfJfHbAOuOyU9x8H3qncvwFYUEdxCSGEOE+BeGvvCaccXwr0rtzXALmAUodxCSGEOIGmmuds\nA7KB34Hdp7wfB6RX7nuAfCDaVwEKIYSomeokdg/QA28CvxRIrM2AhBBCnB9dDc4tBn4GLgKSTjie\nAbQAcvD+oYjA2xxzkjZt2qgHDx4850CFEOICdRBoW5MLzlZjjwCCK/dNwGC8vV9O9Atwe+X+9cBa\nvLX8kyM7eBBVVRvsNnHiRL/HcCHGLvH7f5P4/bsBbWqS1OHsNfZmwBy8D0ONwFy8tfbJwCbgR+B9\n4PPKhF8K3FrTIIQQQvjO2RJ7MtCziuMTT9h3ADf5LCIhhBDnpToPTwWQmJjo7xDOWUOOHSR+f5P4\nG5667G+uVrYXCSGEqCZFUaCGubomvWKEEMIvwsPDKSws9HcYtcpisVBQUOCTsqTGLoSo9xRFobHn\njzN9xnOpsUsbuxBCNDKS2IUQopGRxC6EEI2MJHYhhGhkJLELIcR5KigoYPjw4YSEhBAfH8+8efP8\nGo90dxRCNEjh4VCbPSAtFqhu78MHH3yQ0NBQCgoKSE5O5vLLL6d79+4kJJy6fEXdkO6OQoh6r6qu\ngIoCtZlSqlu+1WolPDyc/fv306JFCwDuvfdeIiMjee2112pwP+nuKIQQ9UJKSgomk+l4Ugfo1q0b\nu3bt8ltMktiFEOI8lJWVYTabTzpmNpspLS31U0SS2IUQ4rwEBQVhtVpPOlZWVkZwcPAZrqh9ktiF\nEOI8tG/fHpvNRlpa2vFjO3bsoEuXLn6LSR6eCiHqvfr88BTglltuwWg08vHHH7Nz504uv/xy1qxZ\nQ6dOnWpwP3l4KoQQ9cYHH3xAUVERERERjBgxgpkzZ9Yoqfua1NiFEPVeVbXZ+tSP3Rd8WWOXxC6E\nqPdk2l5pihFCiAuaJHYhhGhkJLELIUQjI4ldCCEaGUnsQgjRyEhiF0KIRkYSuxBCNDKS2IUQopGR\nxN5IFBcX89hjj/HQQw/x8MMPc/DgQX+HJMQF4f3336dPnz4YjUbuvvtuf4cDnH1pvObAl4AFMACf\nAm+cck4isAA4VPn6O+Bl34UoquPw4cN8/fXXPPvss8yePZuLL76YNm3a+DssIWpN+NRwCu21N6eA\nxWih4OmzzykQGxvLhAkTWLx4MTabrdbiqYmzJfYKYBywEwgCtgCLge2nnLccuM7n0YkaiYqK4qGH\nHmLNmjX+DkWIWldoL0SdWHvTDCiTqzeKf/jw4QBs2rSJjIyMWounJs6W2LMrN4AyYAfQjNMTe13O\nOSPOg6qqvPjiixQXFwPe6UYvvvhiP0clRMNXn+ayqUkbeyugL7DqlOMqcDGQDCwFuvskMlErnE4n\nr776Km3btuXgwYP8/PPP/g5JiEahcrKueuFsNfY/BAHfAOOBUxfy2wzEAXZgCPADEO+rAIXvabVa\nHnnkEUpKSrDb7f4OR4hGoT7V2KuT2PV4H4jOxZu0T1V2wv4SvO3yMUDWqSdOmjTp+H5iYiKJiYnV\nj1QIIeoxX9XYk5KSSEpKOq8yzpbYFbw9YXYDb5/hnEggr3K/N2AGcqo68cTELoQQjYHb7cbpdOJy\nuXC73TgcDnQ6HVqt9pzKO7XSO3ny5BqXcbY29v7A7cBlwNbKbSgwtnIDuAVv+3oy8DFwK+CpcSRC\nCNEATZkyhcDAQKZOncoXX3yByWTilVde8WtMZ6uxr+LsyX965SaEEHXGYrRUu0viuZZfHZMmTap3\nrRHVfXgqhBD1SnUGD12oZEoBIYRoZCSxCyFEIyOJXQghGhlJ7EII0chIYhdCiEZGErsQQjQyktiF\nEKKRkcQuhBCNjCR2IYQ4DxUVFdx1113ExcVhNpvp3LkzP/xQ1XyJdUcSuxCiYQoPB0WpvS08vFph\nuFwuEhIS2LRpE1arlWnTpnHbbbdx4MCBWv4BnJlMKSCEaJgKC6E250Cv5jS8gYGBPP3008dfDx06\nlISEBDZv3kzbtm1rK7q/JDV2IYTwoezsbPbs2UOXLl38FoMkdiGE8BGn08ltt93GHXfcQefOnf0W\nhyR2IYTwAY/Hwx133IHRaOT999/3ayzSxi6EEOdJVVXuuececnNzWbRo0TmvnuQrUmOvB+LatMEU\nFIQpKIi7XnyRjSUl/g5JCFEDDzzwAPv27WPhwoUYDAZ/hyOJ3d/KXC6OpqWRuGgR8ffey+8HDvB/\nu3f7OywhRDUdOXKEjz/+mG3bthETE0NwcDDBwcHMmzfPbzFJU4yf/dFZa8Hf/sbMLVvYVlHB77XZ\nhUuIxsJiqXaXxHMuvxpatmyJx1O/lnmWxC6EaJgKZGm8M5GmGCGEaGQksQshRCMjTTH11OLFi8nI\nyACgT58+dO/e3c8RCSEaCkns9dTo0aMZOHAgWVlZLF26lLlz5/o7JCFEAyFNMX7y1Vdf0adPHwb9\n7W+gqihVPN1/8803ue+++/wQnRCiIZMau58kJyfTt29fbr7rLq45cAC9Xu/vkIQQjYQkdj+KjY2l\nV58+aJxOf4cihGhEpClGCCEaGUnsQghxnm699VZiYmIICgqiefPmTJgwAdWPI8jP1hTTHPgSsAAG\n4FPgjSrOew+4AnAA9wBbfRijqEese60ULik86VhYYhhB3YL8FJG4UIWvWkWhy1Vr5Vt0OgoGDKjW\nuRMmTGD27NkYDAb27dvHoEGD6NevH8OGDau1+P7K2RJ7BTAO2AkEAVuAxcD2E865EWgBdAZ6ArOA\nHj6PVNQL2XOyKfq9iOC+wQCU7SijfF857We093Nk4kJT6HKhJibWWvlKUlK1z+3UqdNJr3U6HbGx\nsT6OqPrO1hSTjTepA5QBO4Bmp5xzDfB55f5WvH8s4nwVoKh/IoZF0O69drR7rx3Ro6L9HY4Q9cK4\nceMwm8107tyZF154gV69evktlpq0sbcC+gKrTjkeB6Sf8DoDSexCiAvMBx98gNVqZfny5UycOJEN\nGzb4LZbqJvYg4BtgPFBaxfunjq6ReWeFEBek/v37c9NNN9X7+dj1wHfAXOCHKt7PwPuQdX3l67jK\nY6eZNGnS8f3ExEQSa7F9TAgh/MXlcp3zoMOkpCSSatC+X5WzJXYFb0+Y3cDbZzjnF+B24FugF+AG\njlZ14omJXZy7vXv3ctddd+HxeNBoNHz22Wf+DkmIC1Zubi6rVq3immuuwWAwkJSUxPz581m4cOE5\nlXdqpXfy5Mk1LuNsTTH98Sbty/A+GN0KDAXGVm7grc0fBXYBnwB31zgKUSPp6emoqsoHH3yAqqqk\np6ef/SIhRK1QFIW33nqL6OhoQkJCePTRR/nwww8ZOHCg32I6W419FdVrh3/IB7GIGggNDaVv376E\nhoZW+f78+fNJTk4mPj5eJhITjZJFp6tRl8RzKb86IiMjWblyZa3FcS5krphGaNy4caxcuZLi4mIm\nT54siV00StUdPHQhksRex7KysrDZbBQVFRETE1Mr9xgwYAADBgzg6NGjfP755ye9t6mkBA/wUmoq\nywsLcTkcZNjtxBmNtRKLEKLuyVwxdchqtRIXF8fll1/Ozz//TOvWres8hrnZ2XhUFZeq4gH2lJfz\ne1FRncchhKg9UmOvQy6XC7PZzOHDh48fK63FuS7ORKMovBQfz8sWC3lWa53fXwhRu6TGLoQQjYwk\ndiGEaGQksQshRCMjbez1yeLFkJwMV1wBOTkwZIj3ePfu/o1LCNGgSI29PklPh7ZtISICLBZ4+23Y\nvdvfUQkhGhhJ7PVNUBAYDKDXQ+fO/o5GCFED+/fvx2g0cscdd/g1DmmKET5lT7eTPi39pImbg3oE\n0XR0U/8FJRqlVeGrcBXWXndhnUXHgIKajW598MEH6devH4py6kzmdUsSu/Cp0s2lFC0roum93kRu\nP2Inc2amJHbhc65CF4lqYq2Vn6Qk1ej8+fPnY7FYSEhI4MCBA7UTVDVJYm+gCmwFTF01ldSiVL7a\n+RXmMDM51hx25+4mISrBr7EZ2xiJe8S7iFbJxhKKVxT7NR4haltJSQkTJ07k999/5+OPP/Z3ONLG\n3lAdKT7CxsyNON1OSh2lFDuKKXGUMH/nfH+HJsQFZ8KECYwZM4ZmzZr5vRkGpMbeoI3uOZriiGLG\n9B5DVFQUiw2L/R2SEBecbdu2sXTpUrZu3QqAqvp/ZVBJ7I1MGqEM2b4dAHt2NvlOJz/l5fH3yEg/\nRyZE47R8+XJSU1Np0aIFAGVlZbjdbvbs2cOmTZv8EpMk9kYmmyACNBoejo0lT6tlk6KwobRUErsQ\nteS+++7jlltuAby19WnTppGamsqHH37ot5gksTdCLQICGGwJZ9NBGxqPQvFRLWla73sV5Se3/6ke\nSE3WsemU5cebNfNuQoi/ZjKZMJlMx18HBQVhMpmIiIjwW0yS2BuplSth8GBwurTMvqkZ3+vAbgdT\nh5O7HZZn63h1eDgLOv55rLQUmjaFWlx1TIjzprPoatwlsabln4uJEyf6OJKak8ReB6xWK5mZmZSW\nltbZPe12+NvfYFuKm/Gr03kpPp6lS+Gu506psasKrbq52LTGcPzYqlXwzDN1FqoQ56Smg4cuJJLY\n68AzzzzDV199dXwB6rqk9ZTTJXccO61mDh/uSohzKNmqC6czv07jEELUHUnsdaCiooIpU6YwduzY\nOr+3RrVj1bcnOnogYWHROLQRgIrdnl7nsQgh6oYk9gtAofFvREePxGIBh8Z365vm58P+/UAmHFvu\nPabuBPLgt9+8E1S6d4PDCif2+mrbFsLCfBaGEOIUktjrEafHxaq0VaSXpENZFt1mduNls5mvM/aS\nt20LWsXbtSUuO+ukSbbqgscDe/ZAaQ4oZVC8A959Fzz/hU4m+PlF73kd86BHNrw+BiIjoUU5jEiD\nd+/3vp+dDSNHemckFkLUDkns9YhbdaNRtMQGx+I0R/PrXb/y06dX49EGsnTVw96TgtriOWxEsRdg\nMVrqLLYtW+DSS+HRIHBo4Lck7/TxIzRww3B4aob3vNwfIGs2HPnB+7pkI+wfB5s2el9Pnw4pKXUW\nthAXJEns9YyigEbRoFE0RAZGgkZDmN1NwX8cACxp7+DZDq0Ij7+Ci5tfDHgXW3r/fSjKCWHH1EQO\nBzYhxccdcJxO70JOYy4DbRC8+RzccQd4fvLtfYQQ508Se303fjwsWQIzKqvEmzefVuVNTYVdu8Bg\nqiC8eybRllBuiwklOhruuKvuQxZC+Jckdh9IS0vj1ltvxeVyoSgKH374Id19tU5pRATodNCrl/f1\nsWNVtmU0aQJW7MRdnULr2Fj+0T6Go0d9E4IQomGpTmL/D3AtkAN0reL9RGABcKjy9XfAy74IrqE4\nevQoRUVFfPLJJzzzzDMcPHjQd4ndD0xH9nJ7xg/w+p/Hmh2BEVkhoF7lv8CEqKcSExNZv349Op03\npcbFxbFnzx6/xVOdxD4LmA7M+YtzlgPX+SSiBio4OJiLLrqI8PBwiouLyc3NxWw2ExgYWGv3dBY5\nsafaKfo9H8cRM4ZyHf1nhxIaWoh9bB6cY5fCyKRv6V/wC5+ttLC/sBCAjqY4/pn6HUfce5AveqI+\nWLUqHJersNbK1+ksDBhQUK1zFUVhxowZjB49utbiqYnq/B+6Emh1lnP8P7N8PdGqVSueeuopHn/8\nceLi4tixY0et3atsWxmOdAce6wHUY3pMxlK6Gr9Bnx/N0Cu/JCnL+wT18YTbeJzbgMuBp9FW47/6\nltDLmbJvPsOGDSMrK4tVxxyMUvS19lmEqCmXq5DExNrr95uUVLO0Vh/mYf+DL1ZQUoGLgWRgKdBw\n2yB84K233iI3N5cNGzZQXl5e6/fTmDSEx6RjbBOEPdZOwc17cV2cQ6GmgulvX44lysTklHV4PB5+\n++1/KLqa1bYffPBBRo0a5dOYN2yAl146fZs6FSoqfHorIerMM888g8VioW/fvixe7N9Fb3zxnXoz\nEAfYgSHAD0C8D8oV52ArA+mxfDT6rOXERfwDl2YXLl00it2OkrQO/qhVLPoFtm8Hl3ee9s2b+1Fa\nugWAgGNxOByDsKuHcbvtPo3v6qshNxdcVSwu/9ZbMGoUtG7t01sKUeumTZtG586dMRgMfP3119x4\n441s3ryZDh06+CUeXyT2shP2lwAVQAyQdeqJkyZNOr6fmJhIYmKiD24vqmXjRm9nd/UBb8PZypXw\n+0ZaG4fyfyU7KRszmuCgd9DoTARF/UZAQDGoKqrq9GkY7dp5a+dV+eILn95KiDrTu3fv4/s333wz\nc+fO5ccffzynxJ6UlETSec6Z7YvEHgnkVe73Bsx4e9Cc5sTELs6RXg8lJbBiBWwZCcXFsGMHtLkR\n3H9xnapCixawV+NtPHv1Ndg8jrBtsCY2ms73fk9c20TSny3DbTIBJYCWzZt7cfCgQlGRBVDJyHif\nlmGP18lHFaKhUlX1nNvcT630Tp48ucZlVKeNfR6wBugApAOjgbGVG8AteNvXk4GPgVsBT40jEQBo\nXXo6bvagOlSKVhfh3msnKN9D8dpi7y9K797QpYt3svWPPoKQYHj8CYiMOqkcpyeUjI/z0BV76PRk\nHntfV8nIrHrK4CPmIDQ99xEy0HjS4gJGY0v69dtL585fExp6KaDg8dhq8+ML0eAUFxezbNkynE4n\nHo+Hb7/9lqVLl3Lttdf6Labq1NhvOcv70ys34QMROXGMfs3JQ6Uujr5zFFdBIU1zVLYlbuOi1Isg\nQPHW2gMCIDICFA2EhHBix6SUu83o/1tEYCcTnh0KRf2MhBZYyfu1I1doCkhCQ9Z7dooywzHZnTxx\n4CFaPJHFOmUk6s4HaKf/Hx6j9xm4omjJztZQXq7gVAw0/QVcS97B/uliXsmB/PJLYc9QoL1/fmBC\n+JnT6eSpp54iJSUFVVXp0KED33zzDQkJCX6LSTok1zMKCsuv06JfqKfzN53Z+Gs6+7/Rot+pR3Wf\n/atdhauCwhZ29Eoxrt42XAtUUocbaJqpoExVedCjkqSA7ZiTIqeHUHUfv7W/Bc2VP2Fpkkj6m8EU\n9LuR7w8OgYK5FBbCww+D0Qg9DbuYdelLJK29lQ3KvdhD4V73MroX1F5fYiHORKez1LhLYk3Lr47I\nyEg2nTgvdT0gib0R0SoajhQfYVXRD3RW3byy8mWsFTbeWDOV4p1racfnAKgaDw/3uI9Nuw7wWKaL\n6YkmllrsmPW/c7MmnnURBylIvxPw9l4JDoYePcDhiMMVCnc8Hs0Lz7VkwwZIuWojdT6HsBBQ7cFD\nFyJf9GMXdaR4eTHK76XE7HbjzHdSuvHkKRz1Wj23dL2FO7vfgVbR8m7bhwnWmbk/ZhhPW4ahnNBc\nc7DgIJ084QD0/O9cPu5o5Pf8gZj00ZQ4neQ6Kyhzu1lWlo+qrdkjE1WFTSUlbCgpYVeZFavbzYaS\nEraVltarQRxCNFZSY28gooZHkfVZFlqnk45ZFazOsVP4WyGuEBe7du0iP78LpaUuNi3ZwkHFTn5g\nIHz5JdjtRK3cTPxvy0FzM3i8idd21EOR3juSNK+8nK3JLnoAIUVFVLjdFDhd2N1u3sg9jCeqik7n\nfyHf5eT67dvpGBhIXLqb4Q470/fvZ0dZGbv79aO1yVQLPyEhxB+kxt5AtJveju5LuuP6rjVJ400E\n9wqm+5LuHK04StLyJHJycikpqWD1wnWkLFxI16uuovn8+WA2wz33wPr1oNWioKCqYD3sIa/MOwQh\ny+PmkWetMP5Rwu024vU6OgQG0sRgIE5vrPGEER4VLg4JYUPv3szu1JGEQDMbevemhdGIS2rsQtQ6\nqbE3cA6Ph8IO7SCvGTH2AEKeH8H1rW7nxVatOFrFvL2KoqDVKkQO0BGzoy2s30znzl1Ytarm91YU\nKCuDQ4fh8WHeY22zoIfjzNd4rG62Dt2Kx/Zn844uXEe3Rd2QKYeE8A1J7A2Uw3GUrVsvBVch/ZTt\nOHRdsSp2vunSjcjIVme9/rIoF5vL9wFQVrYdVYXrr/8HNzqvY0fhZra0vRTPzsNoF4/F06opycey\nCOkw46QyevQATV9Qs+C++7zHcr+HgiVnvq9a4sa6y0q3X7odP7blb1tq/PmFEGcmib2BcrmKCQkZ\nhqpJplDXFktAS9zueMLDzz5fuoqWtQUQFNAU2I/J1JJff52J290S3fL9XKm9iWMZMZTod1C2uQK9\n/kqCdD9RHPEbFEcfL0evh5gmYC2HPpU19nUpsPYvEjuAxqAhpF/IeXx6IcRfkcTegAUGdkDVGLBp\nIojShaLVmtFoAqpxpUKGTUMXrTe56nQWhgy5H4BtmkNcFT+E5UfakR74FOXHHOgsPQgOW02Vy6jq\nDbBrMzRtCkArax+KdcP4dWUFtJdBS0L4gyT2C4Db48TpduLWOCubsX34APPSgRDYCV7zzh+T/mEp\n+z8pAOdasNsBre/uJYSoFukV08g5XTZe/aIjga8G8sxTF+PRluL2uHC4HZj15hqX5/Z4KK8ox2q1\n4nK5vE9QzYHeGnvTprhDLDgVQy18EiHqt/nz55OQkEBwcDDx8fGsXLnSb7FIjb2RU1Hp1+ku1t80\ni7cM29G48tBq9ZgMAQxuMxg7K6pVjlmbwoxrdvL0C3aSv/sPvKbQq7eRN15sRuShT/HFXDGKAmPH\nentonmroUO97QvwhPDycwsLam87CYrFQUFC90a0LFy7k+eef54cffqBr167k5uZ6Kz5+IondT1an\nrebhRQ/jVgIobzuRXh/14uLiIyhnWKjUarVy+PBhUouLsWVm4i53sndvBm4f//Ksd+/jjX9PJ6vM\ngNN5DMK9o1O1SjlvBk7mWNZHjBx5J5sGKCR/NI/cChtOJZtOPrj3/PlQRQ9N1q+HRYsksYuTFRYW\n1upIZkWpfvfbSZMmMWXKFLp27QpAVFTUWa6oXZLY/eRAwQGaBTfj6UGTufpAKZ9c9wlL3rmJXEeT\nKs9/4403+PDDDzGFh3OsqAhNcSH3jP0Qh92OISQYd7kNm9PG5szNx6/JycrB4/mrSdpPl67mElcR\ny3XG8fS/rIJ1y7bxdaB3sY1cWxBhrjIud2UxxLyH93S5aD0hWHtOYf66jwDQxrtp9bSLEc2Lccwp\ngMzWkBMDM2d6l0YqOXzGe/ft692q4scF34X4S2VlZWzfvp3U1FTat29PUVER1113HdOnT8fkp1HW\nktj9KCIwgh5NuqM5tJZeTXuxUmdC66z6YaPT6WT8+PHc+OijjJg9G+esiQyZfi9fPLqYjvHx7HTO\nJ/PgIe776b7j11QUVuD2VNDEUv36dFCb1YQGNyWufSotBpbhcGdxuPwoWR43Hq2DAqeGH9OOsnL9\nZkoL7fzvt2vooJgI6NUPAGWnnYrfbDS7bRpfz0pG3ekh2h3Kz6/vgDejYNlq4Orz+rkJUZ/88c1h\nwYIFrFu3Dq1Wy7Bhw5gwYQLTpk3zS0yS2BuYDoGBvNOuHRP1Bp5v2ZJ9wcFcEhrGTtyEB4az+b4/\na+xHjx6l09u96dHWuxi1AqiqgscN9vmf8rWawnV427b/UJiYAWkq2r4boFcpmsxUIg8FkJUWQ6mt\nCy3N0YxMuIk7r/sHU7dN5YqQYexatZbnO90DQO6+XDLVLJxtvifu1ydRUrqyd+x+xgfMhGD/LvAr\nRG0ICgoC4KGHHiK8suny0Ucf5YUXXvBbYpdeMReQBKUErUFF0YC246/8sRzjib97KoCzL99++wUR\nEW+xc9pIti+7G5fSE7sajFbREmgIJMochUFrwGw4/UmnRgsaDZhM3k0jv2WiEbNYLMTFxfk7jJPI\n/3L+4oCEhQlkTctgxFwPaW+kUZjbHHdRLc2XUlFBKJlotW4URaV1y6/o3rII8K6291fCKpxoSlx0\n2ufBUyGrHgpxqrvvvpsZM2ZQVFRESUkJ7733Hn//+9/9Fo80xfiJPl1P92+747rPSUgxOPOcuN16\ntGEq2y/RwMLzKLy4GBwOyMtD8Xgw5+XBRx/Rp+J9ljMXDS5+/bebOeonLBswgNF79x6/NNAQwC69\nnaDwEgD2GQ7SyprAzoPl3DfbyUy7B1MbmXZXiBNNmDCBvLw82rRpA8CoUaOYMmWK3+KRxO5HtjAb\nca/HM3ttFtMHtiFy0SEyWrUio+15fJGqqIDoaAgNBbcbc2EhDw4dChoNB3SP4NSY8Lh1jBtyFV08\nXVgXcJRbygIwxxoB2OFx41A8eFoWA/Bj0P8wNL2ShOgQHhsfQM9/mXF1dPGvf/2L/fv387uyHE+p\nhzFjxgAwInoEzWkOKBw8+BTYQ3Dfb2WMEopbl0tR/0LU1d3OFL0Q1WaxWGrUJfFcyq8unU7HjBkz\nmDFjxtlPrgOS2OvAvvx9LFuzjLkBc48f06RoeER5xPc3c7u9jdo5OXD0KGW9e/PG2rW8FB+P7rED\nKNMPo3jgnit28fOKFVyPh26Zy9Da9TidsFPvRGvTYbPDypXgqaLlJTU1lW3bthEcHExMkybk2NK5\n6KKLWLVqFevWraN5SHM6dPgIm+0Q5fvLKVuVyVpdWxwdttA7cCY0yfD95xYXnOoOHroQSWKvAzll\nObRs1pIJiROOH1Obqhh+qNuh923fbkvKx6moFQq61qk0TR/H14czeWHBWD7WdWTvXhi6rScFbYxY\nB6XzkEPF9crLeFIy2Lm6BMXzZ+0oMjISs9lMp4SOlGZlMGbMGLRaLYc/9/ZTN5s7YzZ3puRwCcrO\n/ezS96bcY0Dj+AxppReidsnD0zrSJKgJg1oNOr71ie2DTlO7f1eNRiPlBQW8lpBAYGAg8+bNO+l9\nnS6UMoLGRFj5AAAgAElEQVSwLQ+l+1IHT+kcOBz96ZWnocO0dnwWG4T+k39zT9soOirBdPqku0/i\nUoNLcDgyj29E5OFwHJP1UIXwEamxN2IRERE8l5yM0+2m+P33ycnJIZRThjor0PypFiz7t0JsPBjX\nF2A0BxGww0jz3Q40R47QLCCAYEWHo9h43jFpD1RQceu7bF7yyp8HPwxm/foyunZdUK355IUQf00S\neyOnCwgAVUVfuXB1VZqNacqe3zUc6PUO3b7ewiGDHUVj44vtX+D0uMguy/JNMCEhhLT5D+779Fwy\nz3n8cNJ1BsI3vIbHY/fNfYS4wEliv0CpKnyZ/CWqcQCDPx/CnuYeivPW01PREGoMw6bR0drSGlVV\nSStO881NNRro1w8CdsOQy054I8k35QshAEnsF5SsrCwCPN6RoiEBIQxoPoADeQrPDXyO11fAwA56\nTPrhxAY3I10XQD9zP3QeBUOBFo/Ng8fpQdGe3A6u1+jId3ho/lZTrFYbPSN6E7onmGvfHsqVrYfw\nTrN3/PFRhbigSWJvACyeTLKydhEYqGHLll/Yv78IpzMXRan+6kQJCQm8++67WB3lxPftjU6zj5Zh\nLSEvnctaJTKrXEPHQCipPF8TqCXzw0zC8zW0+TiEfbYyKlQruMvgzj/LbW1px9DYCBJ7m/nf/9y4\n0jV0C9PwUBuV/+bshma+/VkIIc6uOon9P8C1QA7Q9QznvAdcATiAe4CtPolOABColmAwRGOx9KZ1\n6zs5cmQjQUFziYq6Cfji+HmKW2Hb1bvxOKZB/y0AdLS42Dk9irFjxzJ27Fh+C1rO3tnxkN/jjPfT\naGB3vpHn4q4jW+nCewEbcVck06tHEAXrTq6xa7UGWjb7P9oPmkD+oVkcDjxMtHkA4YY3TzqvuBgq\nymDlHmhrhwULoEUL6Nmzej+D/HxYs+b041ot9Onj/VcI4VWdxD4LmA7MOcP7NwItgM5Az8rzz5w1\nxDnR6SyYTK0ICxtAUJANnS4Mrfbkof2KW8F2yEGC/j/wxu24rW4KRiTX+F5R9nQ2v5lEanYew96f\nzqVDu2JPhzn/djO4bc1jNxigdyf4tQR+/hnuLYd33oGCAti+/ezXt2njHSj1xBOnv7dzp3cRjv79\nax6XEL4QFBR00ghYm83GuHHjeO+99/wWU3US+0qg1V+8fw3weeX+1soy4wAZXugHmkANoZrd0D8U\nV+k5rK7UqxfKvn10+nkaBqsVrWYPPbflsSu+A9HnuCiMTgfffgvt18Prr0PhanjvPbj11hNOWrMG\n3k2BnRP/PHbPPfDww3TtCqtXV132oEHgxxXIhB+Fh0MtroyHxeKtfJxNWVnZ8X2r1UpMTAw33XRT\n7QVWDb5oY48D0k94nYEk9obrxhthyxb46CPMWVlUNI/j5dxc2LYbfbC3y+QjjzzCoEGDcLtrtjrT\nmWiMCgWO7hTlD0WTMQCNAfrcsQL9tm0+KV80ToWF3t5dteVcpqH59ttvadKkCQMGDPB9QDXgq5Gn\np/4IZAhhLVmeupy31r7F7tzdjFk4ht25u/k+6y3yQ5f6/F4xMTE0+/5zXuiWwPDhw6koqSBBk8Dq\n1at56aWXfHafS7L6E3a5hbbvdaDPzotQVT3uyOY+K1+IuvLZZ59x5513nv3EWuaLGnsG0BxYX/n6\njLX1SZMmHd9PTEwkMTHRB7e/sCw+uJgSRwmhxlAuiruINcY1NDd2ovBwXwzGb3x+P0VRjtdc/mhH\n9B6reXUmUKPh2uRkplW4+XvBakpehajV8FTz5lwdoEFv0RMQGQDyIFQ0QEeOHGHFihXMmjXrvMpJ\nSkoiKSnpvMrwRWL/Bbgd+BboBbiBKtaaPzmxizPxEKUe5ajqxmY7gseVi46TG5E7RHQgPTidMb3G\n8FXwV/QJG0pOYRSl2h+ozzNsrezZk681RwnWpnG/pw2zXwrhui/SSXM4/B2aEOft888/Z+DAgbRs\n2fK8yjm10jt58uQal1GdxD4PGARE4m1Lnwj8MT79I+A74DJgF97ujnfXOApxnEN7mMkVd3OX08bu\n3TdTccxGkGpFpws9p/KUv/+X+CIPhw+HAaC5/QhNysJwu8t9GXaVMksz+XLHl7Qoa8Gba94kx1nB\n58l5fOS+muSSckqLQllcWMjfIyJqPRYhatucOXN47rnn/B0GUL3Efks1znnofAMRf3DzP+1IDIYl\n9O69luTcX9ml+4aBgR3OqTTN6JnA/ShK5RTBLj0qelq3fpUVK6w+idiZ76QsuQx9hp4gaxCYoYVZ\nzy1dbiZ3Ty5N3U3JLM2kwOXEYMvC4yrn1datucHgPukLhtNZiMORhRqaT4WuGMVYjlKRjV4fXasL\nKghxvtasWUNmZiajRo3ydyiAjDy9IBTtHU2ZJYZfCwro9kUOn98dxg5nCKsK3z/vp9ymdiYyP8xk\nz617iC6Mxmw1EzjYQIhey9SBUykJK2H/5/t586o32VdeztbSBVWXY2rDoUPPcOjQMzhfcZJsdkFH\nJ66135OQMI+oqOHnGakQtWfOnDnceOONmM2nL+7uD5LYGzGNUQMahVYzikhzO7BUVHCorw7FqBCo\n1aLXaLgqPBzdedSGw4eEE54cDsCsWbNYsWIFVz8/gfxqDDw6Udu2b9G27VsArIlbQ6/xKRj3rmT3\n4zY8Hts5xycaL4vl3Lok1qT86vrwww9rL5BzIIm9gSktgw0boDQFHnsMUlLAaq36F1yj16DqYPuc\nGGICgtlWVkaARsOVJhPj4+JQw8Kw2+1+aebwqB5UPKiqB1VV8ageFP7sbTM8pgmH21/H6PwPSC48\nwMZUb6ert9q25RppkxdUb/DQhUoSewOTnQUZGdDE6J1rxWiEbt2886W8Vzk9ywfXXsuulBQAbgAW\n5+dj0NnoFBjov8ArabQmXB4XPb/XoY4Cdl7PjOY3M2PnAoIDQrg47iIedDrZHGBkRdISiu4OZXBY\nc0wRXZhy5AgHbVJ7F+JsJLHXczq9npLVq/lkyxb0ej29HhlBcDC0MHlr7L/84h0sGnXCcP8Zw4Zx\ng05Hs4AAFCDCYGBoZDQDQ0P59Ngxv30WAJ0phqZBHraP8HDDzW7C52zj5fh4jpUe45mlz/DPi0dh\n0JaxICuNjiUl7NbpiAgIoInZTPhfLBYihPiTJPZ6LnHYMNobDFzyv/+xYMECHKXV66Z4a5MmdDab\nWbYf+gQH82BsbC1Hem50isJV4eEcUooILN3FVeHhrNEo9JS+7UKcM0ns9ZxOp8PUti3RO3ag0zWU\n/1waKiqOsX37VbhSmlJefhXbtz+H09QLuL76xaxaBQPdkJkNR5ZD795QXg5jx4LJdPbrhbhANZRM\n0aCFpIUQnB3Mvvx9x4+5CupuSkKbx0OB07vGqN1z/kNT9+XtY/aW2ezJ28PIr0ceP+7e5yaMMIzG\nlnTtughVdVCeq3DUoCMiYhipmZ9S7cR+5ZUQ4oDwTykOdUMrF81D9hC6cSPZB4DoaMLDrwbCz/vz\nCNHYSGKvAyEZIahdVYJ7BZ90vNn9py8vlJtvY+X4X8nLK2DUqFFU6HSklJeTm5Nzeu+Vn3+G5GR4\n+WUICICjmaCe0oauKMw+dox/Z3m7ELjd8LzJwtZcOHYMHA7YuvWvexjsimtBhsPBf3PzANiTt4/S\nilKiAqO4ucvNAKQXpzPtx2kM0Q1BURQslkQAdKElZOv2Exp6MWR+Wv0fWlQkjB1LRHYw+fk/kY+N\nmNIcQuKzyLcto+TwrspukPdUv0whLhCS2OuIvYOdZmNPT+Slp0wmvnt/AeUGLVqtlkcffZRCs5k3\n09P5qEMHHnnkkZMvXrbM289xwAAICYFdKUAwtAg7fooWyLykP1qtka1bvQtSzOvgnSciK8s77enm\nzd5iWreGU2fK7VyUQnp4BJmZWSzIy0P1QOC0aIY4b+DnnP8S/XA8oTod8dfHM41pvvlhnaBJk1tp\n0sQ7cfvM/ftpv/oNbrj0WfZWvIpam3O2CtGASWKvR66OjuYbUz4pRQ6eeP4pRowYwXabjeB9+7is\nTx+0Va3/FhwMiYnebjGzvwQ1GMxV90t3uaBzZ9i40fv65ZfBbvf++4dTE/vFeVtpsuhXXmsWhXbd\nGxyNKeHHAWVoVYWcZSpPXVXKJ0eaYltfiyse/AWPxsPL248xM/vkJK8At0fHcG2i/IqLC4/81vvY\nc0ufY8PRDZRnl5NZmsmVc67E7XYR//tWuP6U9uWRI+GWP6fi6RAcTGLnOEpSi3n++efrOPKq3djp\nRnKNK8EFv8/8HUuklisGl9Faac0Xe4LZdYmOALOJsg3exH7U4WB+dvbx62NKXASfqfAaCtRoeGbk\nSCZnZHC/msX+nP2smrgCgIS9J/f6Odwsj00fB3JtorTBi9p35MgR7r33XtauXYvBYGDkyJFMnz4d\ng8Hgl3gksZ+v776De++FsjKIieGftnwiS1wcAK4Gfrv7d270DMCSegzemfLndUuXerdbqp5jLTk7\nmaWHl5LusJOTk8M7rlXkludis+3Eu7xs3ejapCuEx5J2yuKkK1euPO1cFfitsJDwPG9bvENVOXa4\nkBn4ZmDUK/HxPDl8OHz3HUed0ZiC45nR5BLMWi2mxJO/zVy8spw8n9xV1FfhU8MptNfeN0WL0ULB\n09Ub3nr//fcTGxtLfn4+hYWFDB48mHfffZcnn3yy1uL7K5LYz1d6ureNOzMTfvqJ//vsCkYOns6x\nMh3Fd97J+ytWYO/+COoDz59cYy8shLfe8raDDBgAEybAnj3Qwjs97ydbPmFb9jZiwzvjKC8ktchD\nhbuCpgFtySvvA4b0MwTkZ7t3E1U5b4bN7ebQHpUjaYMp3liKIeivLy2yF/H22rfpXNGZTzZ/gjPd\n25MnLiSOUZ1HodNoiCwrA62WPLeGIK2OSD/ViIT/FdoLUSfW3nMWZXL1p9o4cOAA48ePx2Aw0KRJ\nE66++mr2799fa7GdjSR2XzCZQK+HmBjyQ/VMs+tIsFpxqiopDgdWj5vyU7sZXnGF94/CH+3mBgPc\ncQc4lgPFAIzoOIIBnUezb98+3unTh6TgJEbEPMmX9lzwUT5bsmQJVquVoKCgc5rQ/0RBCUFguYr2\n7doBUOZysamgGMcWB0uXrmfwkD085ngQp/NFkpOHo9qncrX9XeAzmgU3477e95FWnEZHT0eOlhzF\nHmDH6rQydeVUbuxwo/cmqobMWSUUhOdTlL+TrJ2LAYh7NI6Qi7x/FAMCmp7X5xCipoYOHcrcuXMZ\nNGgQBQUFLFq0iJdPfHhVxySx15JxsbHs0euZ3q4diVWd0Ly5t5bucsHatd59gClr6yzGm2+++fg0\no88++yxPPPFE9S602SA11TtYyO2G7GwCdqfwWE4B454ewcPLlgGQ17YtP1zRB/PKQvT6aKK6rOXN\n1ft4RmehTZs3UHQWYt17ADDqjLx+5esArDGuYeJlEzHGGckuyybhiQRWPLvC+0TU/RHK60VY5nSg\ntMccbFd8jbvMzT6nBu0WLS5XUeUskX/z8U9LiDObNGkSV155JSEhIbjdbv7xj39w/anP1OqQrxaz\nFg1Q27Zteeyxx3jssccICAio/oVvvw0PPeRtOiorg8/mYEreQ2i52/u+Tuc9PnXq8UsURUFn6kC2\nphWKoiMwsB0oZ//akZsHAaVmXoruxT/iEmmtu5cXolsw6ZvX6X9ZJv0vy6TpklXE793IJZdk0LTp\naDwee01/FEKcM1VVueqqqxg1ahTl5eXk5eVRXFzM008/7beYpMbeSBQULMHlKcB16fcMcIItZx2Z\nAQGoqg9GuObmep8H/GH5chg+HA4ehNBQeOpJijZk8vLfFnrff/FFOHIEFnubSbRaLS+99BKvvPoq\noR4Lx1wzGNSrFy73HLavKYKBZ751sbdVipkfQEBPaHop/Ot1uP3F8/9YQvhCdnY2mzdvZtmyZej1\nesLDwxk9ejRPPvkkU0+o3NQlSeyNgKp6OHToaTxqOJ7m+2iugqs8h9IKPc2b/xON5jwa5Fu39rb9\nZ2T8eaxzZ+jY0ZvYK3myPLRLaYehAgophCwbVmsbKvQq5kwzvwf+jgdwuDyEtjKybv46Ei/PIL+w\ngu5/dKwHhkdGMqSKMJo2g5BWgA5iYqoXuq1pGSuLTv5SGm80Emc0VvvjC3E2kZGRREZGMnPmTB5/\n/HFKS0uZNWsWCQkJfotJErsf9N28meyKCgA8qopRc24tYm6gRKtlb3k5gYCHpni+eIpPhygMb9WV\nDr5Ypis4+KQmleNO6O5o7GxGnaty7S/XUB4IqWGpYHdQmv4AJrvCwOKBqB6V/eU2/m/XLrYN6Meu\nfRq0ikK80cjTnToBsLyoiCUFBQwBDj52EI1Zg6vATrOiJjUOu6c2jOTO+Tx3OP/4sXynk3YmEwu6\ndq1xeUKciU6n47vvvuPxxx9n8uTJ6HQ6LrvsMr+uqiSJ3Q+2lZWxt18/9JVzvwRVNaK0GlaHh7M5\nMJDio0f5ZwBkOSvIVp00MwQRVYdzl5v7hxD2fRjvfPsuexJmoCb2hCNH2NhxJzZnW8K3rAHArap0\nCAlEY/jzD1mARkP3IG8/yHS7t2284+yOODK80/bmpZXwgfoZf+9+bY1iuiegJetntGTl5j+P/ZSX\nx4eZmefzUUU9YjFaatQl8VzKr66BAweyYcOGWoulpiSx+0mLgAD051hT/4NLUQhxu3mvXTvS0qCV\n0UhLNYDVvXr5KMrzo1U9/NqtG8aLQ44fO/XbSXJyCfPnzwdgS2kp2QVZfB9ZwuDBvTCZAijZ5WRp\n+Uoq1DRMxJ/xXqpTxW13o7pVPE5P5Twydb/kn6g71R08dCGSxO4nW7ds4Zqrr8ZzSv92m62UhOva\n+ykq3wvQagitYh75dev+h1Z7mJSUUr788kvMZjOZDgcl1lSe2LiDt966hL59o8gvCEPFQ1raq3To\n8O8q76FvoufQc4c49Nwh1AcywbgfbaiOHj2iyMn58zzF3aW2PqYQ9Yokdh9SVRWdU4fOoWIMNZGW\nloZWq8Xj8TAyZPhJ5+bm5tKtWze+/fbbk44nH3qN70tzUKvZY0/jBldpZc8XNw2mA+v991+F2TwM\nm81Nhw4dmDZtGj/l5bEs9TNWjZtKq1Yv0aXLZRS7s1E2/PTnTI5hYbQc0p49bgUqW5taAa3GjYN3\n3yUvr5jDyz/GVrKIrsYgcnO955SVbUcXchMwsopohGhcJLH70LFPjvHG+Ddw61UUJZPFymJUnUq5\nRqXb8D6nna+qRaSk9Knch+zsZlQ4SzjmuZq9ZXlsLSxks+Ev2oTTgmi5U8fef+wl5E2wHbRhHNww\nenyoqkps7ByGDu191ul3PVo7Px85yFbnPJj1ODnHPLzxBsyZGcUVra+AefPg118BiIy8Duv+7hzd\n6+KlhW3YtMlbRt++z5BrUtlqhNvfgOeeAz92WhCiVkli9yFXsYukK5L4cvKVLOzem86VvVJiVq9m\nW+vTE67HYyM0dACtWk1i0SITt93WhKgoN6UeKL/on6gFoRSY4pgy+wzrnDq12INUunzXhbQ0MHc1\n0/3X7rX5Eav0XW4uRVY7R40dAXh77dsEHyugu6cZP+77kdv73376IiGVKiqOUVb2E7t2pRPgcNDH\nlsqqE94P0Vswp13Hssy1hJR5+8mXlkJxKyc3/Hcxpc+Wgk6HR4XZ//EuHBKxDrB6u9pbLNCjh3e6\neoMWojVw6BBs2SKJXTRektj9TKcLxWRqDcDQofDf/3rbUsYv0mA9qiH3RzPDo3zQbbGW3Nu0KcuK\ninB59DRrdSPxrkOk2dOwlJbQjaa8ufZNbrj9BoIDTp+8V6sNJCrqRtzufKKiRpJeWsJmdyFG45/N\nUwatgeg17/Pm80/QseMnABw4AENeLyOn7Z8d2sutMH483H47dMwCgwMcTeDrr2HaNG+X+4AKiHVC\nWOva/7kI4U+S2P+C0+lk3z7vOqUGg4F27dqdseZ5NnlOJ9rKaxvTyj9T27Q54VW3P3ePHGGLZjEB\n2r+aqkBDUFA3AgMziY6+CZcmj33WTLTaX84plshImDkTjrwOriK4dpx34kwhLjTVedR2NZAM7Aaq\nmvzgH0AusLVyG+2r4Pxt3rx5DBw4kJtvvpkuXbpw6NChcyqnfWAgl23fTsLGjSRs3Ei8yXTOfyCE\nEOJszlZjDwBmAgOAbGAtsARvAv+DincJzUdOu7qBczqdjBgxgk8//ZSOHTvidDpPen/xgcU0ydpG\nWnE6+bZ8dmTtwOFynFbOip49Tzu2uHIeFVE3FEWLvuBz/k/9Fd21ZsLDvYt4A8TFPUpU1A3+DVAI\nHzpbYv8bsAs4Wvn6K+BaTk7sChfgSBC7y841c6/hk6yu5JfkkV9uY3v2dpoFN0Ov9fGoT4cDBg+G\nlBR6/usWQgpcfKnNhtzmvr1PLbh0+6Vkv5NNka7o+DFjfN333Gne/J/s0/RjTX4eQVva0K8f9OsH\n2dlzKCvbLIldnJft27fzwAMPsHPnTpo0acK//vUvbrjBf79TZ2uKiQNOXKono/LYiVRgBN4/AAuB\nlj6Lrh5TVRWD1sDdPf5B/+b9aR/Rnju638G17a9Fq5zbFAFnVF7urV42b87+myewIP5R6NQJxoyB\nKkav3nEHREScvl15JQT6ZpW6aokNWkqFvoKKYxU4Mh04Mh2Ubi5l1427QPV2z8yYnkH2vGy2XLIF\n7cLiWotFr4/AHdSfdH1fjh1LxOFIxGJJxGg882hWUc+Fh4Oi1N4WXr31cp1OJ8OGDeOWW26hpKSE\nWbNmcfvtt9frFZSq85RvIfAl4ALuqdyXR1Y+oNd5Z77t0gVWWXXsPmzin/9OoGvXXIzGEIg79W+s\nV2oqfPYZXHzx6e/5Yl6w6mpiXsd/ring5X++fLxXjKqqNH+8OfSFgKYGIq6NwJnnxBxsRrvTDqd3\n9xeiaoWF3gEgtaWaz8F27NhBYWEhDz/8MAADBgygf//+fP7557z00ku1F99fOFtizwBO/L7fnJNr\n8AAnrib7KfDOmQqbNGnS8f3ExEQSExOrE2Oj9u6O9cz5NgSXC5xdIOQ173G7y84Hg2fy1JJy1CI7\nulub0SbGw5Qp31HuzOPf/06DgE/RhWWTm/vf08oNDfXW0usbRVEI7u1N8ppALaZWJgIMAQRYAqDA\nB3PHC1HHqurl5vF42Llz5zmVl5SURFJS0nnFdLbEvhHoAsQCOcBNwNhTzonC2ysGYBhwxu8fJyb2\nhmrv3r089thjuDwuKlIrSL/5/FZJz7ZZeeXyV7Ck3cVXX8GXX/75XtH0ItJe3YI+Qkuu7TlcaS9S\nVPoaOsMwPB4biiYDRe/A6cyhWbMHgDXn9+EaqKKiIhxWKy6XkwMHjlCSX4JaoqItKABO/jqdWVFB\ncXwO601gyIFAqxUdTlqqKhrpqSTOQbdu3QgNDeXtt99m/PjxrFixghUrVjBo0KBzKu/USu+5rEV8\ntsRuBx4AFuNtj/8c2AJMBjYBPwKPA9cAWry19ztqHEUDkpKSQmFhIc++8CxL71lKakHBeQ8GMOlN\nBGpD0Hsg5IRu34XOQpqNbUbrpyzQ+hoMITHg0RMbO47AwDdQbRNx5u4gNnYcUVFRNJbErtPpGDdu\nHKGhodhsLTh69HX+7/8WEhY2iIULFwKhJ53/8PjxvOlRmKVeTla3zXico1BVM5458wkL3w94v7ok\nmM20N5lYG59LhQmyc6G31cqh8hI62u20Mpnq/sOKBs9gMLBgwQIefPBBpkyZQq9evRg1ahQul/++\ngVYnJy2q3E408YT9Zyq3C0Z0dDRDrhoCkgfO6H+rVrEoJ4c2/3Fy/6Ke/L1XKwAOdm5GfvOq24iK\nyrWsvrMVLdSfUZQKSkrA4dAQHV3Ks89exGOPbaSgoAAIBVWL3WWn/fT2ZIxxoaqx5OUeIibGQp/t\nYQyyXEn4L58S5cnmj8Te2mRifufO3P4adO8O17UBq64DJTzM4fWfk3pKPHEhE2kW8iQAWpOWgNga\nrAsrLii9e/dm3bp1x19ffvnljBgxwm/xyMjTBubnRS7Cwuf6O4yzmvfbb5TGxnKZ3s2sdUd4LjSS\n8MNZdDzm5Ob/b++8w6Oq0j/+uVMykz4JIYEkBEKA0EGaSBEERVEEQSyorMhaUFHUtfDbVYS17doF\nd3VVBNFVARcbinRCSVA6IQGSkEYSQtqkzGT6vb8/bkgjgYAJBDyf55knM2fOPfe9JzPvnHvOe77v\nyF8bPKbMpsNRqOeT77yAmnR+ivIDXl5WvLxkiovX4PF0RnGO4MisBGRtILGxscxYv4EZMzS89x+F\nBXcuYHiHSMo1Wt4rvhuGq6FAWXY7ZrebbgNH80LodObFS4R/8ADHnx1Ah3f6IZ30xuGAjKMett//\nOCc6HaVoxUEA7Jl2RpaNROvbzBFPgsuC5ORkYmJi0Gq1fPjhh2RkZDBjxoyLZo9w7BcIWXZRWXm4\n+rXNlo4s24Gmxx8+fOMD7Cx9jvbt26sxsq1ZmUCr5fr/+z9uueUWlnXrRq8fd8J779E+PZ2OgYdJ\nbWQpRmuUGTy4bllFRTeyskx4PBaKin5AlmNwu3siVaykW8zrSCUS0QHd0Jdr6NZG7RT7Djur9c/g\ny1iMHSBosMRbbY5x9+HDPHb4MDdNieWu5GS+3uhkSpKGDRs0+FZo6N0bkGUkrYb2M9vT5dWhAGwL\n3Ibibs0dLriYLFmyhMWLF+PxeBgxYgQbN27Eryoz2MVAOPYLRFHRKo4efQijMQqA7OwKXK4i9Lqm\nqzFOHjaRPu1eYNR1rwKw6bvsFrH1YqHdacW3SCblkZTqMslLovMr/ejd+3/o9dHExn6AxxONVmum\nsV+2uJ5xzA2YS9bCSjSaaG6QKijYL5H0F3+8NRqCUlMZ6O+Pz3mmJBS0EoKCmhySeN7tN5E33niD\nN954o+VsOUeEY2+ArVu3cvLkSXbt2tVsbcqyizZtJtCz5xcAlJSsJTDwbXx8zm33qKKANcmqvsh2\nNpFYev8AACAASURBVJt9F4zSUtqfrJIhdjqgpAQUhbC7wnCZFTyfSfj2rgm2z1yQif8V/hiiDMh2\nmdeeeg1Z6UypeTrvvrudoKB5p4Wb2SJs9LP3U5f1eZPMA9cxKHkQcT8txB3+XtPstPqSk/MWubn/\nAkBZqbBjv+pEoqLmEh09/5wuu2xHGSf/e7JOWcgtIQSPa9omGEEDlIjUeI0hHHsDTJkyhWHDhmEw\nGJg6tSbjTklJCWVl6u7IysRKvB3eWE8a0ZX44bF4cGQ7kLxabgRh7GiASki6PQkAyePB4XsJheh1\n7gwLF/LaLyf4XFEgIxP++U+YOhXvzt54ppiwfycR8UhE9SG2VBv5S/MBeCjoIY7vP0651YLilNFq\nNeh0OhYtWlQtqiZJEiXPlZCdnc3Qobej0+1k2Sv5mNeZ+afyDjIylvJgEqMSeNHupFx3kLddLgqG\nphC9uNbd07qbGLmyZnPJjrDtDE0dSoH10zpTak2l+OdiHMcdBI9XHXlpXClF3xUJxy5oEYRjbwBF\nUViyZAltau3w6dKlC5MmTQJZ5o6xN3LoykQ6SBHM+fYbQMLbGED5znIiHo8AWmYkETjMhDZBw5Ck\nIQBsMpspGd96cuHJsszWrVtxOp3k5OScXuHmm+Hmm5nx+Ti4dwPExoK9E9TL+1qbLu90qX7en/4A\n7FtVwfY/23nssWHExMwDICOj6Xa6HD4YOhh4929a3oqJ4dVNR3nhHVudOhISWm2Npo3kMqDRGJGk\n89cBChgaUOdHy3rIet5tCQRn4g/p2H/44Qc+/fRTAEJCQvjkk0/Oeszq1ashLw86diQvJZcUjYXH\nurvR6dugufZaRt1/P926VDmh384+9223a3G7jbhcYLeDzXbWQ1o9aWlp3HjjjYyoEkHv06fPRbWn\nsrISrdbKjh07MKYbUbp4SExIILRCQROsoSxUgybci3IxaBZcZvwhHXtcXBwmk4mJEycyderUJjl2\nAJxOiIhg7rvvcuutJTz2ylwGtBvAkcpK1rVtS7cmnv+XX2DKlDFI0nAk02N8nQf6RDhTdNQH11/P\nuqRDPOyRmXBQDcErcrlalaymLMtERUWxbt266rLi4uJmaz+tspKVhYVUFsrIih+/lpfjtFrpUSWA\n41ZkvitUz+cA+owZw961Ng4lHiLiRASKR+ZQwk46Z4cSKJy54DLmD+nYQR1Nnq+spltR8NNqMRyY\nw+4JNq7etw/3OYgRVVTAsGEF+PjcS4d7OzA0Eu4fcKpxN1TN41NZCTYZShTW9e9PH19f9GUSs8LD\nq9t69ULKNTYzqanwJrfhLrKwvi8UWwOQdI0vCP9QXMyqoiJGyerO0zSbjfTCQp6vcuxlbg8vZmYS\nbVSnUFLuuQfv34J4aNZDmNeZ0XjpGTFhAmFvb8OekcGs//xMuzZtIGY0mBUkqwU4c4jafksFnspK\ntp84Uaf8pjZtCPPyauQogeDC8od17PVZs2YNr76qhhGWlZWhvRChcApIHgncILvVeWbN3Llqfjej\nEWyTQfGBz/8LCxZwhZ8/OkliQkhIdRPvXcIhe3v3wqc3bKSwR1eefhPizOV87z4Bq9PBYqlbecAA\n8PZmZGAgd4eF8bVkJ8pgoP5M/qzwcB6OUOexJ5xMYWe993N7xGIzHaQnIGs0NbLH5eV4ZRylpGQg\nVw2Fl2wQ+Uhu9XEf2RXmrMslt+0Jxns7+LWsRmJ4R1kZTllmVkQEAkFrQDj2Kg4cOEBUVBSzZs3C\nx8cHk8kER49C7UXA/PxGj3e73fTu3Zvy8nJOOJ1cq9ejlyTsdjs2m42YmLa43WV4ew+mpGQsBQWj\neDVwAr1v7Q0a2MpW8ED3sSG0e+MNeOQReC0Lyj3w2kKopxTndkNiojr6T02FoiJ1nn7v3tN9YmtD\np9GhoDBj+5UMtydyoCSN+38dwrWDX8CoRMLgW6BWNBIZGdC9O7z88u8+tzUoiN9CQ+nZNpqPHniA\nobGx8HMi6KwEBkJyMlQWQ9FYBZ9pefTXqncH0hKFQxU27ooN5hqjnYe6da9uc1ZVXtyWRFEUyraX\nIdtqFpp1gToCrgxo8XMLLj2EY69Fhw4dGDlyZE3BtGmg04G/f03ZzTc3eKzH5SI1NZXU1FSu3b+f\nf3frRjcfHxRF4cSJE7y6fw4/ncxEkvahKPtQlDcpWz6febfPY868OUztOZWU2SnYEo1MjozEfvAg\nQ/NteFkUth60sLeighlta6YJfv4Z/vQnNaDk7bdVM48fV3Nv6HTQmgePiycuJoIIFt24iI2vTeWK\ndrFoQzuRVZoFARFqNpCvv645YNky2LChbiOKRHvrd7Rx/MaeYgO5ueF4y//Cz7KWM6Xdddh0pKbO\nJSHNSfItvZmo90L3BBQbvHnJ4YA2mWgCZAajMKF9EG9XLYivV05yU1YXJlwfgtWa1wK9cmZcBS4O\njD2AabSpusy8wcwo9ygkTWtaaRG0BoRjPxOyDB99hNKvH9ll2XgUDwCVuwqQldND9DQaDVFRUejz\n82nfoQNRVXO/HTt2RJMm8VrHq3jq+ji++QZWroSJscncf9v9tOvZrroNq1bLDh8D//X6Dk3fYnAo\nDNL7QTB0tEic2uLidsOYMQD+rFkzEUmSGDhwINu2tXCfNAPt/dsDMCRiCDt0Rtr4tME3IIJj59CG\nZPflQNuP8NJIjGofjl7vhYwOg/PMo2d7pQaP24/+g0uIeS6Vf0RHk5QUgSSbcQIoCtoqCV/f30L5\nd9U6cGcP7NoFvYboCQxcQVlZjZLm9Q4H3sUajssP0KHDkwCYXS5mpaTgqlp7uarQissosS/Jwlsx\nMZzrBJoiK+jb6Om3ribWfotmyzm2ImgJ3n//fZYuXcqhQ4eYNm0aS5YsqX5v48aNPProo+Tm5jJ4\n8GCWLl1KVFRUi9skHHsTSMhJYMxnYwj3VxctnYFPYHXGMLD9wHNqRyNJ6DQ6tJKqgayRNGg1p3/F\nQ5QyDAX/xN8wEwUZk6EmVr1z53/UqbtixQpsVbGSRuOFzyXaLOzezc1vH2NVaBvirvRgc9t5+LsZ\nAIzuNJoZDWZwlCg39MOo0RAQ0Al/f1CkoqadT/Lg7Q2GSAcdOiv0q2hLVpmVlwztIDoat8VNPLm8\nMTOAmVWD/2gZTpyA++6bTnp6XTGb/2VmMlDejsWyv7rs2Ac5XPNpETFVUsCabBeOmcF8abWQZrMR\ne659JDiN4O3bMbegNG6QTkfJiLMng4uIiOCFF15g7dq11d9FgKKiIqZOncqXX37J+PHjmTdvHnfc\ncQcJCQktZvMphGNvAg63g6s6XMXmezcDcNfmAwQYKtg+c3ujx8juYpzOyurXiuKmfnen22zMPXyE\nXaGqNsp9Jzzk9OiOUS5Gq/Uj+PjTeMo9dP5z50bPo9Pp8K89VXSpccMNcPQoncdcQ7BkRQoKJuGV\nWYzuNICDJw+yPGk5M5h2UUzz94d//1t9vv5TNWds8mIDfn519X1K9UZccgZqLhoV128WsvppufPP\nNUGwfv38eDPj/LLqCE7H7HajtGAWNqmJWYwmT54MwO7du+tszFu1ahVXXHEF48ePB+D555/nnXfe\nISUlhW7dmhocfX4Ix94CdPPspnj/E+zS1SSEsFrL0YffWKdepSxzXVAQiwer/+SC2GyKX8uBr/W4\nPnGR8dcMOv+zcad+WRAdDQYDbZ78Kz2KiojLy2PMbWquljWpazhcdIbt+263GtVis4FdAgW8XFmY\nzVsACHUWIMmRyB4HADqdH69nT6HvHQPYvOMO9v/4NINWS0QUh/OF9E9e/WIpppKTSDboJnvjjNyI\nooyplivYuEGNQH388bpm7BoCVzdw81bQUYPpatPpbwguS+prFiUlJdGvX80gwMvLi27dunHo0CHh\n2C9FvLDjFTCWYVfU5CcJOXEnYWGnx817a7XV8c+hr8RAyTs4+3Vgd6ieYe5RNDgLIQCXG958E1wu\ndaFV7ojHNw69M4vMzPkA9LP5sdozjLKyHcAVDBv3M3c5g/nsTS1d2iUSbnucO0PDOFq2EyQPW5O2\ncbQkGYNLz7vupzCNmkjBtx8TFtAeL42WR3tv4YvDMFrRktt5JIpW/fos2gcnejkJV4ooyN8NgMXn\nOP7eDiorQ/DyaodOJ6JXLnekekqTVquVsLCwOmV+fn5YLkDYmnDsZ+HI/ErYBM+5n2PbHHVl8l63\njBJybl2323ckx8pNLD90iNwAyB0Pw5Y56myHkSQJNApSlTOXtCLaocRWQkpFCiZrAenmDAo9CjlW\nF4rckcFxd6LxNrKn72xyHV54HfKj+Nhn3HS3Ohp6oTgFND6cLPgcTh7mr+VvYC6KQC+tpV2YL6G3\n3809sbHE5j3O3g9/YvnWIwQGBOBWDMS7ZY4tciAtexwGDETjfJpJ6Yto53Ewetkujs9YjdXSFoBn\n19vwdfhQMuUQsuVWAPzGy9xg1LB/vxOTaQw9e/630WsUXB7UH7H7+flhtdbVA7JYLBdk6lQ49rNg\nPyHDG/Cu511+vOtHAO5JSmZaVLs69T7Lz8etKLyYkUFpAws6mcZu3Giwck1YGPHHYMcR6OXjICZI\n3Ko3RnRQNAatgRVJKxh0opSfUldj1/qz/sCPmIyrOTrLiVenCEaFt0efJyHfruCVVnfnqqwNpFu3\n/1CaVcaTgTcxM6QTksaJorjq1LOZTDw6dipffPEFWNzQLp6ur3Ri0582ER0UDYHbsPz3e6YM0FHS\nYzgnfvAQOtOIIdzA4c8CmbJxCF0n7SN4jKpVcHjGYUyjTWgHbqewcMUF6zPBxaP+iL1Xr1589dVX\n1a8dDgdHjx6lV69eLW6LcOxNwQccsgO9SVX2cwRowFgzR/J0hw78VqRGZGgkiVtCQvBxnT6HMtDL\nzuS2bXE74fgxF+Fpmwj4bD1sr7U9fds26Hd3y17PJUL3kO5svW8raJeBcwOPDXmMNGsZX+z4Fo3W\nQ3l3BWMPAwGdAvDPAEVTgc9uO3kfq3HmXZLt/GqVsey0g6TFLRlBMgL1ZAsk0JZquWb7NSRPS0Z2\nydVf0m3btzHnkzk8Wvko99//ZyosCzl8+DAF9gKUbt4MmHIlqx+AW04WsPg5yHhdbfKODLhptPrc\nbs8kP38ZAH2dWVASQnmgE9nUEZqsMCRorXg8HlwuF263G4/Hg8PhQKfTMXnyZJ599ll++eUXxo0b\nx8svv0zfvn1bfH4dhGNvFiaGhHCdry9vSRIvdupEUVEoeXlnnkYJcBRCRjqOGyUsPWplxe55E65r\nOkNhCxt9GeLRefD4a6j4rQKAkFw3klMh7+M82k5pW6euLNuI9BzGY63EHerDyXuPkpWYx4SJEwAI\nnxVOSEYIM/bOQLlC4cG1D7Jp8CrcIz7H/KmCxy5z5MgRuldeiaJASAgMuRJ6xqLmTf0bpKVCjLs/\nPj49MZvVDVbRrhIkix/lpuM4hx3n2LF46uPvP5jQ0NtauLcEzcVLL73E3/9eo93/xRdfMH/+fObN\nm8c333zD7NmzycnJYfDgwXxde+NdCyIcez3WHVvH2wlvA/AvczpHdUf4fu8mNFc0bRVz3uZ5rEhc\nisttxri9F7ZKyM0Dz01vM/dZPf/IhPJyuGUIeMIspE16HR/felHNpasJDBwGqIqPhxqIkDObYeC5\nhdFfcmwvLWV2aiq0bw/XXEPBvn3cvWc3y76w8rTNVqPzUoVH5yH/9VAmR0YCsHNDCvJBLZrSuvUk\nSYvLVcjtjrepzDaSotGQ3DaZI+HDCJv2UnW9Xezi5Zdfxm63ExQYxJqla8k/KeHS5BAgB+Ms34+U\nmU5XLZTm2/h1UyVJB4LxeGCMB/7zHwiu6MrChZ9Vt/no/v30iepI+525FNk/R9+3DcUuFxvMZhQg\nwJNNYP4Wfi7ujVGjYVGXLhgvYT2gliRIp2tySOL5tt8U5s+fz/z58xt8b+zYsRw+fO6JWX4vwrHX\nY3febgKNgdzX/z7a+qTSzqsdM/rPoNNNnRqsrygKDsdxbDYroLA7dwfTe4ygh3cusd3+zc9r4Pt4\n2KUt5Ps3RuNf9R2NkCDjehm9HM6QIY3HNm/ZAgsXQi1Bx2ouwAa2JrFy5Uq2bNmC2Wxu1naP2e10\nMBp5aeDAalmHkDFXMzn1G0p+DmXd7iLSfitjiWYvHrMRmyEKKX5jLbGcKHB3PK1djcYHf//BvO3z\nOZ/GxnKFvz/r1vUDGk/4MWRPb4p35XDfnzrxWtd7uOqInYFLbPj971+sk6HM8SQT/JcSHP8hFgv8\nIwjGj4d4z+ltxZeV4SzTozlyN7l3h5NQXs5aSngiMhKDNZ6AojcZFxTEnLQ07LKMn1aLscDDOI+b\nh1NSuDM0lFGmqrWZe+4BS0XdE9x6K9x773n0+KVFUzYP/VERjr0BYoJiuKHLDWDwJ9BgIiqiJ8Ft\nGhbwrqjYw759w1GUdsiyk/LyBLwC/OnX+U/EhPYi0QCRXrBXs5XePXT4nBp8nYPcSN++0KnT776s\nFuPzzz+nffv2DB8+nOnTpzdr28E6Hf2Dg2HoUADcspte+WMpzD5I7moDGklLGVrM9mJu6lnEHZs2\nqbr5AJ1HYy/zcEAOoH28E7+/BBCncSBXarFn2ondCbW3gBYXlxMfX3dqJDs7m9DQUPSLXsXr0+8o\nrvyN+aNzaa94sWvoBDTX34b54f4s9d9PZV4yRz9eissFgX4hpDjLOeRdxkd7tNzV5y5cVj+u1rch\nrrAUS7GdtuVu1mefQK+HB9q3Z3q7dpjNwWSWe3FDu3YE6XQcd1TF4Pu40UsSJxwOfi4urnHsq76F\nFbVu7zdvVnV1/gCOXdA4wrGfYs8e+OUXHlssISsKGD6DggIYdOYpGEVx4O8/iB49NqDRBBMUNJbu\nsQ8SE9OwWNjlyk033cTEiRPP69jU1FS+/fZbDjqdKN27n7GuTqNj6R2L4I665X0+6MMBRzlDtDWa\n6G5jDwbG7OKkvRP64jKyj/tj9/JiTJdyPAUepv/NReJnBzgiSfiOkck/lsVDU+/Aq40eqUrGQa8P\n4S9/eRri42HOHHg7kJ5XTeQn35+odK8iIOF/MK0t2RuuJSp7IPbnrYAOo1TJytIP2W1LY9tXxcyZ\n/gmOI7+i1XYAOhAg56IxWIlf143y8tOvszK1koC+yfR0qyF0iqLg09WHqwIDKXHViujR6aCq3xVF\nAXMZrF8HsnrcuQiErVp1uoCpr68qNieJyNtLij+mY1cUyMyEuDj1dVwcpKdD9+4s+b8xxGlDORQy\nFCSJJ+a4mb06l4KnA/Cv2pByzNaFRL2OrJl1sx7Ncc0h5u0YjCYjh/wOoTFqYHwsnLPk0x+HIUOG\nsH37dpYtW8bqn39m9C+/nFc7m+/djNlWdypoyto13HH1UqZc9RrmdXpW/iWPZzt2ZMA+fzJf8kF5\nJhSr3Q5AtNe93D9kC53ToDBKQ3Gkht6erQzr9xnBpuGqY69ixW0rWKb/jlmLFzO5Us+XWz/HPmAM\nV7o+p3sReIe242SpPzOTK3F6vLinc2d2GHLw6BQSElQPuWgsTBoPb3xT9zo0GiPl5QnsK++G8qUL\nfZj6QyV7LFR6Shmc7gUoxOVI8IvCVslF4P5r6d9/A7v778Z6sAMwE76MAwkGHxyMby/fJvXhzJnq\nLI7BUFO2eDFMmAC10v8KLgH+mI69uBi++goOHFCd/Lx5UFICAwZgaRtIriuYm8PCeCA8nGK/I3xf\nFshvvuWEPqAmXrC7XGiz/sPfCn/hzcUO3G4z+rhYlnmW8VK3l5g7Yi5h7cI4+uejaEa6uTrjC35w\nhMMtt6jb4EFNdCpdBagiko1JvbegxlGrYOTIkdVSyUGhoefdTohPCCE+IXXKtJp1jdRWY45H3Fhb\n2/hpsu2zyZl9DNPfCumqlZDfTuXgEweQDrvR666j+9wMQMZiSWbkqCh6h9zBK9ED+LankTs3bOC2\nH3/kp/nzsX71A9NGwt714HvffdzocJE24giM0HLXUvVsA4dM4uu0aORBMaxNrXWXoiho2y+ja3Es\nOe/n0Penmi3pWq0v7+QVY3a5eKVzDFu947ii+2SOfJzPEauVyhInvosK0KTFw0svYR17BFupi6a5\ndZW33gJTra0Vy5efw8GCVsMf07HLshqftmWLeisbF4e84FVsh04SlWAi1uNN12w3X297g237tlGU\nO5FQR2/6/rAItyMTrQZSBst0TpnD3KsysNkO07Hju0ARd6eNxJyyly3sI9jSn/J//JtrtUt5T2cj\n8UlXHYUAe0k6WnR88gk8+SQEBp5uqsEAAX+g3egpNhv/l54OQKLFQhu9/vwbkyT803Ow/vA0Dksv\nXCNMlL/0PDs7j0Jr7cfKpJXVVaODohkUPogOH/VEfl9dRP04HoZ8uhpv/W+c/PwkKZEu3O472b9/\nNBp9GI95bBw9GorHsxbZU0p2hw5gNKLEdidFA3QHhg3jkdWruTHDC6erI0ZjNgZZIcVl4NtQP+Tr\nv+WGl4Fa2WuNUYn8t/cHRJVFYTR2qHNJimRBljRoNAZkpxcTyr/hwdRnmF6xi+WVEs84OhAyfAQc\nPcqDlVZyzWamITbB/dFoimO/AXgDdT7hM+Cf9d43AMuAnkA5cBeQ1Yw2thhbs7YC8Gb8m+yN24t2\np5a+qX25yhBAmE8Zi/atZEy7MdgHDSIlpz133jKCzMz1vPiiFdqYID6Cu/97e3V7myni9j3vkH7t\nQwCYNTKDOpdg7D8QP2ktMQNXY6wl05v2ZCqhN3Vll01NkPHeexf2+lsbeklielgYvlXhfcMDA2sW\nCc8DY0QnvpnSHXOAlpBUX7LbGcnRVuJ3ZBd6a3u+T/4egFJ7KYXWQvbP2o+kkdAa1fN/on2UG0IN\nGDQSJxOPUJqqB4c3XrN/xO3RothshM2IASRQGrm1eustpLfewnk0i759O7AtbjfeKSl0/tMqHix1\n8dyyJHx91Sgef6uV9dH9+amtRPrytzAen8WiHg+S6+PP3jZhSBLopk8kpWtXUmw2HpMg8rE4TBH5\n3Mn/CJuk5dqd4bzg+AbNlVNJuv03XPoQDh0yVa8nA+h0UYSGPkK7dg2bLLj0OZtjNwAfACOAk0AC\nsA7YV6vObOAE6nLWLcBCYFKzW9qM2E/IWOzh/PDuDyiKgrRGQjohYQ2zcvj1w+SHxtI3uD0+U324\n5/17SEoaQvbyLdx66w0kJX3KvHlJjPlsDM+/2JYx0ZHV7W6R0vCLakPfX9Tth/ER8fT47/O4TWk4\nd23Gx7cvPrViknVFGvRK2Gn2NTdbtmxhdAvKmzYXEvBYZORpwknna39UUEem3vICV3vLmNeZieno\noGeXVAa4epNl7ck9t90DwIH8A0z8emKdETzAIXrQtt3V+Gq1mNo/T6GxMzqjkZ7L+lDodPL5x0lE\nrysBAnBuLqNnmkJxeU8s64uBYE6Nwrds2cLQoaORJHVNgSFDyM0djJRkY8AXj/Ps7IUAxCYn45d+\nkh6lLnxKDOicOqKzDYx1ZfF1+KPk5aUQWbiEZz+vioJRipi8bheO4Xcw08uNJqyAtr4u7P4WtI5c\nFK2D3DwLq76KRKdT4y69fSqYcPNf+PD7JCZOhFMfx01mM+O+M9HuQL1V6ZnhbN+ey6RJ597/govH\n2Rz7lUAScCqr73LgJuo69huBZ6ue/wB8jPqJrquI00qQ3TKFG134GCPoltANCYnrD1/PNt84yjqY\nifBvx/7jq6nI05LfKZ/3Dr9HWWlH9pVuY/62HhQVFfB9xd84Zm4o34+CNdyJYjmgnisqFatDj6cy\nG4B+/aC4VpjjcxbYsh7iZHjiiZa75kvFsTdGS9sfZdFyO72JX/dJdVlZgAFHp4eJeDsCPR7+nmrh\nmHcIpa7JZITl0MbUjf1XSdyToQEFrP7DeKi/ROKHMjbbBhyOPBa8EA9o2Rz3GSOG6VHkK8lZmA+p\naRTFV1BU4UUBfekpDUTuG0ifh58nxEvPsm2zid8Uz5wfK3j39r0cXOjkcG6Vwz0A9I1EAX7lF3Sp\nCTz3f0PQ+5fyetyfWNlrKyWVWor1BsYteYilfbay58dnmD79KXQ6J7mGQP7DTLw6GthRKVXv8TLo\n2/CQ8wOeMWWir/IKJ5xODg5zsmZNGZMmHajuG7f79LUfjQa8vDhvFEUhx+HAXU9ISydJRNZezRU0\nibM59kjgeK3XOcDoM9SRgWIgFKqzuF1wCgsLWb9+PR67B0+ZOlKxOCzYPXauvOJKGLcOW0Q5EdN+\nhusVSp8YRdyrJZjcsGfvTkIVkJBBAUvWaq75tS3WXBsDv94PkoTJdICrfbvSS5aprEyrOfGweHbP\ny6Ns110A+D3kYMcxLxSdRDI9STsGBdk1o6TM6XD7HRA4oeH5dcGFIWj4WN4wmWr+MVYrdO3K8nm+\n7H/oAL5aDb7ZL1AU1Jn3dmi5ZfktGH0iSOn4F2aNn4tt2xp+Df6QrypC+fWppzg0YAl39FvDwTUa\nQOJknoNkazHT715AtlyCl/0IxcEjqdS1A8mD3vt93BkKR7I06LQy92R25fZP3sXLx4svzb+SdJcT\nFJkl8hI+kj9Cr1WYd8DDwCSFIXl2tpz4B8iQ6RhNUvxSnskvIWxrCnrXVTBoMG1vWMW3Adfj1mqR\ndRqcxWY8T/Xhyi4JTJhQEzo59/s1zJ4dj8lkJCAAUiWFH/P8iLHNIT6+5s705EnVsQcH5/PUUzuQ\nZS2KAmvXqvvItFoffH174pBlrtyzB4tH/Q7Kslw92nsnPJzhVakjAwMDOeJ0MmjPHiLqOfE8h4O/\ndjx9k1lrorHUeC6Xi2nTprFnzx6ysrLYvHkzo0aNuiA2nc2xt8pR99lYsWIF7777LrHuWBwnHEiK\nG7fbSZqSScfeERS1LSPgN4nlUT4oSjn/3j0Ze+WXjMsI5YOn8nFoNUhIVPpUUhJSjtKpgv2lIfTo\n1x7Q4WhzgMqoHDJ2bqx74kfCyU+JZXrYYkLyA3n/hULeesCEOVCD1qnl3utc+Dvd1THBWo8HIkZK\nBQAACeRJREFUP38Ibnjv0wXnxIkTlJaWNrm+w+EgLy8Pe1XIYGPIskxeXt0dWfUlTluKEpeLUpeC\n1eLC66QbKgy4Su2qoMspmxwOSEio+Uds3QrPPAOKgrvEhkujoVRjoMLHhFHrx8tXfYdZlnn+RCV/\nH/Qx07R6/pmwCHunJ8nJK+KkPJnbPOqQNlwXyLwOCsGP6Onqt5cVZWlMDtGSTg+8000EKU7eLytm\neGk/bAYDY4/9Rt6tCej+cgJWTiV1/HwAPGXRDDhyPe8nvY7GWwM9HMhJGvb3nYZDp0b3BO33Z1nl\ndB51rUHy8SKnuIzpG9bT3ZyEFsg1+YACfuXH6azNQTmm5dP16uK0BAz0CWTf61Yyi/wp0GkpGXol\nOcNmkrquDd6ZN+ArR4LLyEZXDNdH5dB76gKennstiiLhdoewcXMxGkkmMsJCxbFoPG4fpnYJotcx\nMwatFac9D2u6N8k9+vE/ewyrqj4DXpITp2TgAY9Cf4sa1O+RQad1kazpzPFjDUdLbQ/ejtvccmFj\nuiAdI0rOPzUewNVXX82TTz7Jbbfddpr648VkJLC61utngL/Vq7MRGFT1XIMqX9XQrp401B8K8RAP\n8RCPc37UZzObTytrTs61/eeff16ZMWNGg+9FRkYqcXFxZzz+DNdea1qgaZxtxL4L6A1EoCZ0vB14\nqF6dn4F7gN2oi6YJNCy60eVcjRMIBIIqlIttwNlQmucutFmG9Wdz7HbgYWAt6ij8c2AvsADVkf8I\nvF9VnghUoIY7CgQCwR+K1jTV0pQ49jVVj9q8WOu5A3UkLxAIBH9YmmnE3iy0RKpkLWo45I8NvDcD\ndQ5+X9VjZguc//eQCRxEte23RuosRA0B3QtccWHMajKZnNn+0UAZNf3//IUyrImYgJWoQX2Hgasa\nqNOa+/9s9o+m9fZ/LDV27UO18/EG6rXm/r+oNNOI/QjwDeBTr9yAGm6eCOwAOp6pkZaQFJgDJAMN\nZWxVgK9o+APTGlBQv3wljbx/KxAF9EL9UC8B+l8Qy5rG2ewHiAPOT4ax5fkYWIX6GdFAnVzf0Pr7\n/2z2Q+vt/6PUOGoN6t6Vb+vVae39f1FoLDWeVqvF4XBUj+QdDgd2ux2j0Xim5rqjOvBpwOJa5Rd1\nI2gksAG4hsZH7IsulDHnQQZwJh27xagf7lMcQr3m1sLZ7B9Nw/+X1kAbIPUsdVpz/zfF/tG03v6v\nzThgewPlF7P/f3fUyrnS1PZffPFFRZKkOo8FCxYoiqIoHTt2VCRJUjQaTfXfrKysBttBHZjpUD8j\n19a7/o3AqZxpp6IPG71FaO4R+zuoIZGNyVYpwBRgDHAMeIzWpSujAOtR++Uj1IXh2jS0YSuy6m9r\n4Gz2K6jTA4moUU5PoU4btAa6on5YV6DqDu0FHgEsteq05v5viv2tuf9rcyfwZQPlrar/dUE6tkhb\nWrT9pnCm1HiZmZnneto81GCVDfXKL9pG0AnAv6qej6bhkUkQNT8mf6bhUcHF5NROiLbAHk7/1VyL\nKrNwil/qvb7YnM1+P+DUfeA41BF+a2EY4AIGV71+l9MF51pz/zfF/tbc/6fwQv2BatvAexez/5tr\nIN5qoWbE/i1wd73rP0rN9xvUufhGhaaac/F0GOrcYQbqHOMYVNXH2piBU1vFFgP9aF0UVP0tRF3A\nGFzv/Rygto5qaxktnuJs9ltQQ1hBFXNzAq1F4+846rzurqrX33D6/G1r7v+m2N+a+/8U41EHBYUN\nvNea+/9ywY26TlN/y2sO6voGqH67DQ3/j6orNBd/Rf2nR6Peym0C/lSvTu1RwM2cfU7yQuJDzUq0\nL6pccVK9Oj9T80s6APBQI5B2sWmK/bUzUQysqldA6+A4UAR0q3p9LWpkSW1ac/83xf7W3P+nmIY6\nMGuI1tz/lwsS6men/m7TUxtB4cwbQVuU0ahKj6BuZjqVAPQfqOF4SajTML0utGFnIBp1vnM/kAL8\nvar8Ierutn2fmnCvARfSwLPQFPsfQ53fTUQdlV19gW08G/1QR7xJqB/kIC6d/oez29/a+98X9cep\ndkRba+n/iz1T0uKgTsUcBb4GvKnrOw2o6zeJQDzQ6Uyd1Xq2SgkEAkHjVPm+y5eqOPhm8cktsUFJ\nIBAIBBcR4dgFAoHgMkM4doFAILjMEI5dIBAILjOEYxcIBILfwfvvv8+gQYMwGo3cd9991eUJCQlc\nc801mEwmAgMDmTRpErm5FyY6VETFCASCS4HTomK2bw/G7Ta32Al1uiBGjDiTnp7Kt99+i0ajqU6N\ndyrn6bp163A6nYwbNw6Px8OcOXNISUlhy5YtDbbTnFExAoFAcClwWtz35s0tG9t+ru2fKTWeoihK\nYmKiYjAYGn2fZswSJaZiBAKBoBlQzhJnv3nzZvr27XtBbGkJPXaBQCD4w3GmRBsHDx7kxRdf5Mcf\nL4xqsxixCwQCQTPQ2Ig9LS2NG2+8kUWLFjF8+PALYotw7AKBQNAMNDRiz8rK4rrrrmPevHncfXd9\nJd6WQ0zFCAQCwe+gsdR4+fn5jBkzhtmzZ/Pggw9ebDMFAoGg1fG7o1bOlaa231BqvPnz5ysLFixQ\nJElS/Pz8qh/+/v6NtkMzRsWImEmBQHApUOX7amgtcezNRXPGsQvHLhAILgVOc+yXG0K2VyAQCASN\nIhy7QCAQXGYIxy4QCASXGcKxCwQCwWWGcOwCgUBwmSEcu0AgEFxmCMcuEAgElxnCsQsEAsFlhnDs\nAoFA8DtoLDVecnIyAwYMwGQy4efnx+DBg9m0adNFtFQgEAhaF6dpqwQFBZ3SV2mRR1BQUJO0Ylat\nWqV89913ysMPP1wng1JpaamSmZmpKIqiyLKsLFy4UAkODr4gWjFC3VEgEFySmM3ms2Yt+j2cKXFG\nbSZPngzA7t27ycnJqS4PDAwkMDAQUBUgNRoNUVFRzW9oAwjHLhAIBM1AYz8yJpMJq9VKeHj4BZuK\nEXPsAoFA0Aw0NsIvLS3FYrFw7733ctttt7XoXcYphGMXCASCZuBMDttgMLBgwQLS09NJTExscVuE\nYxcIBIJm4Gxz8rIsI8vyBbFFOHaBQCD4HXg8Hux2e53UeG63m82bN5OUlARAZWUlf/3rXwkPD6dP\nnz4X2WKBQCBoHTQYHtiSNLX9hlLjLViwQFm+fLnStWtXxdfXVzGZTMqkSZOU9PT0M56vuTpLZFAS\nCASXAlW+r4bg4GDM5pZLjRcUFERJiUiNJxAIBC3FaY79ckOkxhMIBAJBowjHLhAIBJcZwrELBALB\nZYZw7AKBQHCZIRy7QCAQXGYIxy4QCASXGULdUSAQtHp0Ol2FJEn+F9uOlkSn01W43e6LbYZAIBAI\nBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQNBK+X+bgFpuTXgm4AAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "DR_J1J2\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEnCAYAAAC0Z8hNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNX6wPHvbE/PpldCL6FXBUFCkWIHBVFERcRLEfXq\nBbwq0vSqiFhARK9YwPoTKyoXEYiIgPTeWyrpm57d7O7M748NJRBMYQsJ5/M8+7h7ZvbMOxheTs6c\nAoIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCE73IZAJ7Pubc94GDgA7gc7uCEoQBEGouT44\nkvPlEvldwPcV7zsDu90RlCAIguCgqsE5fwCmvzl+M7C84v0uQAPEXGFcgiAIQg3VJJFXJwZIueBz\nKiKRC4IguI0zEjmAdNFnxUn1CoIgCNXQOKGOVCAW+Kvic0xFWSXNmjVTTpw44YTLCYIgXFNOAM3/\n7gRntMh/AUZXvO8C2IG0SyI5cQJFUa7618yZMz0eQ0OJsz7EKOIUcV7tL6BZdUm4Ji3yL4C+QAiO\nvvCZgLbi2HvAN0A/HMMPLcDYGtQpCIIgOElNEvm9NTjnsSsNRBAEQagbZz3sbDASEhI8HUKN1Ic4\n60OMIOJ0NhGn+1082sSVlIr+HkEQBKGGJEmCanK1M0atCIIguFRQUBAm09/NS6z/jEYjeXl5dfqu\naJELgnDVkySJhp4/LnePNWmRiz5yQRCEek4kckEQhHpOJHJBEIR6TiRyQRCEek4kckEQhCuUl5fH\nsGHD8Pf3p0mTJnzxxRduvb4YfigIQr0UFASuHJFoNEJNRwNOnjyZgIAA8vLy2LdvH/3796djx47E\nx8e7LsALiOGHgiBc9aoamidJ4MqUUtP6S0pKCAoK4tixYzRq1AiA8ePHExISwssvv1yL64nhh4Ig\nCB5x9OhRvLy8ziVxgA4dOnDgwAG3xSASuSAIwhUoLi7Gx8enUpmPjw9FRUVui0EkckEQhCvg6+tL\nSUlJpbLi4mL8/PzcFoNI5IIgCFegZcuWlJWVkZycfK5s7969tGvXzm0xiIedgiBc9a7mh50A9957\nLwaDgffff5/9+/fTv39/Nm3aRJs2bWpxPfGwUxAEwWMWL15Mfn4+wcHBDB8+nHfffbdWSfxKiRa5\n4FJbt24lMTHxknIvLy8mT56MSiXaEkL1qmqtXk3jyJ3hSlrkIpELLjVu3DjS0tLo0KFDpfJ33nmH\nEydOEBER4aHIhPpELGMrNpYQPGzEiBGMGzeuUtmyZcs8FI0gNDzi91pBEIR6TiRyQRCEek4kcsEj\nAgMDiYmJQavVVnoNGTLE06EJQr0jErngEQcOHKCsrIzS0tJzr40bN5KVleXp0ASh3hEPOwWPUKvV\nqNXqSmVardZD0QhC/SZa5IIgCPWcSOSCIAj1nEjkgiAIV2DRokV069YNg8HA2LFjPRKD6CMXBKFe\nCno1CJPZdXP0jQYjedOrn6MfHR3NjBkzWL16NWVlZS6L5++IRC4IQr1kMptQZrpu2r40u2YrmAwb\nNgyA7du3k5qa6rJ4/o7oWhEEQXACT64FIxK5IAiCE1QsbuURomtFcJqSkpJLWiVWq9VD0QiCe3my\nRS4SueAUq1ev5pZbbsFgMFxybOTIkR6ISBDcS7TIhXqvuLiYO+64g2+++cbToQiCW9ntdqxWKzab\nDbvdjsViQaPRXDJz2ZVEH7kgCMIVmDt3Lt7e3rz66qt8+umneHl58dJLL7k1hpq0yIcArwFq4BPg\n1YuOt64o98HxD8O/gR+cGKMgCMIljAZjjYcI1rX+mpg1axazZs1yWRw1UV0i1wPvAr2BTGAz8Cuw\n64Jzngc+BN4D2lQcF4lcEASXqslknWtFdV0r1wEHgDTABnwF3HLROSlAQMX7QCDJmQEKgiAIf6+6\nFnkMjkR9ViqQcNE5L+NoqU/B0b0ywFnBCYIgCNWrrkVek4GRC4APgFjgZuDTKw1KaHhKSqBpU4iI\nqPr14YeejlAQ6q/qWuSpOBL0WbFUbqGDo/98ZsX7LYABCAMu2erlwgcCCQkJJCQk1CpYof4qLYWC\nAjhw4NJj8+dDcjJ06uT+uAThapOYmEhiYmKtvlNdIt8GtAOicSTmkcA/LjrnBDAQx8iVNji6V3Kr\nqszTT3YF97CX2ik5UFKprMwETWWJ8DBfJFXlkQa+vu6MThCubhc3cmfPnl3td6pL5GZgIrAaRzfM\ncmAnMBvYDqwEngI+BqYBEvAIYK9l7EIDkv5+OsmvJGOINWA1WbEX2bHJEi/m2zh0fwjaEMeWbmGj\nwgjoFVBNbYIgVKcm48hXVbwuNPOC90eAnk6LSKj3FJtC+P3hNJ/fnH137EMbqsXS1J8dM9JoHqNH\nH6Mnb3UeuT/nikQuCE4gpugLTnH8n8fJTskmUUo8V5b6eipI0Gl9J6zxgex4IZ2CTQVoAjSUHS+j\n9EgpxbuLaVLoy6kBTT0XvCDUc2KKvuAUtiIbwUOD6Sv3pem8psQ8FUNfuS997X0J7BsIwCK/1sT9\nO47oSdH4X+ePX1c/gm8LJuRwjoejF4S6Ky8v58EHHyQmJgYfHx/atm3L999/79YYRCIXnEeqWAFO\nOv/+whXhUjS+BN8STPAtwXi38sarude5JC8ItRYUBJLkuldQUI3CsNlsxMfHs337dkpKSpg/fz6j\nR4/m+PHjLv4DOE90rQiCUD+ZTODKNcBruCytt7c306dPP/d56NChxMfHs2PHDpo3b+6q6CoRLXJB\nEAQnyszM5NChQ7Rr185t1xSJXBAEwUmsViujR49mzJgxtG3b1m3XFV0rglspikKO1UqJ3Y5st2Mq\nt6IoCiV2O2V2Mf1AqL9kWWbMmDEYDAYWLVrk1muLRC641VdZWTx0+DAPpkrozbBhfyZP2SQWpaXx\n6YEDRHo6QEGoA0VRGDduHNnZ2axatcqtuwOB6FoR3KxUlrkvPJxn4+J4MjaGP7t0Jlir5bHoaMyy\n7OnwBKFOJk6cyJEjR/jxxx/R6XRuv75I5IIgCFcgKSmJ999/n927dxMREYGfnx9+fn588cUXbotB\ndK0IglA/GY01HiJY5/prIC4uDtnDv02KRC4IQv2UJ7Z6O0t0rQiCINRzIpELgiDUc6JrRXC5devW\nMXPmIgoKPuS1kSMpsNk4kqVCjZrPhn7m6fAEod4TiVxwud27dxMYGIi3tze3TJnC/pISHvhDzzPf\nPUN2dranwxOEek8kcuGK2EvsKDYFFJCtMqtW2Ej9QUZjgQ+ecZyzdWtvTKbuaLU64vv0Ia+ggBvS\nvfDR+Xg2eEFoIEQiF+rMarKyKWwTKm8VtkIb+evzUa3fTJwE6YMaE1ixQq2Xl4Xy8gLeeAPKPRuy\nIDRIIpELdSabZbQhWnqd6cUG4waCegXxgXcfRo6Eh0acP0+n20Zqair3338rH57xXLyC0FCJRC64\nxOK0NFbm5gJwKj0dc3Y2h/buJdVi4To/Pw9HJwgNixh+KLjEbyYTXX19eTw6mj4BAXSueD+vaVNm\nNm7s6fAEwanuu+8+IiIi8PX1JTY2lhkzZqC4ctOLi4gWueAyXfz8GBoczBz1L+QE57B07fkRKqX2\nUtIGpZFZlgkEey5Iod4K2rgRk83msvqNGg15vXvX6NwZM2bw8ccfo9PpOHLkCH379qVHjx7cdttt\nLovvQiKRC05VXp5FTs5WOpVtQJ/jR4rZly3WLQwojOf2pl3x9m4BQPaRbNYFriO9NJ0IkciFOjDZ\nbCgJCS6rX0pMrPG5bdq0qfRZo9EQHR3t5IguT3StCE5VWnqYktID+NrPIFlTKC07BUCEqZhu3vu5\nO/5u7o6/m5tVN6MpFe0IoeGYNGkSPj4+tG3blueff54uXbq47drib5JQK7IsM3XqVAoLC7GX2skp\nyCF8fDi7S3cTQwwms4lvkjZgbx6KlP8XqsIDdDOCySuZg2f+IDJyPYGBfT19G4LgdIsXL2bx4sX8\n+eefDB8+nC5dutCjRw+3XFu0yIVasVgsvP322/To0YNunbsRr42nR48eDPAawPTHp6MoCk8PyGNq\n0BZejDey5Mb+jIyBEX188JFy2LfvVkpLj3j6NgTBZW644QZGjhzp1vXIRSIXak2j0bDIvohl5cvo\nSU/eKH+D65Xr+ef2f2KTbaiAv7wnUdT4azp2/JVp++DrXxqTYY/CYGgMiJ2AhIbNZrMhuXKt9IuI\nRC7UmoJCcXkx/739vxgNRlaMXEGQVxDv3/4+wd7B6DV6T4coCG6TnZ3Nd999h8ViQVEU1q9fz5df\nfsmwYcPcFoNI5EKd6NV6Wga3RKPSEB8aj0aloWVwS9SSezedFQRPkySJBQsWEBYWhr+/P08++SRL\nliyhT58+botBPOwUnMIu2dmXu48in2OUycUUl6RxKmcfu+1BAERvPkj3FlDaDBjTBU7eB6PKISvL\ns4EL9ZZRo6nVEMG61F8TISEh/PHHHy6LoyZEIhecYnfkbp5d+Sy0iCDZeoaTx8+weu/PLNdoaJ7j\nR35TP3b0MtDGqIdNy2FhAJz8HMxmT4cu1FM1naxzLRBdK4JT2FQ2rgu7jut3L6WVvhsdOk7n9XvW\ns3vCbiZubokiSZisBeSZTSw/8jWbMrahoHAg+wAWm0jmgnAlRItccAsfnQ/BXr6U27NJLUvFXhYL\nQJG5iKLyIg9HJwj1m2iRC86jAIoCsgx2O5SUQH4+2O0Y1Hq6RnUlwjeCf/f5N7e2vBUJiR4x3T0d\ntSDUe6JFLjhPagpkZ8GpU5C2E75fDVu2gMUCTdt5OjpBaLBq0iIfAuwDDgLTL3POSGAXsBf43Dmh\nCfWOLIOPLzRrBt27w/Lljhb5Sy9BaIinoxOEBqu6FrkeeBfoDWQCm4FfcSTtszoCT1ecUwIEOT9M\nQRAE4XKqa5FfBxwA0gAb8BVwy0XnjAUW4UjiAHnODFC4CskyH76dBHePgLxc6N8fCosgI9PTkQnC\nNam6RB4DpFzwObWi7EKtgE7AdmAHcLvTohOuToqCXSXBk0+Cry88/zx4GaBVS/D29nR0gnDNqS6R\n12SvIhXQGEfr/S5gCaJ7pcEzdYYTzZdjm7yAw1GfE3vvt9zS4gy33Poaen3NVjdUSype+fQLKIU3\nX32V/EmT2LNnj9t2VREEZzt27BgGg4ExY8a49brV9ZGnArEXfI6lcgudis8bATtwGsdD0ZbAlosr\nmzVr1rn3CQkJJLhwdw/BtTStrdjshUjH2+Lv35zS5CLSGhcgpcUTHd2V1LDqhxW210Xxr8mTKHgB\nJk35J5/EBRL+1lukpqa64Q6E+m5j0EZsJtdt9aYxauidV7vZo5MnT6ZHjx5XtPJhYmIiibVceqC6\nRL4NaAdEA1k4Rqf846JzfgbuAD4GQoA2wImqKrswkQv1n59Xd4rX30hUVC9ytxaxu1Muys5bWb3a\nn0P3apg3pwtl5hwmYkOSZNRLJXb+V4YxXfBr/gyqKAm9XgsS6HQ6JIMBlUpMbRBqxmaykaAkuKz+\nRCmxVud/+eWXGI1G4uPjOX78eJ2ve3Ejd/bs2dV+p7pEbgYmAqtxdKEsB3YCs3H0ia8EvsMxYuUA\noAaeAbKrqkyo/2zFNlBAkrXYy2QURWFXej6LJrQgN/IBeFDGbivCv4XE6HnTaHFDP1r9+DOnTq1l\n2DAjxbZ9tHukH+qfcjx9K4LgNIWFhcycOZP169fz/vvvu/36NZkQtKridaGZF31+uuIlNGDWXCub\nIzej2FXosm4ibWEqSpaV/43dizIKmpsSkdc9SFmpF6Gd1Uz84Qee7daNdv5a8FKj8tGgFEig0eAY\nBCUIDcOMGTN45JFHiIqKcuuGEmeJmZ1CjclmGW2YFilHxhLxC63ums2ZX3XEf9aS8ON78TuWii1Z\nQlOsIUSrocfhw54OWRBcbvfu3axdu5ZduxzTaxSlJmNEnEskckEQhCvw+++/c/r0aRo1agRAcXEx\ndrudQ4cOsX37drfEIBK54DZq9SZ8fU3k5v2KNkimPCaTTGUV3qrHHIttCUI99Oijj3LvvfcCjtb4\n/PnzOX36NEuWLHFbDCKRC25hMDTBYrkXm+3fGPSxSGY7quJ8vI2N0KmhZlMWBOHq4+XlhZeX17nP\nvr6+eHl5ERwc7LYYRCIXXCrPZuOXqCiKfH1JV/XmTrUPHzTvT3mZN+qsJPwatcXi6SCFeklj1NR6\niGBt66+LmTMvHgvieiKRCy4Tk53NjNhY1qWkoLHb0aMGBQyyzKx+7ej+jd7TIQr1WG0n6zRkIpEL\ndSLbYcMGiCqys2neRkralNP9lwz8U9Yhy14E/0+NzmrlXzExqDIySE1NpV9MHBaLln9kZvJCsOzp\nWxCEBkMkcqFWPu3wKZa1Nn5qDmWFcxllXUbsvjfQxQxl6MF8tHkbCA7RUvqbxOn776eJWu3pkAWh\nwROJXKiVQkMhGlTcqVHwb9MKq0aDX88o/LpGEPNlVx5/fCwPPBDHyu5q7g8Pp4kHJkcIwrVGLGwh\n1Ik2RMHXtz0qSYPB0BiDIZaIiDH4+XXF27t13So1GDh27Bj79u3DaDRWer377rvOvQFBaEBEi1yo\nE0UGH582FEpaDPpodLpIAgNbs2fPLjIzPyfFbzXpej2f6vUcO3aMQYMGVVunJi6O9evXM2nSJDZs\n2HCufP78+aSlpV1y/nvvvce2bdsuKY+NjfXIyAFB8BSRyIUrpCDjGAWeX1hIWload9/dh42xWm4M\nCOD6gAAAunfvzu7djm+kRm7mfnUO4e2y0IT+jHSfkZbNNnK7vRAf33FoNBqMRuO5K3h5eWE2my+5\n8scff0xCQgLNmjU7V1ZSUsKsWbNEIheuKSKRC1ek2C6zIjublbm5hJ86hSLBG35+qDp14tWOHUm4\nICHv3g2bN8+iW8f3saLDJksga1CsWmTZwGh5HvBgra5/++2307Nnz3OfTSaTWC5ZuOaIPnKhZqZP\n54MP32DFPx7GptKwQjeCuadPU+Rl4POBA3kwPJyc3r3RSiq+atsWW0JCpSR+1tGjI2ic2o+v7KNJ\nPBiKLXswlq9HcfzUs8jix1EQ6kT8zRFq5rXXyGnchEHrf0dns/Lgsa95Ps+Et8WCOTqaj1rX8QGn\nIDQACQkJeHl54efnh5+fH23atHHr9UXXilBjSseuJKecRlZJlMQphMV0plRvQNWsmUfWYBaubRs3\nBmGzmVxWv0ZjpHfvvBqdK0kS77zzDg8//LDL4vk7IpELl3Xr0z+wufwDALIVhUW/fUugzYqsiFmZ\ngufZbCYSEly32FpiYu0aJ55Yh/ws0bUiXNafqX/QtkkIT/d9FEmS6BbTAZVKjSRJqCQxY1MQLvTM\nM89gNBrp3r07q1evduu1RSIXLivAq5RhrWXG97UC0KGJFbVvMZIEKtGTIgjnzJ8/n5SUFHJzc3n6\n6ae56667OHLkiNuuLxK5cHnbR/LSgy/Trl1fFAUWL23K0aIQbHY1u/4a4unoBOGq0bVrVwwGAyqV\nilGjRtG/f39WrlzptuuLPvJrXE4OrF1bucycZmbTqu/J9s1iSN/Xicu7DuVLFd0jt3FcncsZSaHM\nFIJsEX3lglAVRVHc2mcuEvk17v/+DxYsgK5dz5cdD8lh75hkkPX87t0TxeZFxx1f8Mx/QigjlHvs\narqVlpH6ZipZ4Z6LXRCuBgUFBezYsYM+ffqgVqv59ttvWbt2La+++qrbYhCJ/BqnKDB4MLzzzvmy\nO3/N4sSZYpqVHyOo2MruPy2E5xj5+oFsSryPYFto53tJ4tb7ynh8nMQjngtfEDzOarUybdo0jh49\niqIotGrViq+//pr4+Hi3xSASuVAlg+kYHeS99AzJ4OYeRgKC0nnyrngI0/DtuwqdO+8GelZbjyC4\nikZjrPUQwdrWXxMhISFs377dZXHUhEjkwmXF+BcRHFBGxulopCwjOmKQ9BpA4o+1g7lrdDvwqraa\nS2k0INtYtDKVqJXLOV70JE980IPjCTZ8xz1MjkVmfnLyudM3FRTQTqt12n0JDUNNJ+tcC8SoFeFv\n5Rcb2L27OYYVfQlVJhIT8zgoan76bhSKUscO8sceQ9HqebNXKEfvHUy+ly8/3vY+ilpD40OHUGSZ\njPLyc68N+flkW63OvTFBaEBEi1y4LG+7jcCcfPj5Z6APDB8OugNgs4H+Cn6l9fYGScXxYD3FjcKw\najRkRnWlrUpCpVIRpdczv3nzc6d/qRE/poLwd0SLXLgsrWxHVqlg4EBHwYdLYft20OnAx8ezwQmC\ncI5o6lzjNm6EbdtgxIjzZYf7QHk5yFpAkkCvdxwINEJYRae4E58x6co1hO3PQkmAbLkvnUyxZH6R\nSWDfQPRReuddSBAaKJHIr3F794K/P4wceb7sjBXyzkCAP1Do2usrRitpkSZCjuSCrJArX098oZGk\nF5MwnzQT91ycawMQhAZAJPJrWOG2QlpkWpADdHTZnnOu3LeZGZUa9AZcnsjxsfNH78Nka+OYqlZo\nqX6Z20MjiOwRw8nkk+iLRYtcEKojEvk1LOf7HHzNOgpDDWiDtKgLM9Gf3oahZTRd88oJt5pRyzK9\nUlNdFoMKFRISeWUmUBQUFCx2C6YyE0eyj2A5bnHZtQWhoRCJ/BqX7+MFzfxoNN0P5nwMu75E3+8p\n4tPMhHtbsBkVeqanQ2RUpX5xSVLxyCOPYFOpaGEwAGC321GpFtfq+pIkIUkSQ5oPQa1So5YUov2i\nGdR8EKWnSp14p4LQcIlELpynKI6nnj178qnhD1rqA/DJymNZt248mhXHX1nZ5KVI2BXwbdKYe9/4\njpdTUljTowdalWMA1BNPRHr2HgTBQ7788kvmzJlDSkoKISEhLFu2jD59+rjl2iKRC9XKs9lItVjI\nt1nJKAdQsEkqysPDmRsdTfO4uHNbvel0Hg1VuIYEBQVhMrluqzej0UheXs1mj/74448899xzfP/9\n97Rv357s7GxsNpvLYruYSORCjXir1IyKjsbQzMASSaKZl1elSTt1oZJVTD76BqYoGb30A31kGzZZ\n4eiNR9mXuc9JkQsNlclkculSsbXZh3bWrFnMnTuX9u3bAxAaGuqqsKpUkwlBQ4B9wEFg+t+cdxcg\nA12cEJfgRnnlZ/ju0Hccyj7EoezDpBamUWorxWI3u/S6+qgXifN7B5+mL6IPeA0JNU9MeRJ9XgSZ\nxZnnzlN7e/PZ228TEBBQ6bVt2zZ8xMQkwcOKi4vZs2cPp0+fpmXLloSFhfHII49QVlbmthiqS+R6\n4F0cybwDcDfQuYrz/IAngC1OjU5wixTLSvYcfZasvHVkm9ZTWLwPq7UAg74clRNn/mg0sGEDdOkC\nzf/bkut2nCTw9wBizthQ/mwMCqzr3AWZqErfC7/3XlYdP05ycnKlV35+Ph06dHBafIJQF2d/M/jh\nhx/YsmULx44d4+jRo8yYMcNtMVSXyK8DDgBpgA34CrilivPmAq8AFpw6509wh1Z+NoY160z70Ba0\nC2lOI/9IfHReRHo1RV/qvHHcN90Ev/8OH3wAH02L5N8p3/Kfm9S0PJFBZFpjJCTC8y/t85QkCd+L\nWuMBAQH4+vo6LTZBqKuzP4ePPfYYQUFBBAQE8OSTT/LLL7+4LYbq+shjgJQLPqcCCRed0wWIBn4B\npgLu299IqJFFi2DevEvL786HnGLwBUIjHyMoaA3IMr6+HdGoV2NUdSPXnO60ODQa6NTpggJfaNUS\n+AP8/Jx2GUFwK6PRSExMjEdjqC6RV5eUVcAC4MELykSL/Cpz4gQ89BA8ctFWPnnzwHAYtnokKkFo\nOMaOHcs777zDbbfdhkql4u233+bWW2912/WrS+SpQOwFn2Op3EL3A9oCiRWfI4AfgduAnRdXNmvW\nrHPvExISSEhIqGW4Ql0ZjdCoUeUyWwB4eVHpn+u840GMGZDLSOtISgetQRfdnalrH8XXbkNlEItl\nCkJVZsyYQU5ODs2aNQNgxIgRzJ07t051JSYmkpiYWKvvVJfItwHtcHSdZAEjgX9ccLwAuHCczXrg\naapI4lA5kQueJyOzPeQTklWb+WDPUQalHsGe1J6jbduweOiXfNZEQ/7+vbzf6wu8n5nGgOv9MZvN\nSJJj1cTAwEvrLCmBsWNrF4dK5UVU1BwkyYqCguJTSGH6VjqHlZNtCURRt8Xuxh3JhfrBaDTWaohg\nXeqvKY1GwzvvvMM7F25+W0cXN3Jnz55d/fWrOW4GJgKrcXSjLMeRpGcD24GVdQtV8DTZKpO2JI0H\nyhujllug/8pGWfmNYNeT3z+P1pZyQv/4A1OIhQKvIuQw1bm/NJIEeXkgy5fWK0kQEFC7WGJj/8Xm\nzaAo/yGksJBNo97i8IcSe1H4rAxkirlh1y6+io9nZFiYE+5eaAhqOlnnWlCTCUGrKl4XmnmZc/td\nWTiCuyhWBaVQ4alJz9Jl/1MszfgPUuMbsVqtLJg4mkGWYRS11FNWfqDKQaX+/s6L5cJW1Tez59C4\nRyA9ol4iyH6QO7wKmaeZTKROR74bZ8oJQn0iZnZe40y++ZQYbGh8S3k38RsMWi3rB3bmrx072OW9\nlri4chq1SsB1E6EFQbhSIpFf43w0Mj17/EpGWQkRrS30vqEb5k5pxN/SjMayBZ0unFMhz/KmC5ey\nFQThyohhCNcaRYH+/eH661HZyvlpYy4D2/yEuqCMLjo7dp0NrVKKSi7Bxyee8PDR7o/RZoPDhwk/\nU0j8p6vh8GHYtAmWLnV/LIJQD4gWeQOxfXvVk34Adu2CyZMvKFi/HjbtRO5j4s2ePtxaFETnPwoZ\nfMrCqjkr+Csvj+jQUJqefbCYm+vy+LOyHP/GyDJY7M3J847mYEkj8nwiUSIiQZHBjTPlBKE+EYm8\ngdi2DUwmGD/+0mN33w39Ln4M3bEDSH9wyqimTKNH9tGwV21jZVkZqRYLWwsL0VU8hNxZXOzS2G+4\nAb75piKRI2GmHTll3uTlNOeN1xNoP/AAhIp5ZoJwOSKRNyDNm1feRLm2LLLMf5KSKNDrKVcUTprP\nr354a3CwEyKswuuvc1PUFyz3g/wSLVtWl7KSj4GPAbi54rSswlbk08o1MQhCPScSuVDJQxERbJdl\nhoeGco8D247aAAAgAElEQVSrx2y/+CIcOABATgYUvP0awxIfp1Evf16IeYUg3UHGrZxDt6/+5AnV\nONfGIgj1mEjkDciJE3DnnY733c/8yG0n3zx3TKuFNq1x9F+o1Z4J8GJ9+zpewJ4ySE+HYRueBNXf\nxFdYeGmZwSC2JhI8xtfXt9JciLKyMiZNmsTbb7/tthhEIm9A0tKgd28YOhRaf74db59GJCc8gMma\nyRs//cKYigWID3a/kZ8mteNN5U0stnIKC2HY4XxsZhmVSlX1lM2rQUAAXLzKnN0OrVrBzipXhRAa\nsKAgx3MhVzEaHTOYq1N8wTOkkpISIiIiGHklfZx1IBJ5PWK1wl9/VZ1njx1z/Ldjx4pW+U5A05RG\nL/Tno10fsz5nH9e364qiyKxPP4O/rwaVJNEqYxBebQ8yOcKbwFnvovfxgYICd95Wzb3yCixbVrns\n6FFw4ypzwtXDZHL8gukqdVnGZcWKFYSHh9O7d2/nB/Q3RCKvRzZuhGHD4HKb4oSH/82XMzox1Pv/\n8PPrxqm0IppEBaBVQVu/MNSaQ9wsGVjXtatL4q6Lk/knSdYUUzbgMdJOZ1He3MKyPcswH/dmUqdJ\n508slsFuQGWVUWnFtAjBsz755BMeeOABt19XJPJ6xG6Hbt3gt9+qPj5pUtXlZ9nUkWT7Pcs6+2Js\n5jgG2LUcPNULfbN9NHnlZQoyMljYooXzA68l332+tItvh8lvK5rUTrQ9fBhVkx14ZXoR/Fwwmwo2\nIakqmkuyjFI6n4Cb99FxTUfPBi5c05KSktiwYQMfffSR268tEnkDEppmovUH+9jwNGBzPETk5Q3E\nqaJ5dHwGOUUn2Jk5hT7xaoL1e5DulGnSPxmtXxljf98AU6aQVV7OodJSz92EBAnY6VjkT56s5qbd\njRgUbUIjSzRODEFv0dN9b3e8mno5zj96lIIBj3Oi+D+ei1kQgOXLl9OnTx/i4uLcfm3xu2gD8dZb\nb3F8+24O+ZXw6chPyY//N3ltn2X/f/ZjHpDG8KHr8NFoGNt2IE2CLSQ0jYJGKej8DewpvhdZpUJW\nFApsNm4JDqaXM5c3rIX8gQMZazXhU7gX46kC/mlbQK/c/6KSLUTqN6Agk5nxGfn5f3gkPkG4nGXL\nlvHggw9Wf6ILiBZ5A/HBBx/Qw/A+XhoV1914HbF5Z8grLGTpp0uZG/sYZWVeWHwkWrZcxHvPjWBa\n114Ev9OZzNwW6PHnlXXx8PrrlepMTk4mJSWlUpnFYnHpfSS99BITHn6Yb265j61Jn/Cvn17n6X/9\ng06aNaA3gyKTX7AB06lldO68waWxCEJNbdq0ifT0dEaMGOGR64tE7gHJ85OxJF+aEP17+RM+KpzS\nUse6URcrKfn7esPCwwkxl3H7uL6QlER6VpZj7n4dPfzww2RkZBBw0U4Rt9xyS53rrI1COQBZMpCo\nG0sn1iFlRCNJGiIjx5GuzHBLDIJQE8uWLeOuu+7Cx8fHI9cXidwDUl5NIeafMah9z098KT1cSsbS\nDFQDwomKqthLswrDh7spSMBut7Nw4UL6XbJQi/tY7BaySrOQvWVkxY5dsbPi4ApaNXb9Ql7C1c1o\nrNsQwdrUX1NLlixxXSA1IBK5h0SOj0QXen42Yt6aPFLmpVBWBpGRkJzsvGuZFA0+ajU/qW4jNSWF\n8k6d2BIaRo+rfB2qrpFd0ai0l5Rnl2ThUyjWR7/WiZ3ezhMPOxs4RaUiza4DScJEEOkWC4qPD8Va\nDWoFAguvzqntKq0KzXINi4sO8txMH3wLtPRY05vggmBa6G/nTGrzKmfrC8K1SLTIGxi7vYRTp14g\nMD+RwsISysszkBQFbDbGyB9xT/M3eP/PPxnYtRdaOQKd7er8tzz2X7GEDAvhv4/BMZOW6V4yGR1X\nMnD7Gto+bEGWwfZ4DPjbIDcCol04xU8QrnIikXvI9m1guiD3qHaBLgd2rr2yeq22PIqKtmNEBZIK\nON9/srW4JfdcWfVuo/ZR49vBl483wOBtqVCqZUfjPnw16HdevGEsP32zl5yTb/Le9JPQd5Jr52oL\nwlVOJHIPGX4XdOp7fiHCuGzokQIrVjg2gqirYksRL23/jU77FKwlCgfyQKlYZyqb1lceuAeVq73J\nNGqxRASS7+9DnncMRHhw8pIgXCVEIvcQRYbvv3eswAqQtwZS5sFDP19ZvbIic3+H+xkaZ+NMSirf\n5Sada5N/bLkZVq++sgt4SLkiY1UU0iwWvihQkFV+bC8q5HeLhU6eDk4QPEwk8obELoMioS3Vwg//\nA28DlBWdO5y54ABs205UN2/MFKPI9aM74vm4RhQeNNOk0Rb6Gkvpwh6yQlPo2OJ79pRk0KqJufpK\nBKEBE4m8Ablxai8MQTlgV9j4jaPsdUClupeM9DDy4++D7TaM2Uew2c0ggVdLb8ipYvbRVaRXcHOW\n6XrTvOlGgo1FtJJ34BOej5/+G2LLk0mdnIHq/zwdpSB4jkjkLrRxI5w8eWl5tMWxkqGz6fzzOTlx\nGVGf/86QQStIHzSY208cZ5jhVVZbErlxYBvAn51e9+MTEMUgqZw1+71oHlFUbd3ulJGRwdy5cyuV\nfd/kPhqvL+dIj/ksajmOzT/t4Pddixnb8RNipWlV1lNyuISCjZeura72URM2KqzSri6CUJ+JRO5C\nkyZBXNylM8TuLYcHH3LN7mSKIoEkISkSEpLjs6KiZUsJb2+AUiS1BY3OChLceCMM6lgK65wfS120\naNGCiRMnUl5eXqk8OSUZjWytVV3p76RTtL0I77belcozl2cSNDgIbdClk40EoS6SkpIYP348mzdv\nRqfTcffdd7Nw4UJ0btqCUCRyF3vppUs3gvhzFbz8MqjcOIQ7Ohqeew6Y+TKvNBlK71I7WuUpnst9\nCn64elrkvr6+vPDCC5eUf7f0I47uX489OZkXpiwlNbkN6enZrHr5NDf2dez3ufplKCsDiwXy8x3f\nC7svjJgp57eHs8gyp77OZODuPZQFVG6RG1QqfmnfHl+N+GtRHwS9GoTJ7Lq93owGI3nTazZ9dMKE\nCURHR5Obm4vJZOKmm27irbfeYurUqS6L70LiJ/YK7dx5+e0iXTmF2G4vQZbPP+RTFEdfjUQ1DzA/\n/BC++Qb8fR3jzM/ugTlkiKtCdYp28e0I22DieGAiA2/rxskTG9h6JA9Tej4gYbc79mU2mx2vXbsg\npop6Sux2bIrCvKZNkYIq//jfsm8fBXa7SOT1hMlsQpnpugf20uyad70dP36cJ554Ap1OR3h4OEOG\nDOHY2f0X3UD8xF6h//zHsXdgkyaXHrvtNkfXSq388gu8+GLVx15++dyu81u2NENRLJxdZaGsrAAk\nCb3aiqIKunz9DzwAK1dC1x6wWgNPPVXLAD3D18eXI51bY44ayamm3ShooyZyrIrCFamUGvTExsId\nLzv+XyxaVH19Xfz90PpX7lrRiT5zoY6GDh3K559/Tt++fcnLy2PVqlW8eLm/xy4gErkTTJx4ZZN4\nKtm3D5o2vXTftnnz4NChc4lclkvpeX0Kmn+9ACYTb+StRKUUEZFuotWsv6pf87aeud8YRk7KUdKi\n1dgVCTsqzLZy5EaNyPU+jM/RI5hvn0m51YbBXkK7F4aTn94XyltTddtcEJxn1qxZDBw4EH9/f+x2\nOw899BB33HGH265/dS60ca2LjoZevSq/IiIAsJvtHJlxBHOpmceHToa332bpX0msKi1HQSJNo6Hk\nxp4QGEhO//4evhHnucHXn+E/FBCW/TNPhVoYav6IPUc+gkMHsUtwUlPERONGxnutwSrpyBh4P2i1\ncPy4p0MXGjhFURg8eDAjRoygtLSUnJwcCgoKmD59uttiaNCJ3K4ofJ+dzddZWZe8fszJQa6H63NY\nUixkLc4C4F/9/oUiqRgw5hPWB8aiqBTSYgrpKy8lfGwu/bKmsnfQXhQFdOqrc5XD2kovSuftnd+w\nLjeIeFURxEGpTkITEsZ7H2azt0cjbJKWnBuHQ3Cwp8MVrgGZmZns2LGDxx57DK1WS1BQEA8//DAr\nV650WwwNOpEfKS3lgcOH+b/s7Ete9x48SJK5fs4IVBvVWDU2Gv0rDkmCxs83Rhvm6O8NV7dh74S9\n7P05li9avEGb39sgSRLjuozzcNRXLtYUy7yb5tE2pBkt/H2IMLZGKgONIpFVkkVOaY6nQxSuQSEh\nIYSEhPDuu+9it9vJz8/no48+Ij4+3m0xNOg+cgWI1ev5um3bS4413bKluvEd53z7Lbz9dtXHDhyA\n0aPrHGKdTO03lZQdCv4Hr2ePItP+nXhO3FnmWHs80Jeo7YfgraUgSchzFjB6JiSdSiJ9RzoAssl1\nQ7ZcSStreaTLI+Tnb+DQoRW0NmSzKAeklioklZ5fFo/kqRxvniKPg68+S2BGOF6NG/SPuHAV0Gg0\nfPPNNzz99NPMnj0bjUZDv3793LprkPgpr4Ht26F5c7j//kuPSRJcd51rrltY+Bd733kZeWNnKA+G\nU2koP7xGv8w+dMzsRKvFD6B6shcrRq5gyITHICGNDkUhlPftAq1akfbBB9w9bRo+R0bzbvp29n+x\nHwBrSQlNmrdwTdBu4OPTgcjIRzman4uUlYVNb8BuiGBhj8cpL0zG/u4cXps0gEkLCriPM54OV3AR\no8FYqyGCdam/pvr06cPWrVtdFkt1aprIhwCvAWrgE+DVi45PBR7C0QjOAx4ETjknxKtD06aQkODE\nCvMLHMMAz/bTH/CCtEDHZsnNmgFgsZxBtbk/xtDe+Kf/BFHRlLfoxoFNM+n/0xTafdUFgEdTzGTn\nOeo5UWam765dMHUq3b282LplC/uH7WfUA6MIHRYKQNzmzdzQqgMp7HDiDbmPVhtI48bP8+np00gn\nl9DKuyt7zan82u0Wfv21EeMs3ozceoYzJTkcUmVh2rcPgNjYWPDQ5riC89V0ss61oCaJXA+8C/QG\nMoHNwK/ArgvO2QK8DViACcACYJhTI21ofk+El+bC2ZElaZFQ0BYCAmDw4HOnSZKGoIRIFpcEs6FJ\nJGO0/2RM10SksX/w818SQf8n82zxYMqfdux7FqnV80rTppx4803mt2njgRtzL7Vez/59+7CWW2nf\nvj1Wkx3ZHsvid6bia9WxCiva+1aSn5/PgAEDWPDf/3o6ZEFwupok8uuAA0BaxeevgFuonMj/uOD9\nn8DDTomuoeveHZYudbxfkwfzUmDpvYBjSNOh3CRKyxWSC5L5MaiUm7P2Eht3ilk7dMyZtxi/HW3p\nOqIDBad3cPODDxLXbBoPSV70DgwkwJm7N7uBVgvLlsHay+yQtGA2aBUF2SqfK5OsCre/PI/4oqUc\n8Ley9ucf2bXzRubNXIi23eeMLruRO3I2oXxYwsqVp9i2La3qygWhnqtJIo8BUi74nAok/M35/wB+\nuIKYrkqKopCamobNdumSr7GxsajPbvXjJHsz9zJ4xTReyJ2G4buFLE5agU5RKHvJytv/p6ckO4gb\n75mMqkCDwacRBSUGLFZ/p8bgTuPHOxbwqsqLL8KxJBXxwB/e59sMPVFQmqowzz9IkwXPkJWqJjJE\nzevz7wB1OQb1Mkq2dCHaOBlZfhOrVezWLDRMNUnktRlsPRroAvStWzhXr8zMfTRt2o2oqKhK5bm5\nuSxYsIDx48c79XpW2UqroFgSIiNpLIezrVkGTXr0QA77HI10P3YV8OJcCAl06nU9xcsLOl1mq5+Q\nEFB0avrk96lUfrikhB9ym9Lpul84pT1Eyq+dWbLrE+QXplHW9iPebX6GjpH7iYgYg17/HceObWbI\n0KE8rzzH0CFDKdOWARAXF8fnn3+OVpIYuGcP2oum6quAT9u0oZ2vrytuXRCuWE0SeSoQe8HnWCq3\n0M8aCDwH3AhUud7orFmzzr1PSEggwalPD6/M1q3w739Xfez4cbjtNgsdO3Zk27ZtlY499thjWCwW\nl8d3JjSUkFatUHt5U6JvjSJJ0Ls36Br0VIC/1drHh9Y+PmxSp6KSYHJ0NF/+ugqb+hnKgFKdjpPe\n3nx49Ci7S8I5rQ8lfvx4pK0Ss2bPQvKXKCoqYtSoUQBs7NyZvCp+45p49CgpFotI5IJbJCYmkpiY\nWKvv1CSRbwPaAdFAFjASR/fJhToDS4DBwGVnZVyYyK82Bw86NkL+u1m1f/3lvngux2qTmJDWljfs\nhQQHga2i8VgS9QkxcScRC/c5qJJNNA7PhSg7rb29OaMqR20po7OfHz5qNddddx3aIC35Z9e7BWIM\nhipXZfFvoH+or776KvsqRvRcqFWrVsyYMcMDEQlwaSN39uzZ1X6nJj+hZmAisBrHb5nLgZ3AbBxJ\n/idgHuADrKj4ThJwZ40jv0pERcGAAVUfu6gh7jF2GQLUNlBbOZ0EqsVvwtq1dMzNJlI3nUand8LA\nJ/BOTuaQzYZx40am59pJPJTHX6FHACiy2TC4czF0D5DK7UQW5KOYLQyMisLilcemvEwGmc3opPr7\nLMGZPv74Yx566CGio6PPlWVlZbFw4UKRyOuZmjY1VlW8LjTzgvc3OSeca4+iKJRaSzFbzdhlOyXl\njlULy6xll/2OCpAAPz9QbVwFgxNQ/e9/qPx8kFq3hmeeoZlOh6lnT2zAKeMhRrUII+A6x9ojWknC\nq1zCfaslu8fibYvJN+ejtF5CmWonp3xD0JXl0/O3b+mVk0uhzc6ogwdZT1id6k9LS2PChAnYq9in\n78knn2TQoEFXegtud/vtt9PmgmGqp06dYuHChR6MSKiLBvE7Y7HNxr4qlm09WQ/WUlm4dSFP//o0\nPU714O6ku+kz//wDvRujL11aoEpdusCGDaA3QHgwDHR8z6/icJpKhY9GjVF7fv1te7kLNg31oGiv\naI7ZjmGX7UiGHCJVZQSUlWKTy3kvtIj8kBCOaNRYNRqUWj2/Py8pKYnjx4/z+uuvVypftmwZW7du\nrZeJXHCOPXv2MHHiRPbv3094eDivvfYad97pvk6JBpHI3ztzhtdTUogzGC451i/wglEdhw7B2YcI\nzZrBZ5+B1QqShM5+D1DzKbnOUmQpomtkV9oWtyXAEECv2F50802mhVcO3qqDFN/+OvttpUR62Un1\n+o1AuQCrTa6+4iqUlJQwZ84crFYrslUmvTyd75/6HoC77rqLG264wZm35lZhXmG8Nug11pxcw971\no5A4hndvO7myjQk/T+CGNBvldi01ndAtyzJnzjim95vNZnJycynPzsbX15ebb7650rmbNm1y8t0I\nNRIU5NhJxFWMxhpt82W1WrntttuYOnUqU6ZMYePGjQwZMoRdu3bRooV7lsJoEIncpiiMCQ/n1Yqp\n7Zdjfed9clf9RU5UR8r/GcuRHw9Taiqh0cFVZLWPgMae6dY/lneMJxpNoWVSIfe8cIhjU3LxTtHi\nc0RFRmEP/JQk/uilx69FI86U9SArrQ0a1WX2l7uMzGWZpP6UytIvl/LodY+CHUKlUGJiYli/fj3f\nffddvU7kZ20bv41Oi/IIkFth0CThrfXirSFvseu7N9mtnLokkatUKoqLi7n11lsrlW/ZsoXc3Fyi\noqLInTaNvatXo9q2jZycHA4fPkzr1q3dd1NC1Uym80tcuEINd4zau3cvJpOJKVOmANC7d29uuOEG\nli9fzpw5c1wX3wUaRCKvqexsWJI1gpzB/6RQt4XPWs3Fv8SLf6TeiZcXjBjhmbjMp838umEVbYo7\nMal9I/obSkk8NJZNqx/hISmf45IXn21phV3SIalUdNQUItlqvlhQ9BPRFP1VhCZTg9HXyITBEwDQ\njtUS+VAksiyTkZHhqttzK61ai0pSoVKpUQHqoAJi09ZzstBEpJ+dG1UbUK4vI+fYToI734u/fxhr\n1qyh5KKuuQkTJtC5c2eio6MZuncvj99/PwFHjnDTTTdhrqbLrtRuJ8da5QhcwrRaDE6ePCZ4llLF\nPyayLLN//363xXBNJXJwTC6Zsxj+twUiJ6QTpNHwS3R36KInLz6JvUlwT1gYTb28al+51QpyFd0e\nGo1jbOPlvpZnpWV8KzgoMWbOHFSqmZSta0+67p/c0H0og5U+tNX8TjebDWNoHKUHSjEn1TwsY4IR\nY4KR4oPFaP+npdH0RrW/t3pIe7oRug77CShdSUCOmRg/hQfs6yi/roikY5uwhZqJbTqdfv36OfW6\nYw8fZq3JhPdF/8+L7XZG+IXTc1cLqnheiiTBnXc6egyE+qNDhw4EBATwxhtv8MQTT7BhwwY2bNhA\n377umxd5zSXys56Li+N4WRmFdjvodI6/RXY7v+bl4aNW83jMpSOKZVnHiBFQdsGAkv37J5CY6Mv/\nfrIxZd0wBktrLv4S9O2L/OsvfP55D5KeOEDfvK9J+fUB0saa6VPyNb89CAqzyB+rRqOxAzJW22gU\ntQWVQY13E29OGKx0T0oiNE7C0E1mz2xf+OFHyMx07R9UPWHLsZH2rmMtlTa5ZryVCMrTY9hwKo7w\nyeGk5r/Gtt9OcJs0i2/fuoGg+4fA9a554GuWZZa2bs0dISGVyj9IT+e7tVamT4eLenIAWLfOsTjj\nPfe4JCzBRXQ6HT/88AOTJ09m7ty5dOnShREjRlS5nIerXLOJfFxk5PkPf/4JLVpA06aUVNVUqmC3\n+7JmDXz66fmyJUs2EhMTQ35mJH9pejO49Kdzx2TZQsnW/4NXXsZeuIWsrAO0bBuIPS+F9OFNUe8p\n5MO8ePJSs3ji9COQFIGuh+MB29ENtyMpKzFG9iLghgB2RRsY/e0BIpJ+c4zSt0+B5csc6+u2bOns\nP556xa+7H/m/5XNi2gkAepfq0SjNKFBCyfDZRTjhHo6wslatzq+VdiGRwOuvrl27smXLlnOf+/fv\nz/Dhw912/YaZyBMToYpZpOXpOSTFPc6uoqLKB0JDicexXm919PrKran//W8/rVvbyPJ1/APw++nf\nSTydCEAEO2lmX43hLjvZO4YR08KG//h8FMtblPkXUWAOIE0rkR2oIuipPijvKXT87i4A/HpZUR3Q\nolJXdPEEB8MrrziWuQXQ/Q4rVlzTU/TPav9d+0qfJ7fPJkD5lPdz25DROIOOdARJoqTISsAXi5ld\n/CuG/5lRrX8Jr4IFPBvfgk6hzc9XMHo0DBni5rsQ6rODBw/SrFkz1Go1S5Ys4dSpUzz00ENuu37D\nTOR79zo6Gh9/vFLx8BI4Uqpn3ZEjlcqThw/ndUXhoSu8rF1lZ8CyAagkFWqVmqHhNlr6yLx3SCH/\nZB5xCkz92Zs2+97k6+cWYS44xMkOA8gIbMKM5HyGFsLoil1GTj4BfND0steSdBLb2m3j7DCMF1Mf\nwbBNRhrsuh1T6quP93yMJcSKvqcKKSSf7ke6UXLjVvxkFWvWmlnrvZ9OgyY5Tv7lF1iz5pJE/llm\nJvozZ7AGBvKe2UzE6dMA3BMa6ua7Ea5GH330EUuXLsVut9O7d2/Wrl2LrxvX5mlwiXz27Nn88MEH\nYLFAxV82gGbNmmF57BmaLW/Ori8DKn1n/MKFWCuGLqqA99PT+e2i8an5x4+TXV7+t9eWJceDzndv\neZdxXcaRnv4+RSdX8cqCVP5Y8CK/rrmZ8MwwdJKOlwsnoNmdyC2dexG5azP/aN2UAB+FL+NbYbPZ\nuGn9aQrD/Si3l1NuK0e2WpFlGUVRyLFaab6/C3LR+W6gJ59+H/2DD/Lbbdd2N8vF/mH8B0fbHWXV\n8VWcCiugpEMvBq4exIk7VpOnUtGstBHFbTbDmDGOL2RlQXp6pTqmREfzV2EhKRWjE2RFQVYU1phM\neNWDpQ7mzZvH888/f0m5oij41Ocdk4zGGg8RrHP9NfTaa6/x2muvuS6WajS4RL5161Ye7N6dPjod\nTJsGgMlkYtSoURgnPYVNn8LR3MoPCIvU5x9K/Cs2lv4V/wNL7XZOVDzZ3OLnR16zWAzhJhYfPcSM\nVeNRlWdRHFyMJk+D7DMbJpWiUanxK9/ImTMqCgr+xCwncaabiS93H2V78ylsu8uHJ99TM1Xxw9x9\nICf9bTTWJROj06CoFdr6+BAYGEhhcRmoFLrYX0H5HBRk+vXvj+255wAIuWCWJoBpyp30C9ag8W9w\n/0sB+PpruOgXKcAxGGjaNAi7aNb9/tOnedS6Ft0bEegidZw0naT4aDFeXXui0+iJ8Y9Bbd6P2Swh\ny2VkZCx3fDFoB0gmQmxFaDSOubE3Bwdzc3Awm86c4av8fCZ6edGpSRPKqhqhdBXKyspizpw5PPXU\nU5XKJUni/9u77/CoqvSB4987PT0TEhJCEmoooWMoIh1BmhQVBOxrVyz708VVkb5FBSyrrpW2KqgI\nKFKlF+lSQoCEEBLSIGUyaZPp9/fHpaVBgIQkcD7PM08ydyb3nkwy75x77nveoy31f1SnVGKyzu3i\nlnzXNw8KorNer0xdB7KysnB5uThZcIigNj/y1M8llxNNDuxPd7eM1dqOMEM4YedniH6alsZn6elE\neniQ5uWFfXg/XM4k3s8shpavc6zXcP7+97/TPLI52SkT0Mz7Cu+F6zFa1mAc8CuO6CJo7KTejzLL\nvgrl0TX7qZebAqreuAJ30DD7LI31kcTqfwKeutie/Px8uvewsf/EA3zRYAznwk2861iJ/uRJRq5a\nxfh776Vfqck77dq1Y+7331+8P2jQIA4dOlTiOU6nk6ZNKx6uqa2effbShNzSPv0Uhg69tGIeQEBA\nAI90fRC/5bvwHdITY18jS44uwVRsYl/0HbhlGdfKzvg3O4slMx1nmh9nNv6MNkiHwfcUuSHxaMyb\nCQwccVN+v5tBo9Gg0+lquhlCNbnlArnJ28Rb9Q4xV6WCRbEAOOwOCgYXoFXpmNPERGS4hCRdurR5\nMv8XAlRr2bPnDbreaeJ0Ugpnz57luAx3yirmfPMNiYmJxBw+icY6Dt9XbLzbug1BU9+lWVYRPi19\nKJaD0BR7o1ersdISQ8IuNEumosrYiu7LI7gkP/zjTRxO2kdX11O8/fsfaFX5tJ7QHV3oezQ424B0\nLoIO9RIAACAASURBVJ3S6zRaXnniafy3OdAYZfRWXzwNBs7Fx/PbL7/Qr6LldM6Lj49n9erVRESU\nzBm/meN2VaVTJ+VWnpUry25TqdR0admSYH0+Bk03jHojBf4FfJn4JaH7C1kevQfroRysR9qSkpxH\ne20wquLJ2M+5aNx3Jdam2WQVZWLVpdLQpyFSdZ6+C0IVuOUCeYFHARntJoI2DM6X53Q6ncjEofFq\nhsbmoG3UCry92l78mVHfTiHbcphVLVcR9G8/LE5lLFQOv496ha0JnT+fn8LDsUY0wXkqBI+MHTha\nRMLChUS53Tzj64u5KANGj+KOjRvYVpxJitvNt19tpYeHmaatu+JITcHDMxibwQ+tpKJJ6zvRDbuL\npp2HAGDKLH2aKHHvvfdSP/s4/n39CcjLxVhURO/evUlNTS2To1re7LLAwEDqlx5zuE1sPWKkgcqP\n/OUSLDcD0XS238l7CWGkqAdj6/QTjlarkHd04fM/e7Bzvz8PGvew3usTOgUW8vXGN1mbPpFVE1Yx\noGkFtY0FoZa45QK5y1WMuX4nJjEVbbES7AoLZd5b4OajEZFEBKWR2eEV8pIu1aR+8v67aGQFXTM1\nq+es5LGC55mue4fZf0vCK7wxGoMHHX7bwwexWRx4qS3PFawh08+T4uY9caYf4253AY8nriDDmsPz\nP2ynT1AHVtbrhP+Wk+zzdfFNioX8339FM3wsbDaDyRumToGgaz/VDQwM5I033ihTalSr1eLrK+ps\nA4weDdt+8uZoYX0IuzS70ukC7/vO8F2wmY3nMjjYohhaWml954eoN99PI3MrBoe9ToL/Ar6+ew6P\nrvsCm6v6V38ShBt16wVyt5v7WE6vpERsfsqkH7fbyedj4gnXFOMIKSarxQtI/k3ILnRTWJBH+20a\nDo+xEKlay9EZJlxz/s4U6W6K9V+jybVh9nLzwhAzTllPA8MJ8j27E+jMIVP2okfzkwSPOIXc8gje\neYl4noWX/5kMkhqbFEZe/nB+z1eTlZhIcPCNX1h67LHHeOyxx254P7eyl1+Gl0fa4K0FZUomhD/4\nIE1+PkxQuDeaIgeS1YGPpxm7xYGr0IVptQl6lb/fy1mTrXjH2/HQyGRn2lHpVRQeLUQfVpnZCIJQ\ntW65QA4yHaUY/P9wUfynjTSbAxdOcp1urPo7qB/RkKC5UeTktGX0QDsN5ePM8DZzKtWDrolB1G/4\nGnPnQkDATAocZhxqFcc+t/LfgNZk2TTUK/BH49Rwr0vi9Ksgy8G4N3XDvGIycyIhh3tZtv0tnNZe\n1N9uwumt5rjnL/j4JLJxw4aafnFuH40aKWWKS9uwAf32+YQ2LkDT1IKcLVNkseNR8DvF7pb8YfYn\nPKWI2FeXMWZ7OG7PP9gX9gddusqQkwPAzJkzeeGXF4is70SS3Wwzn8ZT48mR5Ucw9jPCpJv8uwq3\nvVswkCu8VeFMCY/kYMxBfLwDiI3PoLl2F5JNR3yHjsxddICgBh4M7v4FXrvGYnqoKTvdH0CnLhf3\nsXfzRsLTTrNwxrssG3EXjz3+OPNeiWD6mybSmgUiSeC2O5D6q1APL8SWnoH0N8h11OPXpRuY6NmG\nQofEwbgIIiM3ERnpYuzYsbC1/Da7ZJmgnTsB2JFnZtDhZF4/l0tMXCZxvhZ63owX7lbn6QmbNtEw\n+wB/bn2FnIMmtuRAszEfEPbby7gcIRS466M5F0ZQZjs8nUZ2n0giuk82fPMeTZo1Y9CgQaiWq1jw\nURFeuMj8KIOEhATem/0e2SsqXLJWEKpN3Q7khw8rEzn691eqDf3yC+r66UAoKj24NW7++tr7NGrU\nn4cefoj3fMezd+Bm/vlFAmvWL6bYNoSMnN9ROfrSJfUofvVbwGV5tUN79GRgfntU737EA7M+5wFg\nj9bE4TadWFDYGn8dfPOVTIMwGHCvikyHzGzJzdOv7WLt8vmED15LZJt6LP84gfj4niQkfMK8efCz\neychwZAnwXPPKSl0AG5kXOcvWvbw9WNy27Y0PBDHM5H+PBGYx9c7dtz81/hWI0kQGkrvpk1J6TqG\ncQdG0rr1LqYWDcM8wsWhE1HsiTzOoEF+HM+YT6szrVCl+XP8PgOnT8toD+Tw5JPj2PHCQTp0aM8+\nSyGFkZEUqNX8cC6ToMJijltkDhcWlimaJQjVpW4H8jNnwGjEOuIRTsd4se6lpylY+QjgJj2oI+cO\nFjBjBjRo4EWxZTLnbHaObXkb2f0t2bHP0bbFbpoH3oGH5OS5w78QrusKpaZcuy2FyJKE3FpZ6UPW\n/YncMBhNvJvhPfbyx28LadWqFU8Mm0hiYiJfeN7NPR3/A8y/uI8pUyA21sWHHyo1qneHOUk66OCX\nLRK//VZy3PxCoptKkjCo1aglCZ1KQidqWFcTNXZ7NjsHfIosqyi4R823px30CDpElGcB8ok7OXl0\nAB3umYb3cRcORzZ797YBeRHjn3sO//ZtWR4Tg8rlQr92LdrTDSl0NmJTbi5TGjeu6V+uxjzxxBOY\nypmwM3DgQCZOnFgDLao+n3zyCQsWLODo0aOMHz+e+fMvvfc3btzIiy++SFpaGl26dGHBggVlUoKr\nQp0N5G6nm/yjamR7W44vCmP9SiPZTSRyPe4EdnIsXk1CAkREwOLFeXS7cxgar7nMX9CJ33rCjh0N\n+PjjFIpOtMIpS2Q1OYF+1Qk4tOjSQWQXGsmFtRcc26pMElIXL2LX3jFEhIJG41d+40oJCgrkm2++\n5ptvvlZ265SRmkq4XC769t0G5wdN3EVuQs/I5AL1LBbkM+DKu7XW1qwOa9cqn+mlGQxKRcErpYHr\n9T58/304a+cV43KoKSry4LSxgNekxjze+W5aH+/DsVPdCLm3PVLsUFTBhbR5w8JBWaZjXBydkk+T\nn5WFr9vNqEcGkv33lYSo696kq6q2YMECVqxYUWLb/v37Wb16dZUF8oAdO8itxlKxRo0GU8+rD2g2\nbNiQd955h3Xr1lF8WY3r7OxsHnjgAb7//nuGDBnClClTePDBB9m1a1eVt7XOBvKdW6eTE/oVqhec\nDFP9xuABEgE6F2fJoIHkQecBrfm1GB5+GPz9r7wclF4XyLpeD5XJVpBlGT+vRrQL7c+FREG31o02\n/FuCWvnj6anUNVm7di1msxmTyYTZbGbWrFnYL6vLMm7cOMaNG3ep7UE76XKsC90GjcLpzFfaEKrH\nlevk73938QgwITYG3oYiD2WFH8quLS0A48crVYgzM8s+9uOP0LMnlFNa/qI5c+aQlJQEy5fjnL+Y\nJNrwxOAzHFl4DMdJI5bMxhDkxYrPDuP9/iT4eBb5MydAf0j6d3ukQCP5f12Lf3IeZ6X12MLrxrT9\nm2HkyJEl7mu1Wg4cOFBl+891OpH79q2y/ZUmVTSduJTRo0cDygdVamrqxe3Lli2jU6dODBmizBWZ\nPHkyH3zwAfHx8bSo4tLTdTaQ7zJ/i8NhJzdFxX6/SKwWiZ4dtOzek09+nxn8ke8Edl58vsPuwK12\ns3fvXmRZZuPGjZw8eZJQQvHW+fLmgHmVOu4ezR7aNWyHZ4gnABMmTGD16tVYrVZsNhuyLGO1Wpk5\ncyZSTOVfXq82XrSI6cyw3buhN/ynSzdmzIBuFxYZWVXpXd1Wnn5auZWnMklCgYGBBAYGQnQ0/OMf\ndHbZWfLTWFb9sIrp42N4e3EvCDzN4mbbOLL/CM1kmf/Zs+iBhLpRa/KMLXDodyFjwW4PJS8kCadF\nhVMlZoPebkpPyouNjaVDhw4X7+t0Olq0aMHRo0dFIL9co6ROvH3YwIjohRScUjN7sh/95nYjvncr\nVBy/+DwfHx+69OiCc4uThQsX4nQ6mT17NiqVisEjBsP2629Djx496NGjBwCJiYmsWbOGWbNmAfDh\nI7uv9KMAWK1w4UM81wHuTKXvbxPzUGqETq1jxbgV+D/nz6LRiwj673HWxU3k/V0jmPCX8UhyDuGZ\n8fDEPPbs8+X3uGQy1G68ovxZFROPtGcUsXMDcXcoZPH82UTUM+Op00FAAGdatCAvSY+tOAjwrFR7\nZFmmovNJCaqlfIDT6SzRs7wgKCgIvV7kyVek9N+iqKiI4OCSi5p4e3tTWFhY5ceu04G8sgwGA59/\n9zl/dP6DTz/9lB97/siaNWvQ6/VY4i3EfBJT5mfSPksj4f8Syu7MBWrPyl14lJDYkmdmUWxsie1P\nuJwsz8xCr4eEBOjeXdnuRkOeTfkEz8goW9HPZDKxc+dOSuvYsWPdLkdaS/WM6EmGXlk+LniABs8C\nPbI5gLAjrcGuIz9ZT2ObE6m+m2KziT5/mcmhDTZ8g1IpVj/DlB9+Qqc+gYdKhTs3n6yWUWSouuPK\nBK/o11BfliGlczoJKZ7Pffe1LdGGe44c4ffcXEqHaxn4oFkzXg0PL9NuV5GLothLY3G2DBtWu5WC\ngwV4d/S+YvD38/NDp9PR/cI/5XmFhYU8+eSTzJkzp5Kv3u2ndI/c29u7zKLehYWF+Pj4VPmx62wg\nl2Rokh0PMRLPn32NonwVPK/juWPH2C3LTNkylZUJFtYuW4s2XovL7eIz6bNK79+eaSf89XAaTW5U\n8rgqCVUlV+W509eXZnqZYn3JusZqOZvXE0+RqzIT8HYc3ncpaWpOWaa+w0FmL0gutbhykyZN0Gg0\nTJpUcrbJqVOnmDZtGs8991ylfzfhGgTWgzMQZfo/9MZzWOwySUc20Xjdd+yZkcLhPU6i3P5EHkpH\nm+1Bp0VzWKaScah/ggtrOkuQIjfmKUkpq6DJ1qD3/afymEqFW60mx+1G/6i5zOHjvv+ebvv346cp\n+VZN1WjI+eijcpuc/nk6KbNT0IcrvWfzGTNqrZqDXx3kjgN34BVV8Yd+QEAAp06dKrP9008/5dix\nY1d7tW5rpT8g27Rpw+LFiy/et9lsxMXF0aZNmyo/dp0N5Bqnm9D8VPCJIim4DWaVCtp7cHy1CrdK\n4vV3dxI36U3GDh/LiFFKOdL4ZfHl7stV5MK0vmSqlPWUFUMzA2rD9af9hTTywvaPZPw+ySmxXeWp\nZU3Xtrzg48OERo3ofdkf1letpmwfC6Kioti+vewY0KuvvsrUqVP5qNSbOi0tTZQtrQpRbeBPYN8+\n+n3xAj8c+oEvxzRh1npYZ1uEvbkHx9JO0XxoE1ofmkTQthSWzmjOH0/34ptPs+k4th/mPxfifeJh\n3PM+YntWGyYfG8+23nPAbIbcXNJ37aJhBZkM+fv2cXd0NGMHlCzcNXT4cNwVZGzITpngR4Np9q6y\nWErw68GEhITgscgD2XnlC//CtXO5XDgcDpxOJy6XC5vNhkajYfTo0UyaNIm1a9cyaNAgZs2aRfv2\n7at8fBzqcCAHkCUJGjdmTfRfSDul5s3n/Vg8byYuCXybt0ar1uKl88LPoKQJqqSyPWltfS3enbxJ\nmZ1S5rH6426scmDEpAgiJlWcM+qtVhNhMBB12bBIeVUMr2TWrFk8++yzZbbr9XpCQ0MrvR+z2Uxi\nYmKJbZenUtVFkgQvvqhM5rwg5yF4cSI094W5c69tfw+3f5hD9Q7x7X3fkvRMElbzTNqsjGBf14Ec\ndVtYVGjifrcWdc6rpIZPZUHSAt5zF3Ey8VXsXlayP38Yjt8Pk4Fly+DQIajEuo4t2rXjnnvuKfm7\nXWFlIlmWQb70vyTL8jX/XwmVN3PmTGbMmHHx/rfffsu0adOYMmUKS5cuZeLEiaSmptKlSxeWLFlS\nLW2os4HcYgFZhpMJcNIP8jPhX/+ComtM09P6a2n/W/vqaeRN4O3tTevWrW9oH02aNOGzzz5j06ZN\nJbar1WpCQkJuaN816dtvy6zaxnoP6NMH3nn22gP5BU2NTTnDGXLUgXhrdEQbW5EonyDMlUVioT97\nrd2xNt/GTqcPdreadu1Xsi+uB273lZcKrAonLRamnT6Ndz58ufV85yQ1FSwW5hV1oaHDSd2rSF8+\no0ZT6RTB691/ZUybNo1p5Sz2DjBgwACOHz9e7mNVqc4G8mJbIZLaTfbT+2gXt4Rz+lCaNl1IPU8T\n5+pI5pePjw/33Xcfmsv+YWRZrpaLIVdy//33c//999/UY94MffqU3TZpF9w7HN6pomNoJYkuxhYM\niIjm6eZP88X2L2jmZeTE+n/j0eotXPJ2Zm6ewsBgO4k5sTid+ciyB85N61C9NQ2SEjAOG4r09mS+\nz34V3xf9iHnLwMKhi3Bp9BSf1LFuqQa/IqWcw9UUuFw00Ol4PiKYninNSEmBNem/4Z0fgmTWMu8b\nCdU66NEDqjEF+6aozGSd20WdDeQanYVDTZqx5EwX9vkEUdTQk58Lu5LUUsYt1Y1f67vvvsNqtZbZ\nXqfXUbwN5e/Ox3nMSaYxk7sK76L9ivZsy/OlFa2RkOipboLK7cJx6t/kZ3/HoC7diD38M9q73RS8\n4MagOocsSXykM+Aoasx3Od/x07wPyZG8sBUlk90wi7ffLhvI9xUU8EmpNMGUy/JWX38dxo0Du125\nyW6JYgsc3w8HDtT9QC5cUjciXjls6PmlVy8O72lKlsEDp0PNYXUDNHfdRUd7KoY6sLq5RqOpk0uv\n3QrsdnjppfIfa38NI20+XX3Q2rWotCrUvmp8fX2JbBeJ9ictbQrbcKqRD8PfXEHcQB3oJBrIuTSz\nrsU7xQuiorAVHcTcSklRmv+LMvvXe/QPxKyLRNW2AwFN5tCqfTJpJ0seVy1JNDUYOGGxXNx27sgR\njixaxKjEbvwme5Of/zipqW9iMv2OThcCUlPU6s2oVE2JjW3P4sVHGD9+/DW9bkLtVGcDOSoXXsXF\nzF/6ISOiF2DL8CV07EKKbacY5/MSKrHOolABgwG++Qby88s+lpp6qRolgPl8Zkj0/v0UHT9OamEh\n0fv3896FfTUy4Bfoh8FgoF7zesgumYi/RaD6pw0DHnSbUESgxgPyjagkFRoMWFTQsJ4Pu/v8gP7L\nweQ3jUfSyQyzKWdnvpMnU5CdiXP/WpxhYdhKzRKVZRnZ7abt1q0lzt6yNm2ikdVKj7ZtURWq0KXq\n6N+/P+npB/H09ERCQqPVotFosNvt/Otf/6qSQG7PtpM8IxnZVfKCavyL8YQ+H4p3W9FZqW51NpDL\nKDUtWtSLpEW9FmQXejKl9xQAOjfoXJNNE2oxjSQxJOYIujZlz9hmN2tGr2Qj69Zd2lbkcilTKP+v\nIxRYIMlL+d69g/BVzdEMLr/DIKngo+n/RI0Ws5xXYkJPOI2Z7jmdPz44iWn9SPS5s5nieA2NSrkY\nGu2ZybkCf3ydZp71MOKXcYZ77UthKRAdTUFAAA6Hg4MHD5a4vuLv789TTz1Fyz9b4jA5MOzz4IEH\nHuD06d2EhISgOhXAg395kkPJRjKz8snKAvv5FZR0589g4+Li2LpVKZi/MDiY3PP7Nx87hjo7m5OH\nD6OWJL5q0YIwg1JIznLCQs5vOYS/VjJxtuhIEXnb8kQgvwnqbCC/INAzkEDPQGw6Nf2aKDMwspZl\nseuVXZiyTcRti2PXK0qOrv2cHZWh9g+5CNVna8eO5DgcZbb/IzmZeIuF3lojJ06Aw6EU3JpQCLqh\n5zAfD8Fq1eDlIfH+dA3cDfM+VxHVDkotnwpA96E6fvzRTP2gdUw0aVhn8OSIhz8exUWcyevH0qlL\nefzNx9EM6YC700vcoVKBBG6cqH3j6ezai7NrNoHIBJ/ezV1yEea3N5Pb1sj+p1sC8MmHH+Lh4aEc\nUJLgfKnjM3+WUwoS5UNs7scxZOV643dSh5+lK+P/bxspoZDV20BHb29i3n8f06FDtAzuQsNm4+iQ\nkEA9lYpV+0/QoGkQf93gySs9TCTbbBcDOYAuVEfDFxteOthE8GonZhvfLJUJ5IOB9wE1sBB4t9Tj\nemAREAXkAxOAUvMSby5rshXjPUb80vxoMroJnYZ0AkDSSOgbVE2tiFGjRrF3794S25xOp1KASai1\nIgwGIi4LQBcE6XR8n5nJYc8iRm2FZXe7aT4nAc+5dhp31PKPf8AXXygVFfv1gy1An34gVTBfbNH/\nJGKOwrx53mimaHDfsYrCsOV0TunM4n/ZGPDrANLuSMPpdGJJbUIP/x4485z8HvU70QW9aOdyc6B4\nN0ZNLroRJvR3mdhHMXqKCZbT0Wrh4c1/Y5M07NJB/f0xu1z865wHdzj02DpksyHPRqKlgNwiTwa+\nFEF0nJ3EbDjqtpNnb0Dfgy5cy2F7I+Utm5GdTc/77uNB0/2c3piNpX0HRgYFsmvTj/hYQD/tLI2X\neFTJ3+KkxcJ9sbEXF1O5XGODgdXXcrHiNne1QK4H/otSMPscsAtYDxy87DkTgQzgQWAU8DFQsn5l\nDdD4aFB7qNEF6jCEl33jVmTLli30rcTl/BMnTrBkyRKaN29eYvvNSh2sbDtrUl1oIyjtfDE6mu15\necoGb/hVJdEr3JMm3hLR4QF06ACNG4PJBCEh8L0bQkNBluBCDaRm46Gi0DM0cihBrYMwh5vBF1wf\nu3Ch1JpvG9CWyJxIjj92HIvOgrvYg+KPlhEFxGwcyiDj4zz88KMsHfsivfQGlt0fg5tNPGX4mhd0\nC1E5XajtDuRCCadGhfsePcd+mkTYoGZ8sSOTU+lx2GQT50Zm8NvLdxLzM2yZb0OSDnHadJqRppHs\nO78Ygj/weJ8+RKzz5IceEmdf9OT1DpHs+noX47qPQ1N4lZCRns6Wd84ndx44AClFYDqr3DeWLFWR\nYbejkyT+FxVVYnu+08ngI0eu/ocTLrpaIO8GxAJp5+//AAyjZCAfyqXlZn8FvkIZVayTU8muJfjU\nr1//mmZPVqW6ECTrQhtBaee0vn1pe1kG0ZuSxJOhoWR4ZqCOcZD5YyZR1lw6NnGw5I1M0p+FP/9U\neuT//rey6uB338EZCYY3UfaRng7DhsEkM7TvFspfJjxJRkYGs7Wz+UunJy8eS5LAKlmRHTKOBAdb\nbFt49MtHASiwRTDNfAy++5n+/8tGO2ECFN2Fi628um0EDq/tBJrzeSrGA3zUeHjmEt61AR26L+CN\nLDcdkzOYe86B5O1F57STHNgbg8+PHemXPoAxj2eQ0zyI4nd8Wb16JbLsQJaVD5ekDafRaCzoZC1O\nZwEqVflv55UrV7Lph02Yk8yEvBkCsbFsv1A/2OkEhxPZasWyZw/WwEBcsqxcdwCK3W681OoSM5sB\nzOeHvpKtVjJEGdBKuVogDwMun7ueCvS9wnPcQA5QH6UHLwh1WsCQALJXZJO1NAtzdi7uPAeODVk0\neKYBIaFKEPb2VnKy7x8Nlt9h7MfKzw4fDu++C3kvwuR3YNdls5AuZMeqVPD55xAaaoC53eizKhj3\nKRNR3V/GwwO+PvYUd4Y05oN3WjMoMJUxs1/n3CCJ19xOXlzaGK23Lxsa72Zbo3CcDdTk+W1i8Jqh\n+Phns/jOxRw4509efiHus94cMbWmTdPD6Cb/SWfnQU4jI0t/In+0iC1bZVSSG4dbCzKoeqsZK0mo\nc+3s2AGjRrkwmX7HYRuBNb8IW5oFiprz3w8/xM/tRz2CKZIdJPg5ORdWj/seHMah+CCKmwew8N7G\nbL77brQ7d+D89VeM2zZffB2ayZmsTTjH4OaDy7z2Y2JjlWBfy1OJK1rqzeFwMH78eA4cOEBycjKb\nN2+mT3mz1KrA1QJ5nexVV0Z6enq5tZULCgpILz2vuxyOci6YCbeWjIwM/Pr6YeyrDAn47PPB811P\n2vxYtnpdUVE+rqCzFNizCco9X9zFZSdIZye8hYpfP4HAe5XyxB06uDh0SPkf+/hjuLz8RlRqDiF5\nheyeY2TnTrBrZeJ3GjGYm/OHZ29kj7F0aLAEpDnY+8WhktT0owUuNEi5VhzFUZj3tOKcVzGb1j9K\n0sC5mFSxuHVhaBhKyKQ7Wdzxd1KMmbx0xIbR3pSIUxPZMOxn7GoHDslJg0KJTvs6cc4/D4N7Klqj\nG2MzOHssnezxMxlscpL2cwa/FBVxLsnKgO7+dPMcxqawFOS2RmxZeqIDkyBvEbLDyT37cnmgXgrJ\nscWsycvn+T+VE3htlprgOBM2q4FNhn/jwI4KFRaDlrDHxtJ3zU9k+iUhuYvZU87fZ0fADpy51bfU\nm8aooafp+pd6A+jduzd//etfGTNmTLXUjq+sXsBvl93/G/B2qedsBKLPf68Css5/LS0B5YNB3MRN\n3MTtmm+lbWZzmW1V6Vr3P3nyZPnxxx8v97GwsDB569atV/z5K/zu5SyMUNLVeuT7gLZAQyATGAuU\nLrW3GngY2I9ykXMXUN7Chc3L2SYIglAZck034GrkqqkweV3d9qsFcivwPLAOpZf9P5TqzNNRAvdK\n4JPz22OAApT0Q0EQhNtKTQ6dVCaPfM352+WmXva9DaWnLgiCcNuqoh75dbkZl4MHo/TWjwFv3ITj\nXa95KJk2ZRfwrD3CgW0obYzjUtpnbWNAGZY7CMQDH9Rsc65KjdLWlTXdkCtIAo6gtHPvlZ9aY/yB\nn4DDwHHgzpptzs1VDT3y6SjvnxMoBRoqXLG7ugP5hQlFg1HmSjwAdKrmY16v+SjtrM3swAtAO+AO\n4CmgQ422qHxWoDfK3zoK5Q3d74o/UbNeQelo1OZxWBkl9bcT0LVmm1Khr4BlKP+TbVDmoNzyXC4X\nVqu1xFJvrvO58jab7WKp6su/r4TmwCMo1yhbAS6gxkpV9qZk1svrKAtd1VaNqd098tKWAkNquhFX\n4YnSO4+62hNrSBiwAeWDpjb3yE8D9Wq6EVdQDzh51WddvxvOKrlWld3/1KlTZUmSStymT58uy7Is\nN2rUSJYkSVapVBe/Jicnl7sfSnYkAlDOuo0oQ+ArgbsrenGqu2hWZSYUCdenMdAFeKKG21ERFcqF\n8WYoZ2W1dQn2D1DSan1ruiFXIQO/o7xnv0RJMqhNIlFSj39E+dD+E+XssbC6Dqgxatgibamu3aMx\n3vhSb0lJSdd7eBMwBzgDFKMknGy43p3dqPEob+ILxgGf11BbKqMxdaNH7o3Syx1V0w2pBD9gJexq\nSAAABQpJREFUN7XzA3w4cKH6eF9qd4/8wkrgQcABrtA7qyE9AAdK5wLgQ8oW2LsRVdXRrrUo2SNv\nhtL5qYfy4b0ceKiiF6e6x8hTUS7QXRBOyR66cO20wM/A98CKGm5LZeQBq4DuNd2QcvQARqAMWywG\n+qNU8qyNMs9/zUIZUutyhefWhBSUmkz7zt9fCnSsuebUeV2BP1BKnjhRrj1UOM20ugP55ROKtChp\niqVTGYXKk4BvUD6pa3MmSD3gQhlID2AgtfNM5y2UzkUTlLPFTcCjNdqi8nlyKWPBC+WifG27kJgC\nZAMtzt+/GyVzRbg+CSidHw+U9/3dVGKGZ3UaAhxFCT5v1mRDrmIxkI6SF59C7Rx77okya/YQShra\nQWpnpk07lLYdQkmdmlKzzamUPijVO2ujJigpfYdQ0tFm1GxzKtQBpfMWizLj23jlp1+Tmh75qHaU\nzZqahnIBOQ5YgpLWWy6xsKUgCHXB+Vh36zqfh35dMbl214cUBEEQrkoEckEQhDpOBHJBEIQ6TgRy\nQRCEOk4EckEQhBvwySefEB0djcFg4IknLiW77dq1i379+uHv74+fnx8jR44kLS3tCnu6fiJrRRCE\nuqBM1sqOHQE4nbnVdkCNxkjPnqarPm/58uWoVKqLS71dWLNz/fr12O12Bg0ahMvl4pVXXiE+Pp4t\nW7aUu58byVoRBEGoC8rkXW/eXL255de6/yst9SbLshwTEyPr9foKH+cGqm+KoRVBEIQqIF8lz33z\n5s20b9++Wo5d3dUPBUEQbgtXWljiyJEjTJ06lZUrq6cum+iRC4IgVIGKeuQJCQkMHTqU//znP9x1\n113VcmwRyAVBEKpAeT3y5ORkBg4cyJQpU3jooQqr0N4wMbQiCIJwA1wuFw6Ho8RSbxqNhrNnz9K/\nf38mTpzIM888U9PNFARBqHE3nFVyrSq7//KWeps2bZo8ffp0WZIk2dvb++LNx8enwv1wA1krImdR\nEIS64Hysu6S25JFXlRvJIxeBXBCEuqBMIL/ViDK2giAItzERyAVBEOo4EcgFQRDqOBHIBUEQ6jgR\nyAVBEOo4EcgFQRDqOBHIBUEQ6jgRyAVBEOo4EcgFQRBuQEVLvR07dozOnTvj7++Pt7c3Xbp0YdOm\nTTXYUkEQhJpVpjaJ0Wi8UJ+kWm5Go7FStVaWLVsmr1ixQn7++edLrBBkNpvlpKQkWZZl2e12yx9/\n/LEcEBBQLbVWRPVDQRDqpNzc3KuuynMjrrRQxOVGjx4NwP79+0lNTb243c/PDz8/P0CpkKhSqYiI\niKj6hiICuSAIQpWo6EPF39+foqIiQkNDq21oRYyRC4IgVIGKevBms5nCwkIee+wxxowZUy1nESKQ\nC4IgVIErBWi9Xs/06dNJTEwkJiamyo8tArkgCEIVuNqYutvtxu12V8uxRSAXBEG4AS6XC6vVWmKp\nN6fTyebNm4mNjQXAYrHw1ltvERoaSrt27Wq4xYIgCDWj3HS96lTZ/Ze31Nv06dPlH374QY6MjJS9\nvLxkf39/eeTIkXJiYuIVj3e9L45YIUgQhLrgfKy7JCAggNzc6lvqzWg0YjKJpd4EQRCqSplAfqsR\nS70JgiDcxkQgFwRBqONEIBcEQajjRCAXBEGo40QgFwRBqONEIBcEQajjRPVDQRBqPY1GUyBJkk9N\nt6M6aTSaAqfTWdPNEARBEARBEARBEARBEARBEARBEARBEARBEIRK+n/9lORyzPP/+AAAAABJRU5E\nrkJggg==\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Eta_LJ\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEnCAYAAACjRViEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VNXawOHf9EmvJAESeoeAgKBwQQKiCDawglixguV6\nrXgVAdGrfmAXRcQCWAAbKIqASOgtoSYEApiE9DqTZHo55/tjBkiDJJBC2c9as5zZp70nhjd79tkF\nBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQLlnXAQeAg8CLZ9jvVkAC+lUoe8l73AHg2sYK\nUBAEQag/HZAGtAbUwC6gbw37BQAbga2cSvD9vfurvMenAdpGjlcQBEHwUtay/QogGcgGXMBS4Poa\n9psFvAXYK5RdDywB3N7jk4GB5xivIAiCUEe1JfhoILPC5yxvWUX98NTQ/6hS3tq7/5mOFQRBEBqJ\nupbtci3blcC7wH0VyhTnFJEgCILQIGpL8FlATIXPMVSu0QcAPYF47+coYAVwcw3HVv02AEDHjh3l\nY8eO1StoQRAEgWNAp3M5gR5Ix9PcosHz0LTfGfZfT/WHrGo8yT3de46q5IvZ9OnTmzuERnUx39/F\nfG+yLO7vQkftLSy11uBtwGRgNZ7mmMXAbmAmkAD8doZjE4FfgP14uk8+CjhrC0gQBEFoGLUleIBV\n3ldF00+z7/Aqn//nfQmCIAhNrLZeNMI5iouLa+4QGtXFfH8X872BuL9LwfnQ48XbnCQIgiDUlUKh\ngFpyeF2aaARBEM5boaGhGAyG5g6j0YSEhFBSUnJWx4oavCAIFzSFQsHFnENOd391qcGLNnhBEISL\nlEjwgiAIFymR4AVBEC5SIsELgiBcpESCFwRBaCQlJSWMGzeOwMBA2rdvz/fff9+k1xfdJAVBuKiE\nhkJj9poMCYG69lp8/PHHCQoKoqSkhAMHDjBixAj69OlDjx49Gi/ACkQ3SUEQLmhVuxEqFNCYKaWu\n5zebzYSGhnLkyBHatGkDwMMPP0x4eDhvvvlmPa4nukkKgiCcV1JTU/Hx8TmZ3AF69+5NcnJyk8Ug\nErwgCEIjMJlM+Pn5VSrz8/OjvLy8yWIQCV4QBKER+Pv7YzabK5WZTCYCAgKaLAaR4AVBEBpBly5d\nsFqtHD9+/GTZ/v376dWrV5PFIB6yCoJwQTtfH7ICTJgwAb1ez/z580lKSmLEiBFs3bqV7t271+N6\n4iGrIAjCeeeTTz7BaDQSFhbGLbfcwqefflqv5H6uRA1eEIQLWtUa7vnUD74hnEsNXiR4QRAuaGK6\n4NOry0jW64DZgApYCLxdZfsUPAtqKwCH930i0A5IAQ5599vm3VcQzmsOSWJraSlSDdt6+/kRrtU2\neUyCcDZqq8Hr8CToIUA+niT9CLCnwj7+gMn7/kbgOWAYngT/GxBbyzVEDV44r6wpKWH8wYNc5u9f\nqTzDZmN8RARvdOjQTJEJNRE1+NOrrQZ/BZAMZHs/LwWup3KCN1V47w/k1nJOQTivuWWZKwIDWdW7\nd6XytzIyMLpczRSVINRfbb1oooHMCp+zvGVVTQGOAu8CL1UobwfsBbYCI846SkEQBKHeaqvB1/V7\nzyfe1wTgS2A4kAO0BsqAvsBKoCdgPKtIBUG4IJjNZiSp8hMMpVJZbdi+0PhqS/BZQEyFzzFUrtFX\ntRT43Pve4X2Bp0knCegGbK960IwZM06+j4uLIy4urpawBEE4H23bto2hQ4fi4+NTqdxqtbJ79256\nV2n2EuouPj6e+Pj4eh1TW4LfBfTCUxMvAO7A00umonZAuvf99Xh6zgCE4qmtS959euFpxqmmYoIX\nBOHCZTKZGD58OGvXrq1UPmjQoGrzsgj1U7XyO3PmzFqPqS3B24DJwGo87fWLgd3ATCABTy+ZZ/H0\nmlECxcC93mOHe/eT8DzpfQooquO9CIIgCOeoLv3gV3lfFU2v8P7J0xz3k/clCIJwyfn444/5+uuv\nSUpKYsKECXz11VdNHoNYsk8QhItK6NuhGGyNN1dBiD6Ekhdrn6ugdevWTJs2jdWrV2O1WhstnjMR\nCV4QhIuKwWZAnt54A58UM+s2w8u4ceMASEhIICsrq9HiORMxm6QgCEIjas5RtiLBC4IgNCLvlALN\nQiR4QRCERiRq8IIgCBcpUYMXBEG4yLjdbmw2Gy6XC7fbjd1ux+12N2kMIsELgiA0glmzZuHr68vb\nb7/NN998g4+PD2+88UaTxiC6SQqCcFEJ0YfUuSvj2Z6/LmbMmNHs07CIBC80OYck4arhwZNWoUCt\nFF8qhXNTl0FIlwqR4IUmJcsyYVu24K6S4CVZZmBgIBv79m2myATh4iMSvNDkTG43cpUpofeWl3P/\noUM1HyAIwlkR34cFQRAuUqIGLwjnubIyKCioXq5UQvv20IzdrIXznEjwgnCeu/de2LEDqq54l5MD\nv/4KI0c2T1zC+U8keEE4zzkc8MUXMGZM5fIxYzzbBOF0RBu8IAjCRUokeEEQhIuUSPCCIAiNwOFw\ncN999xEdHY2fnx89e/Zk+fLlTRpDXRL8dcAB4CDwYg3bpwD7gP14FuLuX2HbS97jDgDXnlOkgiAI\ndREa6ula1Fiv0NA6heFyuejRowcJCQmYzWbmzJnDxIkTOXr0aCP/AE6p7SGrDvgUGALkA9uANcCe\nCvssAj7xvr8ReBcYhifR3wLEAlHAZqArIB4LCYLQeAwGaMw52OvYL9XX15cXXzxVJx49ejQ9evQg\nMTGRTp06NVZ0ldRWg78CSAayARewFLi+yj6mCu/9gVzv++uBJYDbe3wyMPAc4xUEQbgg5efnk5KS\nQq9evZrsmrXV4KOBzAqfs4C4GvabAjwD+AGDvWWtgb+rHBt9VlEKlxRrupUjU44gu6vXwtq/3p7A\nAYHNEJUgnD2n08nEiRO555576NmzZ5Ndt7YEX9fvOZ94XxOAL4Hh5xKUcGmzpdmwZ9npOLtjpfLM\ndzIxHzCLBC9cUCRJ4p577kGv1/Pxxx836bVrS/BZQEyFzzFUrtFXtRT4/DTHVv02cFLFOZPj4uKI\nqzIRlXDp0YRpCB1V+WFWwdIaxusLwnlMlmUefPBBCgsLWbVqFSqV6qzPFR8fT3x8fL2OqS3B7wJ6\n4WluKQDuAB6tsk87IN37/nogxfv+D2Ae8D6eh6y9gJ01XaS5J8UXLh7jk5P5obCwWrmvSkXOoEEE\nqMXgbaHpTJ48mcOHD7N27Vq0Wu05natq5XfmzJm1HlPbb7sNmAysxvNAdjGwG5iJp0vkb8CzeHrN\nKIFi4F7vsYnAL3i6T0p4/jA463gvgnBWipxO/ujdm5EhlVfdidyyBZskEdBMcQmXnoyMDObPn49e\nrycqKupk+fz585kwYUKTxFCX6swq76ui6RXeP3mGY//nfQkXIfMhM/ZMe7VyXWsdfj38ajiiaagA\nVZWubM25sr3QxEJCGneKzZC6LdnXtm1bJElqvDjqQHxfFc7aoXs9C3Sog079GrlNblxlLgYmix6x\nQjMpEUv2nSASvHDWZEmmy7wuBF5+qleLOcVM8i3JzRiVIAgniLloBEEQLlKiBi8ITSU72/OqSqOB\nyy4TSzMJDU4keKHBlRhg7Njq5UolzJ7d9PGcN+6+G/LyIKBKX54DB2D3bujevXniEi5aIsELDc5k\ngt69oV+/yuWvvQaHDwO+zRJW83O5YP58GDq0cnlsrGebIDQwkeCFRjF4MFx3XeWyzz6reV+Hw0FJ\nUREug4HCwkKMRiMljhIsFgu+vpfqXwNBOHciwQvN7vHHH+e7JUuwq9X0UKuRnTIOs4MOgzuwd+/e\n5g5PEC5YIsELzc5isfDye++xrE8f9g4YgGG9gY1TN/K84fnmDu289euvv5KaupNFi2Dr1lPlffv2\n5dZbb22+wITziugmKQgXoI8++gibLQutVo9e73nl5+fz3nvvNXdoQgV33XUXUVFR+Pv7ExMTw7Rp\n05AbczGSKkQNXhAuUK1aTWT8+GsYM8bzefPmzUydOrV5gzoPhG7ejKERH1qHqNWUDBlSp32nTZvG\n119/jVar5fDhwwwbNoyBAwdy4403Nlp8FYkELwjNQJZkZMlbk5OV4JLBJaFQKlAoRX/4c2FwuZAb\nccpxRT2m7O1epeurWq2mdevWDRzR6YkELwjNYFfsLiyHLKAA3O/CgBKQNhI+LpxePzXdkm5C45sy\nZQoLFy7Ebrfz8ccf069q/+FGJNrgBaEZuIwuBh0fRJwrjrheTxO3J4w+a/vgMor+8BebTz75BLPZ\nzIYNG5g+fTo7d9a4LEajEAleEAShCfzrX//ijjvu4Pvvv2+ya4oELwiC0ERcLleTrk0gErwgCEIj\nKCws5JdffsFutyPLMuvXr2fJkiWMGzeuyWIQD1kFQRAagUKh4N133+X+++9HkiQ6dOjAvHnzGFp1\nLqJGJBK8IAgXlRC1ul5dGc/m/HURHh7Opk2bGi2OuqhLpNcBs/EsdbkQeLvK9ueB+wEZKAHuA9K8\n29x4Ft0GyABqmERWuNTt3Am/LNfjUPclTA29nDDMAsdkSEiAyy9v7giFC0ldByFdCmprg9cBn+JJ\n8r2B24C+VfbZDvQDegHfAe9W2Gbx7t8XkdyF0zCb4aa7nXT7cT+pqbBoEfTuAzodFBY2d3SCcOGq\nrQZ/BZAMnFiGZilwPbCnwj4Vv4NsASY1WHTCJUOnl1EHuwkLA2UQaNSNv8BR6pRUin4pqlaulyRG\nD1bCL417fUFobLUl+Gggs8LnLCDuDPs/Cqyo8FkPJOD5pvAWsKz+IQpNqWRtCW6zu1p5QP8A9DH6\nZoio8ViPWOn4XkeChwVXKo9fm03IBznNFJUgNJzaEnx9pj2biKepZliFstZAAdAe+BvYBxyuT4BC\n03EanBwYc4DQ60MrlduO2Qi+OpjO73dupshql/p4KgVLCnjG7UalTGZzhep/yDUh8GTNx2nCNOha\n6ioXhoi+B8LFobbf5CwgpsLnGCrX6E8YCbwMXAU4K5QXeP+bBqzB8wegWoKfMWPGyfdxcXHENeJE\nQcIZyKAKUBG7PLZScdYHWVj/sTZTUJU5nbB5M1SdcdW9x4b6qc58Miybp6OjGRISAkB5Yjlp09Jq\nOFPT2rsXgtNhzXxIXwVXlcFbb4E9AJ4uhHCpuSMUznfx8fHE17N3UG0Jfheeh6cnauJ34GmGqagv\nMA8YBVRs0AzC85DVCYThqdnPrekiFRO8IJzJvn3wwMvV16e++xAs2a3CMkIJoWo0oRoA1EFnVxsP\nznST+kRqpbJ25eXYFDKO2Q60LbT1Ot+KFTCuHHx8wN/f83zBzxc0/lCQD37nx99P4TxWtfI7c+bM\nWo+p7bffBkwGVuNpR18M7AZm4kn+K4H/A/yAH73HnOgO2RP4DJDw9Mb5kFNdJoVLTP73+dy7NQvd\nMfhUCYkBiQAo9UqUct2rr5IEV18NS5dWLt9/A2xNhZQGWEtB6q1n6yM+9I2qvB6stcROxBelWA5a\n0A6rX4IHCAqEe+4BhsLWufDkU6BrDcnTzj1mQahJXao3q7yviqZXeH/NaY7bCsSeZptwiTHvN5Mb\nHEDIlEje1+9hZ39Pe/6B6w+gUlTPyqVl4HLB339DcbGnLOQYHFEBLRo5WH8Ve+/QE907ulJxfoab\noJWmRr64IDQc8TRJaDLlOh1Sl0AO+0LggEAAFFpF5ac2XseOgVvyDHTKzfWUxR2XaGnN596eZRyu\n0lBo3m/29NlqJrIs4yxwnlrEowKFWgGcvsavUsGVgzx7TAT6VRid8uKLDR6q0AyOHDlCbGwst99+\nO4sXL26y64oEL5y3tFp44QUYPdrz+cDNbko3mehwR0S1fQMuDyDt02A8/QKaXumWUvaN2IcmTFNt\nm7PIid9D/U97bNeusO8bMBRA5lvgWuspnz8fdu9urIgvXptDN+MyNN68+uoQNUNK6jda9vHHH2fg\nwIFNOpMkiAQvXGBU/ipaPtKSYqezWh/e8u8klDUsaOzIdzDqJzfFCbk41GpIT4fNm7GldIM5y+D7\n3FM7P/SQJ+OeQeFPhZj2VW6qsRyyEDwsmD5r+1TbP/HKRJTO6mMLTlAACiUovTX3qv8V6sdlcBEn\nxzXa+eMV8fXaf8mSJYSEhNCjRw+OHj3aOEGdhkjwwvlHkvGTTZ4nqgcPQpDRU17iBLeS34qLuT05\nmcAqkz4Zn5OR5Mo1N5/OPoTfHE50ei52ixWlSgl7siBbTWh/8BvVBYI7enb++WdPo/8ZEnzmnX7E\nZoD1aOVuLwq1gqhJUed+78JFpaysjOnTp7N+/Xrmz5/f5NcXCf4SIcsyq1evxmazVdsWFxdHcHBw\nDUc1k6NH6ORKQSE5YMECPtj1C892Tec50wsk9U/ijx/sEPYvDIfe4Jbut7Dsds8A6QFXyCS8vQG3\nBG5vhVkZpKHDu535YnsBzw7oQAutFmavgIICmP1s5ev+80+toeWO9aNzx471viW90YbDGY45Q4YW\nZmSXjOWoBaWfkuqNOhen33//ncOHKw+DiY2NpX//0zdfXeimTZvGQw89RKtWrZq8eQZEgr9k5OXl\nMXbsWK677rpK5Xv27OHVV1/lwQcfbKbIauCWsOGDrNPDu+9SpPPjFaWKcWuGUL72SibMv5Jfi4t5\n5PKrmLVx1snDwsMA2dNmr6jQdi3LoFnZ9LdxQkC/ANotS6eg9C5KXpbAJwlniZOD4w8SdGUQl8IS\n2/fccw87d+4kK+vUM5KsrCw0Gg2rVlXtpHdx2Lt3L+vWrWPPHs/UXXINzYeNTST4S4Qsy4SGhrJ8\n+fJK5Q899FCD/uKtLTHg8HPwqfoIC5MdlHur0kMLLBSFBLCtrAx8azlJDVQKFUqUqFCiUihRoECl\nVFXa5/ffQbUB1qyGkRVmW9i4Ea4uP5e7qruafpSd53bhuwh44MvnaPvN/2DoFWxtvZUO/+tAwbKC\n6gdchKZMmcKUKVMqla1atYoPP/ywmSJqfBs2bCA9PZ02bdoAYDKZcLvdpKSkkJCQ0CQxiAQvNKgV\nRYWMRKaV7MOvpYX4qlToFQq6OhyUtSgnoaSESZedaqt2TfyQzolLifZfygNmiI8HeoB7EQS9UP/B\nRM3JboewMM/0xyfocBOJp1nsvugWmNIkppUlcY3NyUfZWXQutzPzwQehvJyr8/MZ3EyxCw3vkUce\nYcKECYCngjVnzhzS09OZN29ek8UgErzQ4NROFTe7o9miyeWb7t3p7e/PbyEH+L3Mxqvt2zO6m3dH\noxHUBeQd7klWTi+ejr2ZPQsWYMgMJ7uwHUqfd5r1PurL6e3PX7EWnzbtODnzctCEayjMmEDBNJnL\nSo0UO31Z9XU3VhTKuA+FY2vVijxzGZeFV39GIlyYfHx88PHxOfnZ398fHx8fwsLCmiwGkeCFRidJ\ndjSdFtE9wopavY6MDO+GoiLkdumgC4VesRAZhWLqSyj2Ksh66+KYdFRySkQ/G03bqW1h6LM433iD\nQc/34O3bQnlNKqVoeSEd8//HoSdf5qtZ/ljFnDTnTB2irndXxvqe/2xMnz699p0amEjwQqOzWtPQ\ndZuPZt9YwIjrRE9GuQxF4mVY7U5o2dIzC9eAAaAy4FBknOmUF7xevWCg5CJ7o4Xept349DOzyO/U\nw4l//vsP0T+XEVgOH9s7cOylQva+43mQEH5zeHOFfUGo7yCki5lI8EKj2rFhAx/+8gHjrvVlx9oH\n+Xb5RqKiPL0KLm89hKHz21GkXUp8PJQOgVvfgtaFEHz6cUHVlZR4+rDLMnTqBH/8wcmq8ODBeOa9\nax5/HfmLPUV7CDIEQVoa7nnzkDPDWb/+SgYOG3Xa40r+LKG8f0uSjb74FPkQeXMEba8IxbjJiDHe\n2IR3IFzIRIIXGtXe7dsB0GjUqNUa4uLi6NevO+vWrWPVhi0MpR16HbRvDxkhcNddoE4CoxnIAyhB\njRW17ELyKUP2N6FwGyo3dK9bB2+8ASNHehL84cOQlweHDnlW9L7n80a9x+lpaXyVl4csg+VLaLPN\nU65VKGi1dwkRwWG0D20PGg3uwEBwW1ix4n1ePEOCB1D2DOTNVwOQZdi0T4NKBYNdLoa7zcQrPN8C\nBOFMRIIXGl3Hjh1RqY+g0agZMmQQo0eD0WgkaYun/7Opm4HtPdJxqzswOWoLPXMkrpJcyAoZjb4j\ng7EBCozPqZHdMhFHHHTzexn8rzp1kcsv90zesmED/Oc/EBoKn3/uSfB18NjKx7hiz284NEreW51K\nXtC/uHLnIwBM6juJR/o/ctpjU61Wno+JYaRPOP0nwuYUT/nV+/YhyTJjeo1h0ouT+G37Qp5svwJG\nSfyz3kjf/X1x93Gj6VlI54QXgS8rnXfUKJklfX9n5tstGD48j9jYUsyJZZh2lKHcXojLXflrzvyc\nHHaWlRG5ZUu1GCdGRvJup051+lkIFw+R4IVm59a4udkSQ5KvL+svuwyzuZRETRH5rmjiHQkoNB+i\nVWoZO+tfmPaWU7L9N9SOhn0a+Xfa3zzZZhCdVmwi3M/OvCFufl5gpsRagkuaBp90gjOMYA3XaIjR\n6VEWQhvvrJaaKiMXM/R2hgT1JiPpHmL0s/mp69fkLc5DXTaFRyOP0rrKObPysrh93Q0o+7Uk1WRD\ntcOG7JaRY2Ucx+yUBm8GTg1cy7XbaaPXs2XAgErnWVVczPKi6ouLCxc/keCF84JeVqFRKIjQajFo\n1GgUShRy9aHdsizjdktIbgm3240sybglCUUDDNbSvfASunufxdftRu12E/DxfNYdWk6bz5d55sSp\nkuC7fdyNNGMarq5T+aF4O6qieBz/Ad3rMPua2aC4sto1AtV+YI9Eo9TRRtcGlUOF2qoGqj90cEtu\nVBoVVx1K5LlHWzJmDBT+XEjmwkz6W/ojK6rPs6xSKIjUVh4/EKwW/8wvVeL/vHBBmeP6jF/6/4lC\nqUDBHCRZQs1GWkXqGfT5i9B5NE+/N4uWmgiGJo5Ekd2C44A8vPZfdSkwANp38awwkp0NvXtToD1A\nUEjNQ29zTblk/ieTJ9LyuSHsEa73CadNW3h+xZsUmAvAv+73Ve4oo1T/Fb/llvPDjPcpoBT1CgXu\nIjf5Wb+QlNQLf38wJhspKC4AR93P3VCMG43VJlkD8OnoQ/Cw82guI+EkkeCFC0qZbOL5t+IIHHEl\nT8ZOZcHuBeT8Gc83H69l//Zw6Awadzh/qf/LQPdIlG41f/wBcnQ9sm0VOaYcliQtZXlnN3aFltIU\nz8qTVqcVnUqHSqlCo1SjU+tQuEGBApvLhttZjiRLONwOjDYjFlXNSxNGR3Vh6NFd/H38S1aVqnB8\nmYZDCkXxpxGVpCLTPJ9FiwJZudIzt7w93w5q0Pg29tJWlR3991F0bXSV5rx3GVxYjlgYmDSwSWMR\n6kYkeOGCFaQP4tnBz3Jwh5JVrg20yX2eI2xg9nOTGfXxq7x2025UuxJYs/8GT4ecs3BjlxspivwO\nY0AkUf4tsaKkd0hvAL646QsCdYFAdqVjfj70MwcLDyIpP8NeFsZPB39i6vtToZ2J53XXVrtG4M+/\n89+yMuKX3sz90bfy0j9PkNAvAd3xx7jJt4Du/9rLE09QuYlGPQCtqvL0xCq9nmO7dxMRUXlBFJdC\nQa9PPsFUdaVyQKNUoqvHxPPtZrQjoG/Ayc+mJBMHxx+s8/FC06pLgr8OmA2ogIXA21W2Pw/cD8hA\nCXAfkObddh/wgvf928CicwtXEKqzGxVIkoowk5k2GYDeRpvCNriClKhqPfrMWga0pGVEL2jbjS3R\nV2B0uZhcy3TBTreTm7vezMF2LxD6xQtMiJ3A2qlrYehQnNdO5BXs5xgVbNggEVs+Gb/VT3NivuHQ\nf/+buddcw7hOneCVV07uO/Kmm9iVmUnU1q3VziMDpUOGoBarizSKuLg4duzYgdr7HCQ6OpqUlJQm\nu35tCV4HfAoMAfKBbcAaYE+FfbYDHwJ24DHgXWAc0BKYBlzm3W8vsNp7HkE4O7IEefmefu4zZwJw\n4PXW2PFn3J6DXDsdVLoMZufN5lhPDT0u0r7incxwb9x/eer+h7nmxLL3mZkEdOxIxMqVUKEWH+7r\ny/u9ezPiqquqnUe7YQM1NxxduDZvDsXlMjTa+dXqEIYMKanTvgqFgrlz5zJp0qRGi+dMakvwVwDJ\nnPoOuhS4nsoJflOF91uAE3dyDbAKOLG22Z/esm/OIV7hUiHLgIxCcqN0uVHKbggMQKFSndoueVKT\nJClxt7DzZtt27P6/ZK5L/A7HtoM8sP1asnzWcsSUiKSSuPeX+xjbMY5HT3/VJmM0FrDoz0UYjxvZ\n8fkO0q1W7K6cep2jVOuPMygcTsxcUFAAFSa3ulS5XAbi4hpv7vX4+Pot3NEc88CfUFuCjwYyK3zO\nAuLOsP+jwArv+9ZUXgE5y3s+4RJz/Dj06+qZbXH9es/MAtu3g+FMlawD+9H7menz9gTGbd4IwGG3\nFV+OUmaQKLCYGbV9OyaTiUlMwmCxYslIBxk2f/MzAzt2IzXHxIArOhJuiKZUyqVtQGd+TfmD+2xD\nUNjBXgYKBQQEnCGOxqBrz+WXj2Z36m4spRZyduZQ6HAQ6DOA9vrOdT6NyX83m0p+wJzs+Xy8LIAj\nJUcpd5TTFLdkMBjIyMjguP04IUdCACot6CF4TJ06leeee45OnTrx+uuvM2rUmUcwN6TaEnx9/vRM\nBPoBw84+HOFi9McfcOMIcLlg1y5PD8Rjxzy/XIoKTb9OewlJBUk4DA4klwubyoc1z85h7bPz0Vg1\nRNzvR6kzjI7aMoIiIpnwzEMA5I7JJSYmhjbtBrBasYG2L45E8XM2CoWCtkFtiPCL5IiriC+/uwIp\nqpBH1/sTLDn5/Boj9nwta744ixVIapFanEr6kggsGfB9jov//G7ipaeCiMl8kIX/URITDTrZjcvo\nQhVpRQ4czTvHH6aFxoDFchipRTpul43OEXaiozeiVHpmVzarjbhaF2DpDmiP8/nWZei9q1eV9LsG\n1ZEE+qTtIzEt7WQs/9hsfJ+fT5wso2zAZeNuvfVWDicfRmlUoh+jP1l+4403Ntg1LnRz5syhZ8+e\naLVali3eSo1hAAAgAElEQVRbxq233kpiYiJda1nYvaHUluCzgJgKn2OoXKM/YSTwMnAVcGL0RRae\nJp6Kx1Z/ygPMmDHj5Pu4uDji4uJqCUs4X7jdbhYvXozd7nlwmLr3OFq7A58/D+K6vi3gaU3R6T2t\nBy/8x7Ok3hdfwNZVoFhx6lwZe17ipkQjfdL6MFHqjqS0szzvXSKc+3ig/QM41A70bj1qjYWAgABG\nDfDUhBYqFp4xxoAAGNE6gNxROvLNQzg2LBCckfRse4ykHAcm06AG/ZlE+kcSoA3gUJYvukAL7WKT\n6fDYO1ypXcuC7SFsHvIeyQP7UbrBQP7PBUTNLubwseeZ+NgmlAo3Bw7osD1ow+bM56kgJybTM2g0\nvqSlgdPHiX2wnYIBMNmk5J+cH+jXz3PdDwIOogxIw+HeirZCIlcCC/PymO1yEaxpuBVgHQ4HX83+\niuD/CxbdJE+j4nqz48eP57vvvuO33347qwQfHx9PfHx8vY6pLcHvAnrhaW4pAO6Aak2YfYF5wCig\n4njov4DpcPLb4nXAazVdpGKCFy4sWflZTJ48mfHjxwNQmFHMEZeLQ8t+RBV8d43HrD66mgRLAmmB\nWVhVni+JGdZdOG1FfDN+Cd2PdmfjJ++hknx4pM37vD6qBQcOHGAl9V9YNd1kwmq1cJ9Wi9P6D8sO\nLWNhwZW0ttvJuf56OuQm1vucX34JX3116vOh22HPIfhoL6hUEKwP5t7e9/K3Wou/zo9B7fsw6a5J\nbPvlTUwuA9khrfDz64pNLsbg0GPxHcaxDqP4YpqZqcZStPGdOfr2IdodeIkn7Ufp3iuBJ56Avn29\n3SR/yMQ/vz+W++y8F3IAdaSnrcsmSVyhdqG2q5jWrt3J+Nbr9RQ0w4LPQnWyLJ91m3zVyu9MbyeD\nM6ktwduAyXh6vyiBxcBuYCae5L8S+D/AD/jRe0wGMBbIBd4AdnjLX0P0oLkohYeHs2DBAgAeWLGH\n6xKtfN5jHjUt2eGQbNzy3Rj66vtSHJyH1Tv4J82SgG9QN9oHt2+wuEL9/Bj955/ku3eSkvI1aFZh\ncphoW7ye9Icf5mw7Bu7cCQMHwtixns8zJfhXHxg5wTPH2StJdT/XO3EWjhw6hI9SiXagm5y1Tt4+\ndozsO210GXAzfDKHIksRO7P/QU4tRJWjQjJLdAK0yHzRuSM3D/ZMTTDp8GFC3MEo3aLL4/mgtLSU\nxMREhg4dikql4ueff2bdunW8/XbVnuaNpy794Fd5XxVVXJrkGk7vK+9LEACQkdGqtEwOm8zWnasI\ndXh6xcSFTWZf31haBrSk0FXoffgj8/vh33l768NQAM/Zn8PhtmO0GjmWv5exS8ayfPzy015rZPfu\n/LvPeEZnxfHUU3E42q/gy71fkvT4ZuxuN+fS36RzZxg61PO+xUHoFgZDI70bz5DgJVlGliX+Tvsb\n8sAqKbjDT6a1Gr5d2ZnOmmK29LuMd9/dzvQJXbC/Pot05X6SgsyoM6zoYnQEj1ez8gsIDT+G2f0o\nBcc9raiDzEXo2qSiv8mA02lAowk5hzsUzpXT6eSFF14gNTUVWZbp2rUrP/zwAz169GiyGMRIVuG8\nsnXrVp649gleYhRut5u9P+1BtVVGqVDSIqgF2jIdwT7BhIZ2YkN+06xM35D6tezLSlni9Y1v0Dmp\nM+UxN/BLyhoKi/fS0b0IlwKKiqBnko4Ppi1mqraYls6Xeal3N9q1A8sxK1/oSrCm3ELOunD8Rkio\nVJ5pGJwKCyq3Fu2gcszmJIKDhzbvzTYTtTqk3l0Z63v+uggPDychoXl/R0WCF84rZWVlXH755Wj3\naVCp1HQY25U35y3jlu63cODmA6z583sAoqUUevtms+/oW8j/SsWeXUTXHvMoxUiR+/QjRQ1WA2U9\n7Pzgexjtvq9xF2Xwl3SIUnspmaWZdAnrUu+YnSYleWUqjnpW1MNsgtw8kKzVm0oe7v0or5ut/HTT\nTxgCDdy/7x9GLruJyzdcw+pSJ4cdMndGOpGlXigVcylTyDyoPE5rHystIv2wlisJcIJcGk7fzybw\nZy8Fbdt6Oq7tNR8kKHs5PVpsrPc9XEzqOgjpUiASvNAwUlPh779BikHv1uKblcrAhBKGuF1EKEvA\n6STAWUL06gXcm+WiU8B6FOnplVdmqiNXeRSywoc2+lJ+2/8GrTr1ofyfYgIjf+FVNvGwo/p8Lyek\nFKVg7mwnUZePKmsrkqmYFDmPUlspS5OXcnWHq+sdz/aprVmX7Mtcb3eCvCFu9n9mwl2gQmU3QXIy\nzJmDtY2TK554GHeZLx28Q9fNzzzDpuL1ULieYbEPEZc3nBuveheUYFn5E7tCg/FtNZlODz1Ey/tb\nUvhzIQuCi/jvsgUYpAn1jlW4tIgELzSMBQs45vcNtw2y4/OFAscnpXTvoqDlUCctleAyR6FzGtFs\nnc0gyYWP81uGZfmRL3kS/LGSYxRbW/HHkT8osBTgliKRZIlSmxGoPKmWyxTJluBZLPmXZ63VhXcs\nJLxzCXs3/8zgAS34euxXvLXqDpyym3KFA5eyHIsbnE4rsiwTtNuHtwZchc/1H7N8bSJPugez9/Cv\ndbrNzaWl2HqlkRUOed6u5qW2EKa8V8bbd3m+uo97eif39sjn5WnBaO9zetaHzctD7qzj2quHsPjB\nlzEM89S6xycnM+aBB5j7wROQ2Y4QVwhX3+D9I/PX79z52n85PK/uw+4lpZJgi4PDa0aisnm+QZTn\nOXgjZxNHlvyX0Nh76XjZvDqfT7iwiQQvNBhrbCj7XOPo/FJ/XG2/YXlAG8x/f8RPPz7MZ+PvochX\nTdrTh5m8N5RXGEib74/R0ehJ8DEbv+V2Zwots/ZizmmJwrscndS5F6ukaLYePUovt5mcUB0FUVHU\n1pDSwqcFK2z7mBP5DdaIn9iyy40iwYXkdhFUomJH1g42b3wDl2owCzNfxOw013p/N4WHY5Okk501\nZUnCabMRoWpBZ7WM2ew5h0uWkUaMgMhICA72LCc4ZxKsWwg19EPXajS0u7o3pQf707IwitH3j/Zs\nmDaN7Csu5/C8tXX6+QMcb9+O19dcy+KrHjhZ5us3i580/Rn12xq2WbYzctyp/Z2fQ7du8PMyuOyy\n6ucTLmwiwQv1JssyszIy6G23E59rwOBy8Uz37gzwXU+a1ZeORREQ44NNCsRWrsFYGIjC7gdVZlFM\njAqiY4rnYZhTq4fwVvTxDSYxvRBlYFu0Rh03BV1GV2/Thw9KNG6Z7gYDU6LPPOvF+6Pfp9iQwXTc\njF5yD08N2M5VbfaxL38vtxu2kj2kDyH6YBTlSgJUoVzd/mqC9EFnPGcPPz9mtG9PXhJcpoa8xTOY\n87//4Xav5Ildn/Jv1RoArDda8N20GbqNO+P56sPtNpOR8SZmfTkoRnpLZbL3reLbb78nPHwsuWoN\nFmMBOb4tCeh758ljVQGfsbNFX1zrthEV6WlJO6FrBkTHQE5O9QQ/bRr8WuGLzfOp8OqdkOsHi8S8\nsBcEkeCFenPKMjPT0/lVoaOFWo0SieCinajDionVJxFcPghlfD4TNrTiGlZwp6RCvaCEstsrz5CS\n768D7zS1f7bvxNH77qNrcTHxB37memUUyiIlt7raMLqNZ/8DqlJalDq44fhxBgedORkD4O8Ps2ZB\nAnBvF/xGw2BAv6kjt4yfgU90NO+sTeSWyBdJCZMx2oz1+jmUl5fz5ptv8tdf1/LUU9cy2lvxjn04\nAKvj3KcErshmTacodz4ByrHIMmjVKnDAjhXZHNr9Har0XRz99z0UH/+dVrqaFwKxK30JzdpP+7sq\nTM2wYgUrNwdTLt0EYyrPA5iYCA8/fKo7aNmdMGsm/PsjyKxpPLtw3hEjIoSz4ln7U8NNLcIJULp4\n5MAKOttdjOnclrev6oFtiIq/X8pk2X8WcS3ryc7oTvy/6tbzXHbLuK1ukMGWZcOSasGSasFtqr5u\naXNKV6WT6EwkO3wxPybNRqPVoFQpSfrCxG+Ld5EyaBBb0zYSoK/b1F9uFZTtMrKt7yrPy/oqGWOO\nMTipN+aUX/DJ19B9dysUKNAFhAIKbr/7Md57J4yVvy6ln7YfGpUWt9JMdln2yZfdZUdylvJRz9cx\ndr3S0w/zxEur5e3LlqArqXkmyw4doE8fz8vHB7p0gcDABvwhCo1K1OCFBrF3rw1jZwOffPQWmzYN\nA/bD5lwSFQoUinfrdS5bug2LyYLkkkifkc4Bv1IAHPkOlLpmqpMsX36y2jpuO0Skwb8HLKe7pSvF\nQSr2FxYTEB3A6P8bzaHfVhJrGcCOZ2bx5bJAWkXWbbnA1FiJ4C9X4LAVoNO1gbQ0XOWlFJVl0bq3\nhuC0ziiNhSBLSN5/ufMW9WPhsp3odDHkTrTiLH+Aglb/pu+nA0829xflFuE4tJ/kzsHIyrbgW3ly\nNadKj3BxEgleqJeDBw+y7+BBpLAwDAYDaVvSsFjsFLmctGnVkp9+mss994zC7hjG/t5OXrj7el6a\npGdb1jasWh2bS+ow8EMGfVs9yhwl3RZ04wpv08ehSYfQbNBQv0lOG8ADD8Bff538aNaD3ReQZW7/\npyebixczenQiC0Me4dvbvuXdV3uQ1cUfhUqFSln3NaVkFWh6FhMRMoqoqHsBOF56nJu/HMLxB4+f\n2nHdOrZ0745/gczEhRsItS+kQ4f/Y87WUlITVuP7Zzpff6NhzBjP7iNWjmB716FI1Nx7JrM9bLG2\nJdh4qolKAbjVAXDOa2IJzUkk+EuUId5A+a5yTPtNFBuLOW44jmSpfW2fqVOnUmAwIM2YgaHEwMZN\nG7FYbGj9NfhUWGzC4MzDmLOL9Udl5K5qEnM7YdO2ZZdxHY/2fxQS9yBL4EkloHIr0Vpl3DZ3sy6Q\nUKP+/T0vrzVp3geSWf+ttqssu9GGOfANNBMmZeP2Kcah0WMymQG3Z7tsR5KcKJXeKvZHH/HyH99R\nqvyNGG0eGs1u0C4GwHdi9Qe1N+/YwVu33cbrG2GLrRx36FACcvehVvqjzt6LyjuBm8EQT2HhD1gs\nqVwtl5GDC4cjl9TUx/H370OrVo8wNjycLVcXkCHFoakwxXCKxUKrzp2AyGrXF+pnyZIlvPbaa2Rm\nZhIeHs6iRYsYOrRpRhmLBH+JypyTiVKrRLJJuMvdOAs8szy3m96u0n4OSfJ0+5NlHJKEW6HgmRde\n4G61mg4dO/Di1BfZ+MQaho8IIl+vO3mcDGh9WvJ/N3zN2on+PP9xIXccOMiBmB4c1oL58qtx9JS5\neVcAA3bBIEdvRv9twYGa8dyJvY0VkElJMRMc7ALAWeDCbodys2duefV5+Nubl7eY7i+n0d6ey0Db\nbuwDnWQrZbITzNhsMvl5a/iZ9WzZomPIEE/TE9u389cdcaxyBHKX40OOmQrZU5rK2GQJ6/y/Cby7\n8mLZP7lclL78Mrvln1n6/efkP7SZAX/cxt6Pr+Yav384MclOcfGvOBy5qFR+FNMCSEeh0KFS+ZOT\nM49WrR5hWc+evDQpn2dtCwnfd6p7zd0HD3JAcZ79oa2j0NBQDGdcTebchISEUFJSt9Gyv/76Ky+/\n/DLLly8nNjaWwsJCXC5Xo8VW1Xn4T0RoKlGToghcHkjElRF0fKj6QtK/FRVxc1IStx2Dlrnw6aZc\nXE89xRqlkpZabb2udXNYOMM+HcSDD8lcPRjeefNm9qws46pIJc/KURztkszO52/k6ZzDfPLJq9z/\nbxn1fyQ+//wwn3/uOcfdORaKbDJJuZ6Voa450zR3Z6DVahk5ciRKjQaHxcYU2QfHwBJkncykNpMg\nLOzsTgzIsp2SXYFsSxxG8Qv9eGi5P2263ErbqW1ZunQpfv4/cYPicda64yodN+TROXxz9BgDfAu5\nOng4LSImovrgI5SZmUx57L3KF3n1VZg7FxkFidMeItq0D2bPho//rBZPUNAQdDoj2xUD6c5uNJpQ\nIiLuxGCoe9/6C43BYGjUb4GKeky9PGPGDGbNmkVsbCwALVrU3MOpsYgEL5xWqcvFXRERvNUpEKvS\nygeXtyKrVQSqgSo0eg1HfSdif+cPKCpC/qcYuy4GGQkZiart5AqFAp1FSygQpYMAhwl9WTmtseOi\nNRa9DWOUEpfdhMnPweVDdhAZeQMpKf1OnmPjDa+x46CbQIOKc6kEbdiwAYPBQL7DwcgtSbws9eNY\ny/l8+9O35OXlnVOCP1tKFCgVClRKFVqVFh+ND6g0oFR7XufItmghjvEODh48yMiRJ5qbFCgUCqZ0\n+wUabh0QwctkMrFv3z7S09Pp0qULRqORm266iY8++qhSc2ZjEgleqDuzGVWMnUNTtYQHXIFz525S\nNRKmgzLfPiZjtWbw2Ve3cfxKBfwi46vq09wR1ygiIoKIiAgC7HaUGeW0dnelLKwFmgZc7ajBZGZ6\nvq5UoXY46nUa2WJFo9bQo0cXyso+5PDhh7j88t2MGTMG9zFXtQR/8OBBUlLCeGDxS/j6xgMwI2cG\nz17/LMYW3+FZA0g4kxPfJFasWMH27dtRqVTceOONTJs2jTlz5jRJDCLBC9Vt3QobNkB4uGeo/VoT\nlOjhgyQkpQKJaGIHriVhSgIHbvgGWbWAa3pdQ69ev/Bf4LrrwNXiXg636XDGy8iBBnJ7upBX2YjW\nmhnoXEl5+aGmuccauDQuMi2ZWAw6zOX5pBZ7ug/qVDr8tae6OtoUYJI8c9s3FKVCwRGrlb8dBjJM\nmSQX7Ke3vz8TMjKIeOUVoqo0iWXExsLmBrt8NWXl5YSFdeGNN99k+HArADk35HBV76tYkmBpvAtf\nRPz9Pb8zTzzxBKGhoQA8/fTTvPLKKyLBC83os8+guBiuvRb8/MBmA4cSJInVbdrQtgEu4auJBTkd\nY1cL/OEgXGOnk5SI02lHq23VAFeon06hnSgNKWXq/qlIh7QYXS5u2K3D7DSTU55DqE/oyX3NEaAu\nAr1DhVo+c7/8creb3WXlrM/NZYfBQLrNVuN+vf38WNazJ8rjvnTyD2FYSGu45Ra+iIvD5HbzRbdu\nlfafd+QIY7tlAaBWB7FtRxvk1TLc7iImZh0HDszD13clXbvOP+ufiVqlJioqivbeRbaKtcUEBohR\nTnUVEhJCdC1TajQ2keCFmt1+O4waBSUlcGMg/GOFN+9j28ObaEtBzcdIEkyeDPsmg5QE3YPghRf4\nTipB8d/2wJsnd/VVx6I6kkn3r1NRqALZa1Zh0k3nrTbF6PXvn3XYCmSQ7Eg4kZUOJMmOytuVW5a1\np31AdluP2/hw24e8/vrrmHv25MPsbFb17l3jvo895ukmeeT77qj7nr6f+LCgIOyyjX9sNg4YjaRZ\nLBQ5nTwdHV1t6Xq1Usmo0FBS8nWE+PsT5X0OkOdwsLW09Iz3PGBACkhOdvl+A9qpZGQMJypqJB07\nSrhcWuz2bwFwyaBU7iY5+Q4cjmx27uzFAw9koHUkcURRgt60H3//mu9ZODsPPPAAc+fO5cYbb0Sp\nVPLhhx9yww03NNn1xVQFQp1lZ3+K2ZyM3Z7N/v2jsVqPUFa6HbdkA5TgdMIXX0BEJLQI94xtHzGC\nDYo4FF9/2aCxOJ3gcHheMhJW23EMxv3Y0aFKas3hyPYUPjCAjRv9ePrpQPR6X7KzP27QGE7FUkBx\n8UocjhyKilZgD7RSqkphgLSe1lodt0W04O2OHbm1TRt6tG7N5FatyKEVqw88TG5pAjIyyckTSE4e\nj9G4kRNjA+pKqVSjVOpQODUolGA2K3n2WQ2DBukYNEhBQgIgQVKhlpSURDp0+B86XTt69FjCb79d\nxrYF/0FlUWO3iwlmGtq0adPo378/HTt2pH379nTr1o1Zs2Y12fXrUoO/DpiNZ0jbQqDqirFXAe8D\nscB44KcK29zAfu/7E4txCxcog+EvVCp/1GqJ1ik9sJq06I16VC4V7f7qTNl37xKgUmEPbYnLFYVb\n50th/+v4WTYzt9IyvudGo4FbbpNxe7vCLXArSU+PIT1nAFtYztZOZUSs8sf4uxXXS88xY8Yhnnnm\nFVyuM9eEz5bNloHTWYKnV4oaZAUKWUlAQH9U/p4pGttt2UILhQLpmmsYuXo1svwhGGQUMsTkFxAe\n/iColISHjyU09LqzjkWlgiFD4JlnODWSdQSEJlzLPZ/ega+ymMOvROKW5rBXZWSU9BibI/Qo7RfP\niNWQkJB6dWU8m/PXlVqtZu7cucydO7fR4jnj9WvZrgM+BYYA+cA2YA2wp8I+GcB9wHM1HG8B+p57\nmMJZ27IF9u1jc0YGtvJyfpgxA4DA1Fj2/pXCAbOZK+txOpXKH5XKTdj9n5AWOAStSYtCUrBvmZuE\nhBJK9a+zdatnX1d3uHM8dO8MlIIku8k3FZFhtGG0GpFlCafkQpJrH0ELoAiwYErzxcUQ/mLDyfIM\nXycdWxaTdFiJ7yYFg6JvJt8/H7MmjaYaUhIQ0B+tdjNhYdejK99EoNSVdu2mcUx/DPBMlLz+449Z\n5nbz0ksvVT74s8+g1eCzuu62rG0o1Z7nI20Bp9tJvjmfI8U2oPPJ/UKdQbx/9dfc0G8Jkybt4+jR\nl+kZs4ay2DLAWv3EskzxVaW8rU1mUbKn6DabjXUdOlBWh7nzm1NdByFdCmpL8FcAyUC29/NS4Hqq\nJ3iAuv0rFZpGRgakp8Pzz4NKRXZgICqnk65790JAAObSGDr9+CeP9q35oV+dtI6Gnj1gcwK/Dp1N\n6M3w6ouw9TrPSNPDrWDFJAsttxnJmx7H8UPHWfDBd/z1cwq5SbnITheZZZkY7B1o5dOy1supnlxC\n+LFQumvW8dvX99BKp+OZmBhWr/4exZOgVZ7fLY5lLVuy1+3m5LzCDSDHlMOyg8tQSDLPcQMOt4Ps\nsiw+3rWEf9/zQaV9LVorLj8N6jAliiIL6tDT//O/LCkJe/GVXHlXGH3DPWVB6jJ8nQ5Mfc7hd0Zo\nUrUl+GgqPw7KAuLqcX49ntm4lcBbwLL6BCecg8mTPX2os7OhdWvefPRRVBs20HvdOvj7b/YfdxCQ\nvha7JPF4aipPbzy1UPNn+flYcnJoiKEYtnfyyMuy4ePshtqkYbhzOBN9buXHoB9J6ppAB2t7Ik2R\njGg3nH21nEuhABTeFmqFAhSegTqn+za+Jmsdm9/MIynpEd57bxdBQWoCAo4TGxvLk08+yTcLlDiX\nduH+A6DXQ3HxdMaN64Yc5g8PaXh+sWeAaF1JskxCeTnFLcJZFxbG4z/+SOwhXxx+MvKVfqSlp0NM\nTN1PWAsFCpbethSFSgGSxM7xi/DT+tExtDOGEz04Zdmzmgc9UCidmBPfYd/XeznW+hhl+55CUlyP\nRXsIWXZRWroVWZYJCxtNcFkZwbsDGHZnJGO809EkqDNpWV6O7C9x/PhxrFYruTm5+Nh9SElJITo6\nmoCAuk2NLDSN2qo859rRtzVwOXArnrb7rud4PqGu3G6YMwcGDPD8NyQEQkOhZ0/PNjz/8++LiuKd\njh3JGzz45OuqoCAMDThfRqv7gukWOI/StqUY7jLQ7ctutHygJX6dz6ITl1IJO3cyfdAgHuvfH6Ki\naDl+MZq0ImhbuQPnmsx1AAQFXU6XLi2JjW1FVFQU8+d7ug7++asKfYyNRx+F++6DyMhNjBpVjNal\nItCqZ/ny04ehUJjR+rlQ6ez4+hpRKMopc9n5rSADS4sISvv25feyMo45HBy22xi9aRN2m42xYxv3\nMZTskqFMJiI3AuNmI8ZVWbhSs1FIClTmUBbGfMATRat465CNF48sxa1yk3nZq0iyA6Pxb1JSJmCx\nHD7t+SNaROBwOHjjjTdISUnhww8/JPN4JsOHD6/e9CQ0u9r+hWUBFascMVTr4FVJ1T8IJ/rTpeFp\nu+8HVPvtmeFtFwaIi4sjLi6ulrCEhqJSKNCrVPhXmLmrrBEfUJ0rOToK+b6HeLd3byK1Wh5r3ZqC\nDc/j/O+f4Fd9lad+/Zz/z955h0dRtX34ntmebHohhJLQQgm9CtIRKQoqRQWxF1REkGZ5BWl+r4iv\nWLChAoKiIiA2iiLSpIaeAAFCElJIb9vbzPfHhBJACS0JsHeuva7dMzOnbHafOXvO8/weCgpup2vX\nH4mKyiYz8xjff5/JsWNjkeVZ6FqX8NZ45dytW9fz7LM9OZpTD4cfJJ+CYcMu7MOuXTB4cEPqTDuF\nqDpJA8+fpKV5UDlsDJIyaXIonHGtouHuu0k6moQ6UE1U4U544IGLV3iNCGI3kl1CSpZon9OeE1kn\nwO3GKtdG7QbN5nd4vnstXn4ZSE7G2e0e1rm1aJ1hiKKDqKjXSUqaxL/N69q0aUPIiSI+++wz/u//\nEpjyzBQC3w5k+ovTiYsrhxS0lytmw4YNbNiw4bKuuZSB3wU0RZmJ5wD3AyP/4dzSH9BnCEDZZHUB\nIUA34KJbyecaeC9Vg9p1VxGaNJ+hkofURiJSPRm5IJ9Bg5zIcv0rrlfyCHg8IEkCkiziuUSg0Llo\nNCHk5//G4czf6NkIcMLGREi3g6COuCChtSCoqVZtROnGsB8ajQq9vg6CoCMvbwWy9AYmj4d+BxRH\nr3iLhYlJSRyztiBGB3PmZPLf/w7E43GdU6uMIAikpZWQ+HFdwmLasPLkeO666zBu/f/4MuQblu14\npVJcCxoIH6EOCEZsrOLXlr8y58P3oaAAfVh2xXfGyzXn/MnvtGnTLnnNpQy8HXgOWIvyi34xsAeY\nhrK2/gvQDlgBBAF3A1NRXCZjgc9QNl91wAecdZn0UsXx8c2mJHQc6xz1mRBvxJHmwPnAbD7+OIOH\nHvoP8MRFr/NIHg5kx+N2HcBkDWDPqT2sizvIi45iCsSjfDrxHj6bCLL8GLL8KF8BMg+ze8tasjJX\nM9d2EY+OUtq23U14+IM0aXIvv9RsS6ROx/hatTh06BBq9ZALLxAEgoPvQK+PwscnBn9/PYJwDxrN\nL2g0OjSCwIzoaFrUUHRdJmq1DA4NZamPgWcjq9OmzhE0GhM//rgUt9vK/v3dkSQ3c+dKZGZCZiMT\nJqJwDdsAACAASURBVL8kXK7HEEXfa/CuXyWyjL9VS9eEE9RIiyA9eT44nbhlPwLkcuSwvQzUlmI4\ndgw++RTSR9Djyy9pkZ8PDz2knPDKK1CqoOil8ijPIujq0se5nOvUvIuyyzin2Ypi6L3caLhz0MoW\nCl1mcj0qnAVm3HkiOfZ8NqS5+f1wGvqvv+aNV4v4OSeTQqeT2IVLUTvdfP8WhJm7o1LVpOM8I40d\nUbj66jE6YUenH6jbPw6DxkCWycTynTshIYGFUVFUj4mhqEYN+kVF0bJlywoaqEALPz/6lYpH/lej\n4baAAP7SaIkszWJnMBho0aIFLlc+NpuRzp3z+eWXe1Cp/qTG4UjCGrYlObgvBsPuCurzPyAIMHs2\nzV9bz20mO0VqP0ynALR4DEaSHMmcUKuxuU3A1W+E6vPSoahISdaa7kda06acSE6mQ//+ittnXJzX\nwFcBvFIFXsrg8dgRTH+hk30wm/djkwIpKclGsgRgFkIwalS8Xr8+PUY9zz6/z+kTWp35gopAVyQn\nnm7DyGdhwWNa3O4A1rfT8tTTzWnZMABBSCLWZlNC3zx2IjQaRt1+Ozz+OFvXriW2Rw9OtmjBqHbt\nADh69GjlvhE3GoIAEybAtC1k+AQw9e5tqBquVQ79T+C4lE+R/yFmHH6Pfumv04Hwq29TpYJOHWFL\nAMc7dCBOpeKphx4qk97QS+XiNfBezkMGQcQkViM8bAiBjiZERvpjs9vYEjEYWXyMEI2GyIJ8DvrJ\n6ERByd+pEnCEGDDUBZUPyG4V5iABVbQOQaOG//znn5tcu7bCRncudnsyGRnbOXbsMAA2WxLp6R/g\ncsWibBvdmKgEFd8M/uZMJGvnrzpzqOQEfqa2hPnGYnVdnRqkpJIoksClUmF2e/CTZcyiiLMqptiq\nRIxGY5mIWpvNxvPPP88HH3xQYX3w/ke83JLUrft/qNWB6HQRGAwOAERRj9OZg9OZzY1s4C9Fekk6\nyR6ZapIbufRPkiXSMxfidOaQkfERzZvvITj4XTSaAHJyGhMe/gAAwWo1JeFmHtG5sdSqxcsnTjDZ\nZmBKnTrY6tThc0mq9NwhwcFwHTP2ERSkaPBdCrPZfOa5xWIhIiKC+++///p17CJ4DbyXS7JmDWTt\nhXmbqpGT9BETJkQww/U3z6W5OeczfF3YbTLx+jnJoPcVFXEkNZWiqCjGXEyKVZYhNxdKTIq/f0kJ\nAc5cBE9Zv/7g4DvR6yE0NJqaNcGaaCXK9TcBuQ2JMLsQkkxYii3I0iVCQYqLwWyGrCxF+cxkUh5V\nlAh9HaZvmk7NfBcLLGbckps8jUTdxSWYdi9DEQP+hLtlgL24VkMiWlID/4ur2rPU83EwbL4vj3dN\n4pVTJ5jaoC5BPj68m7SP5+vVwyPLlW7gCwuVj8H14kq8iJctW0a1atXo3Lnzte/Qv+A18Dcxc3+u\nTac98McroJdqkZsv85jlLYQXoxjpSCp3PSkpoKmzivz+M3FbLWRq9eRazbgWf8KmzDVcrvrh5RBv\nseCUJCaURoC+ZTDQMTiYbjEx3OZ/njZ53brKN7tJE3DcDuYseOklvrSNI7lTODR69KJtuIvd7Izd\nyX36+/D72MB9uSa0cxI5ZjqGC9dFrwEgJFhxirfugaNfgCsbNm+G5GTl8dtvkKQBX8CcpEwtK5mB\nkSN5efRIxQ9+/j0csmhIiDQys+PHJAUsYOm97+F0ZjFmzCzi4mazJvQxdP1O4XCk4x7xNilWI/36\nicgBdiyRDszuvwliYGUPq8rz1Vdf8cgjj1R4u14DfxPz644wugh1aZ+gJtB4jNfcLh5ymSjcdwJr\ngA2tfx5gvGQ9No2anjua0XXHUmRZ8QMXZBm3IDImdj6v/DnkuioR1dTp6Feqj/6VTkdLP78zr8vw\nww9KJqrcXPg2G15+BP73BjNnBzPC8yQeTzEORxay7MJuT+d0VL3TrkYdoOaT2E948cWWfPLBs7z6\nahMi1uchL/yXqWDr1tBnKKzrCv18Yd4xcDgU75E1pQmwj3QFjR3q2ZSo4iqKLIrIooCPMQYfYtDo\nFiGq/dDZQmjvnkZqrX2kj4ylydc9mPaWH68MSEBtbYEseyq761We1NRUNm3axIIFCyq8ba+Bv8nR\naArwabaftNeWIj5npvqUR5m2eA3P9fgS3Yo9QPQl60iIjODHh/twb+9Z/DTubd576SX6DhlEbLME\n/lNTi3AdZ/DXCk2+gezsb0lKWoTNVsCePbfx8MOKBs2uI7mIwh/XqCGNMnM/zStJEKiGV66dXPKl\nsNvtbN68CbM5C4C8kjycHrs3+UMlsXjxYrp06ULUeVIaFYHXwN/0yOj10XymfhUzTzNZeINjj2iY\nW304S6u1Yv+WnezJyKCb1UoDH5/K7ux1I3hHJDGf/Ymf30F8fIbTqdNB+vWDF18Eg0EFwnVctK1A\nunfrjuVPO1u2/E1SkiL6mleSRzVjHfIFfSX37tZk0aJFvPbaa5XSttfA30LYJYlH9uwhhbvo2T6e\nFts2kOlUk1pczMK//qK9240kOaiXLeOxWsut0+6l6jBs+DCW78nn1VdfPesmGduZBtrBrEwv3/Zn\nwboCev/Wmw4lGaSIw8iYpMXhE4srWUfGqblYrYPIzf0JZImSkh243d2v34BucLZu3UpmZiZDhw6t\nlPa9Bv4mYPVq2LnzvMKkhzhu9blg//O+hAQ+I5BODUzcsW8Hj6XbUQUFsW7dOuJPnECWPTyXIWPP\nySEvJxcCK2wYVYr33oMmmYqDzFNPgST5kpf37vmClTcllgMW7Ho7qwzB3KHZQtDDg7E1j6bEugFd\nYwlBUKFSKTcLGQ8uZ24l97jqsmjRIgYPHoyvb+VIWXgN/E3A++9DSAjUP1cDTBZ5uFcmuq2Of/MD\nQZZlateuzR1PPEF7f38kyUHWjAcRgw9zUrr1ZvAqlQ/Dhj1JcnIrVAU+CIKZ4ODnAZmNG8cSH1/Z\nPbwy/EtkjE4XGz+zU7TaRYDdyqDsWDxuGZcL9u4F/+5nz7f6WjkuGPDVpRHYTCKwb3OqoyTkNhgg\nOLg/CK9i9K16cgRBQVfmyng59ZeXTz/99Pp1pBx4DXwVw+12M3HiRKzWC6MNR40aRfPmF896//DD\n0PfcVJ7bF8OIMFK2X9rLoZFOR7zFQrzFgix7cDTvyz2Bp8iTJHoHB/PtOedKkiJBAuD2KG7gsnx9\n/Y4rkuDgfgwcOAWA3yetZ2XKr/z3v+8AcODAjbmGrfJVYRcgUuXgNqGAdsUmVA4bJqkTgiwjCJB4\nBNp1/4cKPB4lRVcposQFcQVVCW/GvrN4DXwVo6ioiHnz5vHuu++WKV+yZAmbN2/+RwN/RUhKUMrt\nosi40rUHj8dG3ktT2DBIzXMROtpHRJwx8A6H4hM/ejQMcUN6Grz+upLR0yFd02RFlYYgCKhUymaz\nIKqBc15XfWehi6IyqvhmuEjHtUbajvanX39K9eA/Jyvtv4gCmBp/zIHsozz505M0jm9Mkb6I9KYT\nKUxWE35ekpKfJBD+AKK9fjlVHa+Br4IYDAZGjiwru3/gwLVVWnYafFHn2bjP7sA4YwbMmgUomtAh\nHgnn4AutmccDogoWLwb1EIiOhv+MhtGTINQHeg+/pl30Ug5Ozj6JIJ79X5n3Xn5occSOWZSEHSCo\nZS6danUiIDCARE8iTmMKcx9/nA83/lLm/AH94YUXgNfDlLu+JCkCY3XqwIcfQkIC2O1KPEDbtlc7\nRC9XgfcWfItiDQ3n2PZhLNXrKZ4xFU9hNp7CbNz5KWxepadQpbrgmpANFmKynKTMTOGwaxq+x/1J\ney8NXZHk/SRVAlmvhOAucOPKc5156GrpiK8RcVn1+GZ1xSdtILUCavFk6yfpULMDwa5gdKZ6l744\nJxckz9l1kbQ0sFjgwAGYO/cKRuXlWuKdwd8CWO75jMmuQ7xBETtfOsCTdCQoxE5WVgqtWkFa2n/Y\nsmXK2QvEAAL9S/h9z16WJ37G4Yw+FJmKOb7lbwqFAmwdbITvWYMzdDgBXQNwnRTI/7hG5Q2wHGgs\nxbBtGyQlgdUK27bRqBACjog4KyH70rUg97kg6l1EjyelfwV3RBDg/vuVfLlvv60Ye1E8k/vXS+Xh\nNfA3GXaPh91mM9SoAYKALSwSVY31/CLej4n5xH5Tiw/4jIdH+dO6dTpOZ38CAloRHt6Ebds9JHk2\ngujGLQUx/8A+8qyHoc13IGXwd9oqPEaJxaGLeVFIQBeuw7+1P+5lAq4WVXcDMkdfG49WD+PGKcb9\n1CkYN45njkD9yYf5+5dL13Gab76BxEQwGNwcOuSLKDrJyvqRGjXKr+3jxUtF4TXwNxnL8/IYe/w4\nMT17glpNbIuu3CtsIFUKRy1q8M3xIY/GyHIgwcGxJCRoGTZsGI0bj2fUxDy2d6jLkoErAejYDv73\n7hDG1h9GuE8z/Ixd2XLSygsBhSBPINw3HKczDWRw2pVlV7jyiZtNkogvladMKRUZS3c4LqsOjSAQ\nvW0bHY56yHQ4eP7oUczja/Kb3zv82KYxxpMnYfhw2LaNcf1gUW5foHwyBaNHw44dUFTUn7S01Zw6\ntRFBMBASspPMTLitTx+clzvoKo5TsmN2ll3Xd4vgkQ1IskRKYTLVRJk9ia8h113Cyk2N6HgqC3M9\nAVcnIw1tKRgM0ZXTeS9eA3+z4ZFl+gUHs2j6dBg3jpR135HWWSJArUYt2UjMP8pREpm+cS2fFe/F\n6XGyYN8Cog5FAd3RiFrubdHzTH0dVxQSPNSCxi+AgxYroXIunDgJr7xCRJrICy+A06nhuUbVGFV6\njSjCObmBz2Cz2ZgyZQpOZ1kzGBcXx229e+OjUvHgoUMAOE6e5JTTybfZ2TxevXq5xi4KAmkdO2L1\neDAfzWOMVsuz0dEsXdISyzPHyHA4aHgF7+lp+venNDp0JFu2vMqvv7YlLKwe48ePB2DZ8eN8t2zZ\nVbRQOaRlHseV+z0739pJn6/60C6lHc4MJ5rYcBZl/Idv3imbrMXaxgUpI3B6nGSbC1AVaigiBhmB\nTKErJvVmohYeQ/2TBe30biCeI4FRt25ZrR4v15XyGPi+wGxABXwFzDrveFfgPZT8qw8Cy8859igw\nqfT5LGDR1XTWy6Uxm83YbDZOORyQn4/HIyNLMpLNhs1lJ1AfSqgYRq86vWjdvBmrxFUYNUbWJ68H\nul+0TtfUKWhq18WddZjlWUE8+L6yibcQmDoVmt7u4pPd2TwccXZz72LKqJmZmcyfP58pU6aUKR81\nahQP9O/P6PCzaeSOBgZyt15PfPv2lzX+cK0WgGytFrUgEK7V4lNiwIPI3yUlJOfnU+x2831ODqca\nwcrIRjQo5wz+DKWeI35mM0ZtMWRkKOWnAwRuEAp9fNAJetSBkfg37YZvdHXSRS0xpmrE+PnSLOtu\nxj0654zkwWlajViKLUS5kflp/dFJeno2fIxlgsgznT9D39rKzAciua+XnlqdZ+Dv3xa1ICjvz913\nV8JIb10uZeB1wCdAZyAb2Ab8Duw955xUFEM+4bxrqwOTgdMZlPcBa0vr8XIdyM7O5oXRo9F17MiW\nbdvgwAGWlLTEYbNT/N4MAAJ0gQSrg2kXUZc+dUEUNET41MTjUlMRgauBgYGMGTPm+jd0HqFHQ4mT\n8rEkF5Jv9zB3fy6pUTArsguf8SEmt5ttL7/MQElC8/ffAPTIzEKySJx4/USZuoQ1q+CNEp5dthyt\nTQ1ffqkcaN8eeveu6KFdMRa3G0kj0rjQSM/N4dwWX0R1Y3WKLAbcZhGnnxPQlrs+vd1O4JYtAEgT\nf2KmANhVeOw5/NS0KQPDr0Ee2BuM1NRUnn76abZt24ZWq2XIkCF8+OGHaLXlf1+vhksZ+A5AAlA6\nReF74C4uNPBwoSJ4b2A1cHoBb01p2ddX2lkv/47D4SAoMJC7hg5l0d9/K0s0L3xImo8e2enk9L87\nIsTFae0jp3MoP39yG8JnT6DxK0ZfsQln/pXc3FwmTpxYpmzfvn3ce17gzaXo2xf++C2CACIQSiRU\n+ToC3o+liwhLisYTNw0C1GrafPghr736Kh1LddtbxO4nYIMLV8iRsv2yy0gGHbMfe7TMEg05Ocrj\nRqB6dRgwAPt88PXJxeFZD00X0jaoA2uOtyJL3/nsN7ucDP/pJ+bNmwfAC/cbefw+H+r1+4EXT4VT\n5HYrUsoVQPCsYArt1y9nX5A+iIKXyxcu++yzz1KjRg3y8/MpLCykd+/evP/++xd8rq8XlzLwNYG0\nc16n80+/4y+kRun55157kRxrXq6WKHMCnZ8Zgk7j5NWYGA6sXAlbtkBCAvqchheEYC6cnMTC38IA\nMBi+o98zxUTcuZ/pPabTqIq4LkdHRzN16tQL1uufeuopevTocVl1jRmjPAAOHlT2WH/9tfRgqbyD\nAGitVgIFgbDS2VVs+EZSfE5S0rms1KsUWIzBUguPp7KT010F+lKvooW7sdWNZaHZwh8DfkfU3YX7\n8Ensohurw8n6A0cIbWalXc1WZRJIV2UK7YXIb1w/7QxhWvnfh+PHjzNmzBi0Wi3VqlWjb9++HDt2\n7Lr17XwuZeBvEoWRm5tgeyYuYxAlH73JF598QvuePZWNrMceIzNxO6jTQRSRTG4aHzyEMHgw6HSA\nMusXVWWjlBISIC5Oed4HWL4CpCDQJFko8eRy+PDZ2VHG6fXna4xWq62UpZxzUeFGowmmXbt9Zcrj\n+i6n4WgHkrS7knp29ZjNZr79ZgHpjmTy8g4jmfI5vOIUo82v8B/7cEyCmSJbEXM2fcaHzk85OGo/\nMSExld3tG45+/fqxZMkSunXrRkFBAatXr2bmzJkV1v6lDHw6cK7CSC3KzujP59wbQjrKEs+51269\n2EVTp04987x79+50v5gLhpd/xaP3xV2vHrkqFfj7g68v1KqFK28PAAGTJyM+/yarouuhmzoDWinR\nPa+//jqCoeyMZNYsOHEC6tWDPjJs3QZWPaQcfZt9no0MGlQ2t2hIs6qnKHgtOXToEPv2nTXyWn0A\nIyKCSOx6F4IgMGnDBkD58D9ZTo+fymb37t28/+7/0cbTAZvNTsdWULt2X1YuW0Z+UAnhxkAiA8OJ\nNM/hhGYtbqnqiotVZaZOncodd9yBv78/Ho+Hxx57jHvuueeK6tqwYQMbSj9r5eVSBn4X0BRluSUH\nuB8Y+Q/nCpRVH18HvAGUZr6kLzD9Yheea+C9XB9Ufn4gQh2dDn2NGoq7GuDj44MN2wXnP/OM4gmT\nvQL+Nxt8asN9f7uY1v1Vxn4xtsy5Dx8+XCFj+DesVitbt56dPxQcLaDQcfXrsDaPxKPLl5NfUEBI\nadLs0Zr2DPh9LS03p/PCqFF07NjxzPlVRbGhqOjsdoDTCZJZjfO8kII6devzXOJLfNq0O6NGKS6g\nh3buBFPZ87SCD53nd0YtKuaiIHskQvp2qjvN+Een4XjtbSIjnXTpUsTBg8r+SNPbnMDNmyGsPMiy\nTJ8+fRg6dCg7duzAZDLx9NNP8/LLLzNr1vnOiJfm/MnvtGnTLnnNpQy8HXgOxftFBBYDe4BpQBzw\nC9AOWAEEAXcDU1FcJk8BbwI7SuuajteDpspy9+Kd8OUIiDUx9q97CIsHlkOgDdxi1V57DQ8PJzo6\nmgkTzjpyufJcuCU39cuI5F8e7f38SJBlioKDqdu6NQ0aNADA7/MTPNm6NY1ev/wvaUVQty6MPece\nXFQErn0NOGIUuBJHljdqb6LfPWeDnXrt/QPfyDZIgUFEmZuhioukuJaZ5OTj9O37GC5XDrUa/HzW\nveIWJTs7m927d7N+/Xo0Gg3BwcE88cQTTJw48YoM/JVQHj/41aWPczk3g/Auyi7jnMuC0oeX64gs\nuzCb9rFjWxQu951kZS9mw6u/A78jWXtgc5gokAqQZAmVKPJ73g76TCudde4BasKSNsrLGF0km+o/\nQYsWUKsHDA1ey7dhYZU1tHIRGhp6wU/X7G+zyf85nyatmpSrDrl5HPVqFyLLuygoUKa6rbTFLFOr\naLFlCwODgxkWo6xBx1kOUsNddXVW5s4tq/PVsyfsHHiYxFE9CSyHJ8sP2RvRF2dwzBwMRzUsmAdu\n2+08+eSTAKhFDRpRg6z2w9/aFPWO+liGFpCe7iYs7F7s9n92v9lV/A5WzUYADkoHKZAL2KjZSNjQ\nMJosKd//6kYhNDSU0NBQPvnkE8aPH4/JZGLBggU0aVJx46wqvyi9XBUSgqimY8dUZMFIoq023f97\nJ90da2ga+x0B+iCCDcFUM1ZDI2oodJm4P/Z+5Ddknmz9JMObDSd9nh+He/7I0sdWsa5eNH/HRrO/\nQzS/1+PGFUIvJ6GOrsgDv6Nz53Rk+VvS0t4mLe1tnM5TiGLlpFqrLGa9+CKdA5vSwNgMf81tBBvb\nEaA38s1XX4HrbG6wHGcKOZYc/jYfpkjlYpt1G0d9jrL2+Np/rd8lBdIhqQNdrF2IXRlL0J1BNP2l\nKc6cm03kAdRqNcuXL2fZsmX4+/sTFRWF2+1mbgWqbHqlCrxQzbcaTo+Tl/98mZQEPWnhcCAPflgJ\nbSPbolVVTFBGZdGw5GV2TDfyVexrzJw5kxYtugIgy/tQqx+r3M5VMLd17UqR4ThZchuOlzRhrPk1\nfNNWM8tth0GD4JdfCPe04q+dTXCnr2KB1kwdScfXW514CGT74sG8oX+KRg1lPltmIXj/AjJ7P1wm\nz52gERA1IqJaRBAEBPW1nUAE6YMuy5XxSuovL126dGHnBQmTKw6vgfdCk/Am1AmM5qcHV0KjRjzy\nCNxxx8XlBm4ZioqUdFWpqYwuLKRGair8/LNyzNwXhJv0plenDjz0EKzJA0sk79VdRosW63GuH48t\nz0x2CnwwtQElJQt5NqkzrzbvSI1DAn9P+D+GPppHVqM/y1R3/Hg6R2odgdjYChtCeYOQbgW8Bv4q\n2LZtG2bzhTtJ7du3JyAg4LLqOj7uONYjVgqdhXhKPBzor2RwCuwWSO2XaysnpabC0qUXXNu8cDfc\nwDE3VZL0dNi5EwIC2B0ZCW3aENWpk3Jseyh0uznWi0UP+FttCNlgS1HKhMKz+ws1a5Z+5AphrwgP\n3qkcc7uhIEtG39mNKEq0bx9FgwZGCrVaXnrpJf784wNGDvHluHgH2/MqflxeFLwG/goxm8106dLl\ngqjKxMRExo8ff9lBOrnLcomeHo1ep0fcJVLjhRpYDlrIX5V/1sAvWQJ7916Q1r2G1cPxzrVocBnt\nOeyK7tO+fUoejD5pMO0pSPNVoj3vvPOyun9z4ucHfn5sjYoitFMnOg0bppTPjlNiDW50VFAcIjBs\n5z50h2GfQSnWSBKWFiKkwogR8NRTMHM87OrTgcy+m9GKIrIMjudNjPLxYWpwMEXeTNdVEq+Bv0Ik\nScLHx4c//iirRPjSSy8hXaFqV1DPIDQ+GgSNQEj/EFS+KvJX5Zc9afZsaNmyTNGbd9rod/szl2Xg\nLSl2ev+VgORfSGNXBgXyUzzsKMJNPNSWqX3Uj5TzAu7cBd5gl5sKUeC1JVpiZ3TkhRegZ6lq5M95\neaTMT8G52smRJ46gFQ5RUgAxKd34ZYmaEF8tEctb0eC4P59brZicTkxuN4rg7FlKtFr2FZmwenzY\nWlyMQZKIBDYWFnFn9WoVPtxbEa+Bv0WR8l249WqCGuup0cCP6r/spvqwXkjhoZh3mxElCcle9hpd\nLR2GhoaL1rfbZMLvnDyuaXY71oqQp/RyXUjsoyVgVQB1HvZFr6uH8b8Q32sfzsGD6TEsD8l8aTfR\nowEB7E+3YJcl9pvNyA4HDyPzeOIRMpp4DXxF4DXwNxGSVcLo1OFrEnG59GACj9lzNpb4PE4a/DDU\nNeDfzp/wjbuhvwEaRcCIi5/vl+GHNvTCzcXeQUGsyM1lYVbWmbLjNhv19HpqlGre3Aq4zW44z+5J\n9qu/yW0qLubxI2UVLbeXlFDfcPGb7TVBFFD5qNBVV6HT6xC1YA+y46ytuQyvF4G7Q4I5UKzhuRo1\neESjYSvZXoGrCsRr4G8iTnY4yee2R+BPDTvsz8IuLaiTEL4UMJhA9sg4XUbcZhk81+5r9khEBI+c\nk+wD4JGgIO6oWZOQCpKIvRj2VDs535eV781Pz79Q2PoaYEu2saPBDlS+qguONfjgchbPyjIwJOSi\nwSpdAwLoGxx8kSMVhyxDcREIMpzKApsVJAlSUkpPkCRYvQYa9YPPP1dU7OT7weP9ZVdReA38TYRk\nkxg+8EvUzwzmv3/uRexwB/XvF6DQzRMfuJmQ52JXwRiS5u5Cru+kWKPjZg3jMbY0oqutI3dFbpny\ntD/T8BivfRSqZJXwaehD+4TLy0B1KcK02nKnLLwUy/Py8BWV28WhggLyzwlcstngtEOYzQxuq4j7\nX7ZcjL6KvPvKlTBQD2++CSV7wd5O2bx/60MB1GpsMbm4DRJZsUUcr5OJvFTmUflz8vPLCuM4Uh2k\nzblQxzD8wXB01W+dX4HXGq+Bv0nQaMzw/Ac8WecggtqO0LaIPH7l2Bcn6FTDwTv3v0VhSgkPPD8Y\nq1HP7dXv41B8CO0qu+PXCd/GvsR+d6Hv9ZEuR/5dD/Um5a7QUP44x9Mlp7iYEo+HZyMiOFUDHn30\n7LkeOQSXHISPGkJCwGK5sD6jnyJI+mgbMC2DuR/Cp0/BTl+4/36QBPhRN5L+NfciWPRoo9rgU1P5\nleeHmby85cAgpa5mRkIGhuA4WdboF6wpQBOsIeLRiPOb91JOvAb+JsHHpwCapZOR7o9eCqT/3uMs\naSIQntiGPHV/7pK6cpLB/PxzJDv7TeOYqTcnK7vTXiqMkZGR9Dwn2GhjXh5TfHyYXqcOfK6soJzm\n57x8vjh1ip9LZaDXr7+yNo+KrRgUVB2V/RTBwXcQqdGQIm8kgVgGc9Y5XltNS/3/XSgKd7ig8lVK\nr5b9+/fz3HPPER8fT7Vq1Zg9e/ZlZyS7GrxaNDcTmTX4+UAD1kh3UnN3bRLzoklZ34mfl75GRCxm\nxgAAIABJREFUzom6eNwqgvJ1mFPCcZgNPP98ZXe4irB9BziddMvLI3TjRli+HP64zETcXq4Zw4YN\nIzw8nM5LO9N0dFPCw8MJDw9n9OjR5asgOFjRT7pej3LufbhcLgYMGMCwYcMoKSlhwYIFjBgxokpl\ndPJShchyuTiSnKykWytFiZgN/NfrRo9WIsXXroU6tWHCBOA25diuXdevvzcEAwfCqr/B2Z47cnII\nW7dOif4C6NMHtl40R42X60hSUhKLFi3CON9IYJdAwh8I5/fff+e7774rXwWFhcoO8PWinOJ7Bw4c\noLCw8MyNqXPnztx+++0sXryY6dMvmhrjmuM18DcITZo04cPiYn4YNw6XWcRd6MaDB5fsYr56OTqh\nM3TZgnSZTmiCIPDRRx+xKiNDuRP4KT6VMTExvPXWW9djKFWL55+HB56GmB1MbtKEmTNmENZVERtj\n3z6vgb9CVIJMuJyORsylmjYXtTMZq6RGjjyFUA43puDgYPwMfgT5BxEeHk5g4L9PYqoi8kVuMpIk\nER8fX2F98Br4CsDpdHL33Xdjuchu1YwZM+jZs+cl6xg1ahSjPv8cFi7kyId6fGN94U5o26MtXzRp\nzr33TKVxSx+k/Zdn4F977TX27t2rGPcBA6BmTfLy8pgxY8atYeDP44svvjgTnZyVlUVWVhYul4uB\nAwdWcs9uHFyuAMxukZec4wjy8zDJ4CY47SsOCAKueVk0kLrjdGqwWo/gdhdRUrLjzLVq9Y1nyP+J\n5s2bExAQwJw5cxgzZgybNm1i06ZNdOvWrcL64DXwFYDFYmHbtm2sWbOmTPmcOXOIj48vl4EHkGQ3\nRQV/YLc1RRDcuMhCwkGhUIRH7wJ1OX3OFy+GjUrShTqlD5xORYCmUSPS0tKYMWNG+Qd4kzBx4sQy\nuVc1Gg2CIDBs2LAK/VLeyLhlFyflQ8yN8yWo/WQezstnvlXPqK63MSWsAVv+bwSm7v44nclkZHyK\n1ZrNsWMvIlo86NJs2GwnwFoPEhOhoC6klsAx06UbroJotVp++uknRo0axYwZM2jdujVDhw7F/W/+\np9cYr4GvINRqNbfffnuZsu+///6y6nC7CsjI+Ai7fRJuUxaW/L1Ikh23uwBf32ZA0qUrGTNGWXo4\nXxzq2Wehdu3L6s/NxoABAxgwYMCZ1/v27WPr1q28/vrrldirysElyxSXGiKzx4NbELDn5yN+/TXk\nNIfhwyE+HiHVgV9+e3gwleEH1Qw+OgenK542wuusyP6dZXUSKK7+AP+39T3uuG00sgDZRFCr2SLC\nMtZg9PuYNm3WwOTJyF9+gdnXAZnJMGMG5D0NB47B9PnKxvcNSJs2bdi+ffuZ1z179mTQoEEV1n55\nDHxfYDaKktBXwPnJBHXAIqAJUAIMB1KBaOAwcDrGehvg9du4KmSCgnqhCepJQI0AxEYianVzjMaW\nBAX1oFwGftgw5XEJLBYLixYtKlN2/Phxup5en/Zy0xKm0bC9pITa27YB4E5IwAHsHzyYtyQJAkUO\nFY3G4j5Gmn4ExmgV7gwba21RRNVoz7E2blptSiJGas+T9fJ5+8gRUto/zMB8D99qtegcdpquWoV5\n/34CkpJAqwW3G/nD99jTdAKecVGYZ49D/3kM1q63IY+ej8VyBFm+8SJgDx06RL169VCpVHz66ack\nJyfz2GOPVVj7lzLwOuAToDNKwuxtwO/A3nPOeQElwfYDwL3AB8A9pceOA62uYX9vKXbv3k38pnja\niErC1D2yzOMD5tObEFRxKsbePfYSNVwZYWFhDBkyhHXr1pUpr1OnDu3a3ayhUV5O0zEggMLOnc+8\nXu9yMTMwkPWl0tjmP8w4s53oxvoS8VQDIus3INlmJ2l8EE0kN44wP7L91nFXYG0knNTZtAF90Ld8\n1O8jZEnCrdGQ078/Uy0WPq5WTZEwAAS1SFD8ahyOzaSnv4/O9DjWnCTq4CEldQYuV6NKeT+uhgUL\nFvDll1/i8Xjo3Lkzf/75J0ajscLav5SB7wAkABmlr78H7qKsge8PTCp9/jPwOXBzJ/GsIEwmE6Gh\nobizlZ/KrqY1+OmtfiTPu4t5e+Yx6PtBFNoL2Zmxk8UHFtGh3k48UjeEq3z79Xo98+bNuxZD8HIT\nYmxmhGagDlTj39aflp0jaQnMnW5na2IItiw9PvlNWX8onWXLirDk3onQZhp3fXsXP0qd8IiiMms/\nrT6qVQTsBKB589X4+LSnUaO5+IX4ERQdhMBnGH2bIcvlzNsaFHR98wgHlT9l3+zZs5k9e/b168sl\nuJSBr0nZwO50oPu/nCMB+UB46etoYB9gBV4HrjAm7tZDkpzI8mnNFMXAC4AoCgiCgNVl5e4Gd3NY\nc5jAJjvxCzaj1+oQ6rtQFRXwqO4gWxNFWpiCOHRoGzZb7j+25eXm59ChQ/j4+Jx5nVA6a76WjH7C\nzbo5FgrTLdR2RSLrRTKcEfxprkVQwRf8NGIx5gVTrnm7F+BNPnKGSxn4q4kWyARqoKzLtwJ+BWKB\noquo85bA7S5m82ZfUlObEeh6lM2blZ90bZwu1Gpl9iALao4aYnEJKtKj51BCPZyiDiQByze/8PNf\nuRhDg9ibHsehz8YREAB3etM03ZJ07tyZr7/+mq+//rpMea9evcp1vSiK7N27l969e5cpj4+PRxTP\nBsPf+5KRe18y8tJLEL7fTse+GurFnmTn4xpQKWqmAHXUR8lZ/iLO/Scw2DM5tPBxpZ0G7TDUvKtC\nvUxudi5l4NOBWue8rsWFUk3pQG0gB0X6IATIRZnNn/5NtReIBxoB28+7nqlTp5553r17d7p3717O\n7t945K7MJeMDZcUr92gueh89+1buw5ntZObJVHI0RUhI/BH2K7l+p2gtqjHFZnJ3aCgYW2KMGMFR\nSpBEHXFWCUmWkYEQXTf8DA50Jw2E6vRMrNWAJ6bM4fdHjejev53zvptezuNH+4+82e/NMmUlJSVl\nDNiNyvTp068qcvL2229n+fLleDxlVThVKhXt21+eeqZ0oA2+PTeRlPcDJ4vMaCX4NX0xalEiJuQr\nHhnwOoWFhXz66af03tubgsICnpUkfvstjdRUJXhIuJ7LL1WYDRs2sGHDhsu65lIGfhfQFGUmngPc\nD4w875xVKCki4lA2V7ehGPdglNm6hLJU0xRl0/UCzjXwNzumXSb00XqqjaiG/1x/giODiRoURars\n4AuOM9rgjwDU1Otwa9TIwJKcHMXAn0dbH5EclQqTKNApMIA6Pj74iCIqbyalyybOFUeXNl0ucGWt\nfYu7joISD1DeWI1/wiGL7NgjUG9rD95pfy8BkYGs2v8GKkMqk17fguvNV9ihf5/c3Fzq1KmDRqNB\nVImo1WoEQUClEjh2LB23242mEnMMVCbnT36nTZt2yWsuZeDtwHPAWpTZ+WJgDzANxaD/AswtLT8I\nmFDcJAF6lJ4noSwfvwh486sDhnoGgnoGoVupQ19XT0D3AFQWC8EJap7WavmfU+bxtVvZl+Qiy1mL\nbitWwPbtkJ/PSftXSH0SubN1Im5LFr94Shgba8Nf+w2X0qTx8u+0bt2afv36VXY3bjpCQvaTKqtY\n9J2K/9i0SCtrMkuyUCj1xmD4mHm759Hq1F48sgeVSkVERARPPvkkfnY/gnoGIf48ir59a/LbmnRM\npn23rIG/EsrjB7+69HEub5zz3IEysz+f5aUPL/9AYKCecePGMW7cOEDZ8IgAGqhkxG178E8NwOSq\nTsM9e+DECejfn1PSzwiFvchILETTsQmStJ3tR9SEmW+jUVRDPMU/47yeQktevFwmdev+iFtl56O3\n3Vh7elBNiadV+sec/LItbslDXGYc1cyn8PG4/rEOg6E+srydxMSnUJ+TMtDjKa6IIdyweCNZKwmL\n5RC9es2hb99qWJxW7B4nLlFPnd/NhO6SGNavECwidyRr2DRzJt2bNFEu3NEAjnYnYYOViJcGEB3w\nCxs+SeeQfRE+ODEJIBmNRNkcnEwTuAFjQ7zcxGhUGtQqgcndJvPbgj8waAzMGzAPx/5JbOLgP14X\nHj4EQfiGtm3jyszgc3NXAvdVQM9vTLwGvpLQPjWJNglajL7RHMlLRKsNp0jwJcZURGGbWJ5sO471\n69bjli70KFCrVHhyivi6/wP4WazII8PJ/zqWkqJtGO7sR+1Oj7JxXhGzv2jPSyRQs2YlDNDLLY0k\ngccNbrdAXFwcligL4ydP4OXCSbj+O5exBhsId1V2N296vAa+klCt386pVyJocNu7fPn7RDrUu5cV\njiCWNGmCb9261KxWjdSgVByyh6UJS/l55TsAzGtl5UTWX/D0IIKHvUS91HRyfUxom7agbUs9OR4P\nbQMCeGtyY5zZTnY1h8aNK3mwXm4pwsNh82b4dTMsFXsgy18QIo9k744BOJ0+qHr2YlzHGEZ/VEzJ\neU7TFqcFSZawuWwYJAMOtwMZxXtGlgVycpRcsKfJy9NW6NhuNLwGvhKxNPaBjh1JTAkmqlkj9lvD\n4Ry3swi/CPK1JgY17sz8eyYAcHBPS2JjBnDMGEDjID8m/bKKu0KO0O+PenRcoKzHRKXlsCkvF1mW\n0dfSX7TtWxmPyUPGJxlnX5uvfRLuW5lXX4WkQtCEwjeTDMAAGowex89ru5He3IXYoT333NONCV+e\nm8BDib8Ofycc+yk7fb7uw4SECRywHWAZHvJfeZF2GDkUNZDTnqsanKSJtS7Sg6rB3LlzWbhwIfHx\n8QwbNowFCxacOfbnn38yatQoMjIyaNeuHQsXLrwuHlteA19ZOByQeARGRvGFNZeTddL5ZMx4GDoU\nZs9WMhejuB+pRTVGrRLsJAoCKlGFAERqtfROT0eUDuHICWZsXNsLmhHUt6bP8D8RcncIHALLgbLa\n/IYGhkrq0a2BIAgcfSqR6tTi7dGw8z87savtuF0eMj7OIFwQ0Kv1WF6z0H5le/43fC5BJj9Gdn+B\nuR0mkJOQR0piCnu7NKNWrSwAwrOzaZyxURFTOYfgLVsovI7BUkFqNQXnaPX8EzVq1GDy5MmsXbsW\nm812pjwvL48hQ4awZMkS+vXrx5QpU3jggQfYVirudi3xGvjKQvKAnz9s2sTYbx7Gz96M4qQkljZo\nAD/9BMCxhGNUp3x3dQ+gMqiuY4dvDkL6h6D9WkvMJzFlyn0G+fzDFV6uBYYGBureX5/cLh7en+Rm\nwx2xaF9KQjwlYDlkgepnz01Kgh494GUZ9n8Pa4QFyPIqZGEeh6PrUlJDWZZJqF0ba6w/JKSUaavQ\n7Ua+jsGSQjmDje67T9n8jYuLIz09/Uz5ihUraNWq1RmX3Ndff505c+Zw9OhRYmJiLlrXleI18JWJ\nSoSoKA4eLSRr/Y84Y5qwLD0dcnLA5SIyN5IGQS3OnF68tRiPQ8KZ7UQdLqM55KAgqyZU31mJg/hn\nHA5HmSxWVqu1EnvjpTIRtSKvHnuZMfpJpJg+5MH9Wk5VF3HmmNil2aUknSnF41F+xPbdB6N7wtsR\nL1NysISsDQILFjxbpt7c3JXMmbOsYgdzmZyfui8hIYEWLc5+r7VaLTExMcTHx3sN/M2ILMvEdmlD\n7pjJLF22DEJDYdIkijYWseOVo9gkieSsQt6YPIbBY3IpSN+PxbcJKftWMz4oEbehAJO+aq21V69e\nnbFjxzJ2bFlJ47ZtL1xG8nLz89W9X5FcmIrb7YMqojfPtG5I3Iq95HKCg+qD3A/IyEiSAyUixIks\nOpFwIOImx5JDkb2IXRlls8QbXFmVMZzL4nxpBYvFQrVq1cqUGY1GzGbzNW/ba+CrIG7RQUnBH1hk\nM9oGGViK3Dyfmo+p3w+4fUUywtSYjCKaLuE0yj9JrYPjsAhNKrvbZZg1axazZp2fG8bLrUrzas1p\nGtacH91/Iwa3Y0DDbhgdFvIENZkBAezxEfAIIps2+xMR4UKn60HOCIFcUeAuwcURayjxOU6eX3U2\nZ5DT46SONuNfWq0anD+DNxqNF+RnNpvN+JUmvL+WeA18JbJ+6118ug0yt0+hQPLD/lY0z54YRN3b\n19Ix4VEMNETTzcZsPz+sGiu7oiSiAnpSJ6AXxX4CLep3YUjmNlYcfAZ3qDd828sNggyFhaAqUdbS\n/4htzCFBRLR+BzVqcNz1CC/wAge+6kZor2AsnecwuFE2JOTx69O/nqnmlOkUz3xftSY2F+P8GXxs\nbCzffvvtmdcOh4PExERiY2OvedteA389kWXy0pdz7PhXSB4L2/7uhSutO+hdRIoO1v19F77tslD5\nH8AoVEeOaURLcya78gJp7ehLM827JC9KpsWTrTi+4Q/e3DqCIY8OoZ0rm+x7tHz/VBJNNieTKUPz\nppU9WC9e/h1BUHJ8OOxQty6UlBjQBhWRH/cQJpfi364J9EWyFSLLLnZlxtGPG1fi2uPx4HK5cLvd\neDweHA4HarWa++67j0mTJrFmzRruvPNOZs6cSfPmza/5+jt4Dfz15YsvCHluJIJKQHRKtO6xnpOe\nOqhwIGllBHUhxVFjiTVupK6uOafuMTLc70/yi/wvrOvrxQh+MjPv3ET2oU4kBoYwtHECraObEnvc\nn9GjK354XrxcDoIAYWGgM0BmIbRrB/bsOswrWUJW8o/sDPenycjBjHxzGA5BTZ69mL0mExE3qD78\njBkzysg0f/3110ydOpUpU6awbNkyXnjhBdLT02nXrh3ffffdv9R05XgN/PWkpISiR1uROXYQUpe3\naT4zgtWnXkPlo0InNObZxpPxDYjAbtdgse/F6jpJfLSVKHMQ6Z/2Q/3zPhwq+CJ2A3n6u3EOSGTd\n1A+IfDcFWw0rjO6qbMj2reyBevFSFkElkPlJJvm/5pcpd+e7kUoDlUQRTuRoeXFZC4o9tUgJ9SXg\nHg12kwZZBqtbYnluLm1MJTiKt2I2O0hMPKtWbnVZaRto51fKEqRWl9uV8UoIUpfPbE6dOvUfpdB7\n9erF4cOHr2GvLo7XwF9H7JKES5Io8biQAJcmiBK3G50HUIMoenA6f+f48e/Zcfgw+x5/nG8/3M3b\njmAemBBE+EAXuVPU/D5MRjJpaG4bx4+/JNDjsAtHlJqoKuY5c6ug8lexp9MeBPHs2qosyfi1uvab\nZDcqtSbUIrhf8AXlLg0Uuw4A8Pzz8MFMN49kHsflcOEuFjGoVbyDjQwPOK35FB/9mA92/EWtdAsn\nim3MjltJgM6f8Z0m4LEX0iXk6wvaKE8Q0q2C18BfI/bt60F+fjrHj5soKtKyYsW31DiQgbHQytsH\nXFg8Eva6k/hqaza5Gg+pA5syXhB4MzmZnPR0SgoLiRAEVlffRWKD3/ghpyk7xCBaRz9Pj58SwWTC\nbTbSpnEs/rXhwfui8KvA7OxeztJiXQtk54WSzILWGzV8Gk2IhsCuF+YnsHk88LfyPDwcwutrGH2s\nOZ89+i7v9arH4UfuYXF7H7J1KuqbOyPW60l660eorU0kY88PxLR7l8nL+/K/ISOhJIOs1FcreGQ3\nFl4Dfwm+zc5mc/GFmtNOsxn3Oe5PFks8784+wvqN09HparHujzEML/4f9XxSyMlvho8scZt1KWE1\nWxGogWwfF2qVnfSGueTXu4OoxESWxcbygyQTkNyDO6TvaNTCw/NT/uaL9Oe4bcFIvtzbmh5zmtLU\nu6FaqYhq0fvNuc7cFxpKSYCWXEFHjqBH4xQp9Ah8nO9CCrmNFJuNdYUm6lZ2R6s43o/pJViUnU1d\nvZ5YX98y5RuLi88a+FGjiDlUxMSNg4mU42josDDGNJETkTVxd89H12MFz4220cf3IC2bZeKjUdHf\nnMWu1E681bAry/J/5bC/PzE+Plit4BJg717IzAfpIVi3DmpmQGws1Kq62kpevFwxag2YzeDvDxYL\nJDxSiyesNvYi4OvKZmzhEeYXFhKUk813aPi/tWvZEhLIXASUwCgvF8Nr4P8JWYbUVLBauVsU6ac6\nR+clLAwCAlguy7y7ejW3//UXm3s25kDJvewyFZAS4mHAgw8wr1iiZ/U/OHrYiMxWlvvNpc4KPYGB\narYapvHOYSPNta9wTKMm11CT5359jh31t6HKbsHE58x06+nkx4Myiz4ogrEO6AgEVNo74sXLdaNJ\nE4iMhIR0RYfmnXdA7AMDtRlUSygg80Ah5iIH1XYV4e7+DF95dIg2D6LWa9z/Da+B/yfi4qBLF0UU\nY906iI9Xyi0W6NiRoFlv4JEkJufk0HT0aBJ8wdG0EZ4fa3GkdiQv/7WHnQFBnArfibGmDrvHyp60\nPaw/ZsftTmVx2z/A0pcN3+lwNReR6+tY9WNzemS4ILkPrH0UfDfD4sUQHa20fZ83c42XmxMBxY3S\n31/xlff1BRoYMJzSE2WrzcHijuTb07hvfnPUQkfm/LiUfLUK26SGQGIl977qUh4D3xeYDaiAr4Dz\n4891wCKgCVCCknQ7tfTYq8DDKGKH44Hfr77LFYTTCW3aQLduMHw4hIQo5b/9hnvuB4xY2AYcEv67\nXmHHR1msWwubVw/hV/cODJqaDB3qR7vjyRjDJE6s64Ha8SdhyWHUPCbje8rIAxuGs8H3OZp0Ooat\nmhl7dGP+r3l7XF/0INFUE+vC+zD1lJRk20VF/95XL15uQvza+pHkOsz+Qb4M0Ef9f3v3HhxVecZx\n/LvLpkEJzSaIOtwt2A4KSLlYlZvQASPUiXbEkaKDznS0dOhErNoW0RD/UDt1qgXG2lKnOk5nSrXA\nFOutSkCjNAKhEkDUTCAjiQiahEuSJXt5+8e7YJZcNiR7OLuH32fmDOHk5Jzn7CbPvuc9z3lfPn+u\nP/duuIL7H4/whzufIBDO5q87rkYJvnP+JN/PBv6ITfLjgFuB75+xzRLgC2As9oNgZXz9RODH8fUF\nwJ+AjJ9+JUIL4awwAy/MoY+/Dy/dvAawfYiELmVY7mhC/n5Mm1ZIMGsq/y7rw84ts4mQTV10PNWR\nSVS0FrKA27mk+TvMKruKuW+P5qOsGPNa/svNCw+x7akK7sjeysjycoZnZ7t7wklsdrDe2G1ePjfI\njPPrG4vx/IAB3Lp7N2/U13PRBx+SdeVjfDbseiYe+hYz3jmYfCfnsWQt+B9gh9M/NaLPWmAesLPN\nNnOBh+Jf/wtYg/3gmAf8Hdt6r43v52qgLBWBO8kYAyYKPgPGYEwM8+QTsPwR+pgofYB9r8IwA7Nu\nuIlIvFrxwzfn4x9nqDCGFU1zKQ9+yb7tuxh482UEPo9x6Ywmbjv8bb43wMdw3w6e/stljHl2DAUF\n8GCb4xcUwH33QcFMN87+7GzevJnrHRx7201ePjfIjPO7pqGBxl3HeH30aJ5/7z1eue464DrYvZsL\nG0dwciS8cH+p22GmrWQJfgjweZv/HwSu72KbGPA1cDEwGNh0xs9mxPTPVVVF1EZWwWNQ3/AGuxrW\nM2ZnOcd/DUcm5ZO172L29jlJ6yP7eWP11Rw7egED2cKmO39I65sx8I/ihS214Df4Tn5F/wMBGvGx\nYsQIhmY3JQ9ARAjkBvjkpfH43oEqXzlHo/Xs6Pc+WflZXFt3Lb7x47kA4P7Fbofaoc6m7AuHwyxY\nsIAdO3ZQU1NDaWkpM2bMcCSGZAn+vLpFHTt2gpZBo2l8qpYL4k8pFg1ezcDGRr6cBY2XBNh32Edz\nTYxPfPlEYwdYW55F7oVQE76ISb+twB8sYVR9X246fhvlsXoOHP0ztdtC1EXhxi98fHW4hWPHQtRh\nCEU7f/lffBHef/+M+GJ2Jr+BAxPXh0KpfiW8LRwOU1dXl7Cu7ZRq4ixjDHUnT/J1OMzR5mYq9u9n\nX0sLrUeOUFdRQWtTExw5wqiHBjPyxFoYPZqjo66kbE0Z09ZP492+79Ja12rvzHagLL+MSINz49cE\n8gJMre/5lH0A06dPZ+nSpcyfP7/daJPn0jRIGOrhQeDhM7Z5Bzg1i4MfOIK9IfsI8ECb7V4FpnRw\njCrsB4kWLVq09Ghpq5RS46Sz3f/y5cvNXXfd1eH3hgwZYrZs2dLlz3dx3lUkkawFvw0Yg+1uOQzc\nBtx7xjavAXcA24FCYCu23/014DngGeDS+H46mltuVLIgRUS6YNwOoCvGpCS8HjXzkyX4ELAYeBPb\nOn8JqABKsAl9I7A6vr4SOI4tkwTYAawHdmH75u8Fwj0JUkQkU7nZBdOdOvjX40tbxW2+Polt2Xfk\n8fgiInJeSlELvkeS1cGfS78APsJeCfzO5Vic8EvslUz7MVQz2++BvfHlVWCAu+GkTAH2d3Ev8CuX\nY0m1ocC72PP7hG/KnMUBDrTgg8DL2Hz5MXYQkw6lS4KfB9yAfThqLPCku+Gk3FBgNt884eslG7H3\nV64AdgPL3Q0nJbrzgF8mawV+jv1bmwj8FLjK1Yg8KBqNEgqFEqbsi0ajgJ2HNRQvf2v7dTetAdZh\n37Mrsc8YpbX12Iodr3oZmyj2470WfFs3Af9wO4gUmE5i9dgDeOODqzOvADe6HUQv9KrK5Wx1d//F\nxcXG5/MlLCUlJcYYY4YPH258Pp/x+/2n/62pqelwPyTeRB4AfNbdFyZdZij4GPgn8COgBdud8YGr\nEaVOIfbhsKXYBD8RqHczIAdtxD69/De3A+mln2AbHKeeoLkd+x7+zK2AHDQC2IK9Cjvubig9Fs+D\nVrrUwadKvIvnVK6+BtstehB71VyBvRo70dHPnsvRJP+DLZc808PYrqL+wHhgMjbZDyfNy5/a6Orc\nfgMJU8Ony4fq2ejs/JZhkzrYc20l85M7ZM7vXW/lYK8ui8jc5N7OuUy+LvBjc2QRtoz9GewzR2l9\nn+htYEab/1fRcULJNGOAL7Et9/3YMtED2KEcvGQR9orLK5PEducBv0yXhS1/Xup2ICmQmr6XNEVi\ng2MoNoecMhX7Pqa1pdjaeoDvAnWkzw3gVPJiH3wB9ibPRW4HkkJ9sX9Eg7GJcBswwc2AUsyHHeL7\nabcDSRG3c7CjaH9FuR2bJwFWYFvxaS0L+7DU7vgyp+vNM1Y13kvwn2Grg3bGl2fdDSeF3+wJAAAD\njUlEQVRlbsT+Lu7FdrN5yVRsye7/+OZ9K3A1ot5xOwc7ivYJ/ipso2MPdsSAvM5emEzsDxYRaSue\nB73pjJusZ8WL3SAiIoISvIiIZynBi4h4lBK8iIhHKcGLiDhg9erVTJo0ib59+3L33XefXr9161Zm\nzpxJMBgkNzeXwsJCamtru9hTz6mKRkQyXUIVTVlZPpFIg2MHCwTymDo1+Wgj69evx+/3n56y79Sc\nrG+99Ratra3MmTOHaDRKUVERn376KZs3b+5wP72pohERyXQJdeOlpc7WxZ/t/ruass8YYyorK012\ndnan36cXQ2eoi0ZExEEmSY1+aWkp48aNc+TY53KwMRGR805XE37s2rWL4uJiNm7c2Ok2vaEWvIiI\ngzprwVdVVTF37lxWrVrFlClTHDm2EryIiIM6asHX1NQwe/ZsHn30URYuXOjYsdVFIyLigGg0Sjgc\nTpiyLxAIcOjQIWbNmsWSJUu455573A5TRCSt9arK5Wx1d/8dTdm3YsUKU1JSYnw+n8nJyTm99O/f\nv9P90IsqGtVWikimi+dBK13q4FOlN3XwSvAikukSErzXaLhgERFpRwleRMSjlOBFRDxKCV5ExKOU\n4EVEPEoJXkTEo5TgRUQ8SgleRMSjlOBFRBzQ2ZR9e/fuZcKECQSDQXJycpg8eTKbNm1yMVIRkfSV\nMHZLXl7eqfFbHFny8vK6NRbNunXrzIYNG8zixYsTZnRqbGw0Bw4cMMYYE4vFzMqVK01+fr4jY9Fo\nNEkR8ZSGhoaksyj1RlcTeLR1yy23ALB9+3YOHjx4en1ubi65ubmAHXHS7/czbNiw1AeKEryIiKM6\n+7AJBoM0NTUxaNAgx7po1AcvIuKgzlr8jY2NnDhxgkWLFjF//nxHrjqU4EVEHNRV4s7OzqakpITq\n6moqKytTfmwleBERByXrs4/FYsRiMUeOrQQvIuKAaDRKKBRKmLIvEolQWlrKnj17AGhubmbZsmUM\nGjSIsWPHuhyxiEj6aVdW6KTu7r+jKftKSkrM2rVrzeWXX2769etngsGgKSwsNNXV1V0er6cvjGZ0\nEpFMF8+DVn5+Pg0Nzk3Zl5eXR329puwTETkXEhK812jKPhERaUcJXkTEo5TgRUQ8SgleRMSjlOBF\nRDxKCV5ExKM0mqSIZLRAIHDc5/P1dzsOpwQCgeORSMTtMEREREREREREREREREREREREMtT/AadP\n58ykWNc6AAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(M_J1J2)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEnCAYAAAC0Z8hNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHv9Jn0RhKSQEKX0KQIKiBBUbqKCmJBEXtb\nXV3briwga1tW/a0iWAEBBV0WBUQWEAi9Q0IvgRCSkISUSZ8+9/fHxBBqEkgh4f08zzzM3Dn33PcG\neHPmzCkghBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIUeNmAFnA3ou8Hw6sAvYDh4Gn6yguIYQQVdQX\n6MrFE/k/gPfLnocAZsBQB3EJIYQA1FUosx5Pcr6YVMCv7LkfkA3YrjAuIYQQNSyGi7fI1UA8cAoo\nAgbXTUhCCCGgai3yyvwVSAAigOuBzwHfGqhXCCFEFWhroI4+wOSy58eAZKA9sK1ioVatWinHjh2r\ngcsJIcQ15RjQ+lIFaqJFfgwYUPY8DIgFTpxX6NgxFEVptI8JEybUewzVfcycOZMhQ4awZcsWtmzZ\nwmOPPcakSZMaxb019r87ub9r5/6AVpUl4aq0yOcB/fCMSEkFJgC6sve+BN4B5gIHAA3wNnC6CvWK\nq0CTJk3o1asXAEuXLq3naIQQl6MqifyBSt7PAm6vgViEEEJchproWhFAXFxcfYdQaxrzvYHcX0PX\n2O+vKiSR15DG/I+pMd8byP01dI39/qqiJkatCCFErQoKCsJsvtS8xIYvMDCQvLy8yzpXErkQ4qpn\nNpv/GMHRaKlUqss+V7pWhBCigZNELoQQDZwkciGEaOAkkQshRAMniVwIIa5QXl4eI0aMwM/PjxYt\nWjBv3rw6vb6MWhFCNEhBQVCbIxIDA6GqowGff/55/P39ycvLY+/evdx666106dKF2NjY2guwAmmR\nCyEaJLMZFKX2HlX9JVFSUsLChQt555130Gq1dO3alfvuu485c+bU7g+gAknkQghxBY4cOYLJZKJ5\n8+blxzp37sz+/fvrLAZJ5EIIcQWKi4vx9vY+65i3tzdFRUV1FoMkciGEuAI+Pj6UlJScday4uBhf\n37rbKE0SuRBCXIG2bdtisVg4efJk+bE9e/bQsWPHOotBErkQQlwBb29v7rnnHiZMmIDD4WD37t38\n97//ZcyYMXUWQ1US+Qw8m0fsvUSZODx7dCYAa688LCGEaDimTZtGfn4+wcHB3HPPPUyfPp327dvX\n2fWrMo58JvAZMPsi74cDU4Fb8WzxFlQzoQkhxMUFBsIVLBhYpfqrXjaQn3/+ufaCqURVEvl6IOYS\n748GfuTMPp2Xt6CuEEJUw2Uu3d0o1UQfeTsgAtgM7AGeqIE6hRBCVFFNTNHXAB3xdK14AVvwJPW6\nGw0vhBDXsJpI5CeBU4Cl7LEW6MwFEvnEiRPLn8fFxclee0IIcY74+Hji4+OrdU5NJPKlwBQ8LXMD\ncBOeLz/PUzGRCyGEON+5jdxJkyZVek5VEvk8oB8QAqQCEwBd2XtfAruB/+HpH9cB3+AZhiiEEKIO\nVCWRP1CFMv8qewghhKhjMrNTCCEaOEnkQgjRwEkiF0KIKzB16lR69OiB0Wjkscceq5cYZKs3IUSD\nFPRhEGZr7e31FmgMJO+NyqePRkZGMn78eJYvX47FYqm1eC5FErkQokEyW80oE5Raq181qWoLuYwY\nMQKAHTt2kJaWVmvxXIp0rQghRA1QlNr7pVIZSeRCCFEDVLW5FGMlJJELIUQNkBa5EEI0cNIiF0KI\nBsrlcmG1WnE6nbhcLmw2Gy6Xq05jkEQuhBBXYPLkyXh5efHhhx8yd+5cTCYT7777bp3GIMMPhRAN\nUqAxsMpDBC+3/qqYOHFiva/sKolcCNEgVWWyzrVCulaEEKKBk0QuhBANnCRyIYRo4KqSyGcAWcDe\nSsrdADiBe640KCGEEFVXlUQ+ExhUSRkN8CGeLd/qb1S8EEJcg6qSyNcDla0V+SKwAMi+4oiEEEJU\nS030kUcCdwHTy17X34IDQghxDaqJRP5/wJt4ErgK6VoRQog6VRMTgroD88uehwCDAQew+NyCFWc/\nxcXFERcXVwOXF0KI+mO323nyySdZtWoVZrOZmJgY3n33Xe6+++7Lqi8+Pp74+PhqnVMTibxlhecz\ngSVcIIkD9T6NVQjRiAQFgbn2tnojMBDyKp896nQ6iY2N5cMPPyQ8PJxly5Zx3333kZiYSOvWrat9\n2XMbuZMmTar0nKok8nlAPzyt7VRgAqAre+/L6gYphBA1wmyG2lwDvIrL0np5efHGG2+Uvx48eDCx\nsbHs3LnzshL55ahKIn+gGvXVzxbSQghxlcjKyuLgwYN07Nixzq4pMzuFEKKGOBwOHnroIcaMGUOH\nDh3q7LqSyIUQoga43W7GjBmD0Whk6tSpdXptWcZWCCGukKIoPP7442RnZ7Ns2TI0Gk2dXl8SuRBC\nXKFnn32Ww4cPs3LlSvR6fZ1fX7pWhBDiCqSkpPDVV1+RkJBAeHg4vr6++Pr6Mm/evDqLQVrkQoiG\nKTCwykMEL7v+KoiOjsbtdtdeHFUgiVwI0TBVYbLOtUK6VoQQooGTRC6EEA2cJHIhhGjgJJELIUQD\nJ4lcCCEaOEnkQgjRwEkiF0KIBk4SuRBCNHCSyIUQ4go9+OCDhIeH4+PjQ7NmzRg/fjxKbW56cY6q\nzOycAQwFTgOdLvD+GOA1PJsu24CngZ01FaAQQlxI0IYNmJ3OWqs/UKslr0+fKpUdP348s2bNQq/X\nc/jwYfr160fPnj0ZPnx4rcVXUVUS+UzgM2D2Rd4/DPQGioBBwDdA1xqJTgghLsLsdKLU4gbuqmps\ngNy+ffuzXmu1WiIjI2s4oourStfKeuBSO5xuw5PEATYCdRe9EEJcJZ577jm8vb3p0KEDb7/9Nt26\ndauza9f0ollPA4tquE5xBdLS0rDZbOWvQ0JC8Pf3r5G6f/nlF9LS0spfh4aGMmrUqBqpW4iGZtq0\naUybNo2NGzdyzz330K1bN3r27Fkn167JRB4HjMPTzSKuAtnZ2cTExBAdHQ2AxWIhNjaW33//vUbq\nf/rppxk6dCheXl44HA7mzp0riVxc83r37s2oUaOYN29eg0vknfH0jQ/iEt0wEydOLH8eFxdHXC32\nbwmw2+2EhYVx7NgxANatW8fbb79do9d4//33CQsLo6SkhLlz59Zo3UI0VE6nE51Od1nnxsfHE1+N\n/nmomUTeHFgIPAwkXapgxUQuhBCNQXZ2Nhs2bGDIkCHo9Xri4+OZP38+ixcvvqz6zm3kTpo0qdJz\nqpLI5wH9gBAgFZgA/PGr5kvg70AgML3smAOom88TQghRz1QqFR9//DFjx47F7XbTsmVLvvjiC/r2\n7VtnMVQlkT9QyftPlD2EEKLOBGq11RoieDn1V0VISAjr16+vtTiqQrZ6E0I0SFWdrHMtkCn6QgjR\nwEkiF0KIBk4SuRBCNHCSyIUQooGTRC6EEA2cJHIhhGjgJJELIUQDJ4lcCCEaOEnkQghRQ44ePYrR\naGTMmDF1el2Z2SmEaJA2BG3Aaa69rd60gVr65FVv9ujzzz9Pz549UalUtRTVhUkib+A+/vhj9u3b\nV/7a39+fjz76CLVaPmyJxs1pdhKnxNVa/fGq+GqVnz9/PoGBgcTGxpKUdMmFYGuc/G9v4L7++mta\ntmxJnz596NOnD5999hkOh6O+wxLimlJYWMiECRP45JNPUBSlzq8vLfJG4N577y3f/PXZZ5+t52iE\nuPaMHz+eJ554goiIiDrvVgFJ5EIIcUUSEhJYtWoVu3fvBrhqW+QzgKHAaaDTRcp8CtwG2IDHgd01\nEp0QQlzl1q5dy4kTJ2jevDkAxcXFuFwuDh48yI4dO+okhqr0kc/EsxfnxdyLZ7u3DniS+MwaiEsI\nIRqEp556iuPHj5OYmEhCQgLPPPMMQ4cOZfny5XUWQ1Va5OuBmEu8PwSYU/Z8d1mdUUDaFUUmhBAN\ngMlkwmQylb/28fHBZDIRHBxcZzHURB95FJ69PP+QhiRyIUQt0wZqqz1EsLr1X44JEybUcCSVq6kv\nO8/9mrbue/vFFbFaobAQtFpIO+dXcFAQeHnVT1xCXEx1J+s0ZjWRyNOAZsDWstcXbY1PnDix/Hlc\nXBxxcXE1cHlRE158EebMAb0e5s8/c9xqhd69YdGi+otNiGtJfHw88dXcVLomEvlvwMPAAqAb4ALS\nL1SwYiIXVxerFQYNgm7d4O9/P3N8+XL4+OP6i0uIa825jdxJkyZVek5VEvk8oB8QgqcvfAKgK3vv\nS+C/QH9gP57hh49VI2YhhBBXqCqJ/IEqlHnhSgMRQghxeWStFSGEaOAkkQshRAMniVwIIRo4SeRC\nCNHASSIXQogrFBcXh8lkwtfXF19f3/JlpeuKLGMrhGiQNmwIwuk011r9Wm0gffrkVamsSqXi888/\nZ9y4cbUWz6VIIhdCNEhOp5m4uNpbDSQ+vnobRNTHOuR/kK4VIYSoAW+++SaBgYHccMMNdbqELUiL\nXFRiluEYK+7PQze7wkGnisB/diYvF0pL6y00Ia4a//rXv+jQoQN6vZ6ffvqJe++9l507d9KuXbs6\nub4kcnFJmf5FfHRzJF0MfuXHHj+1j1n/c3BrS7BY6i+2rB+yKN5TfNYxv15+NBnRpJ4iEteq7t27\nlz8fPXo0P/zwA0uWLJFELq4SKugaZqJ/oE/5Ie9sNU2uglyZ9kkavj19MTQzAGA5auHUtFOSyEW9\nUxSlTvvMJZE3ZsXF4HJBSorndWYmR/fZeKVNGjEFhWy1ppNkz+fT3w7QthD2RGeTEJHF7MQz/SiZ\nxaGsPH6UHh0H4WvwPe8Sbjd89plnLXOHA6ZM8RwPDYVHH639WwwfG47fDZ5PC3kr80j9Z2olZwhR\nswoKCti5cyd9+/ZFo9GwcOFCVq1axYcfflhnMUgib8yeegqys+GWWzyvrVZamHMZ5bMda/9OnCr1\nIfekgc7Dg1GVODn8RTFLk9fgc/xM69vsM5ivDszgZl8Tw9oOO+8S2dnw1lvw+OOgKHD6tCeh//3v\ndZPIhahvDoeD119/nSNHjqAoCu3ateM///kPsbGxdRaDJPLGzG73bO/zR4t83TrS+43By+CmzSOB\nnMj2JzPeRNw/wrBl2vjmS4gOiGb2iDMt8v4JCVgKWl/yMgEB8N578M03nha5xQJfflmbNyaEZ5x3\ndYcIVrf+qggJCWHHjh21FkdVSCIXcOwYjHwajTWY/suPwA03eI4HBcEHH9RvbEJcRFUn61wLJJFf\ngxQUxiwcw+/5v+NOdnPq/Xl8mO6DVXMr+3u1gHemeQr27CmJXIgGoCqJfBAwBdAA3wHn9uBfV3bc\nG88Eo7cA2eHxKldoK+SzIZ+xfu16vnlgDMq+/8NU4kPvG0edaZEDPtluWm9qhjZNy+mE0wB0S3Ji\nSzaDyk1qYQpOdxBHc4+ioHAk9wiB2gjA57xrOt1u/pGSgsPsRFviLj/ezuTF/R0i0Jg0tX7fQjRG\nlSVyAzAd6ANkAZuBFcDuCmXeBmbg2fatfdn7ksivZiUl9ExXMOw9iDY9A+PWndhUnkm+KtXZfY5d\nF5TQZXEsueHJbNRloQDtvSPI3XIYlSGPv65/kdzSRdz3031YnVb6zuzL8BajgM/Ou2y2w8FHaWn8\n5yEVapuCogWXAkqJi6T7S2n3Vd2MuRWisalsin4vPHtxpgNO4Edg6DllUgH/sucBQEpNBihqVhF+\n4HRyx1E3xMfDkSOweTPcPuD8wn36QNZp/Hz3MzB/In2zX2f43ieZ9mYp9kAnKocPc4YuJswnnMRn\nEzFpTbx/2/vYXfaLXt9Ho8HPpabfrp4MTO9LxOHr+eVlPW6b+6LnCCEurbJEHoUnUf8hrexYRe8D\nj5aVWwq8WGPRiRpnJhCle3fe7a+Fl1+G226DJUvguefOL7x+PURFob1rBCEnsgg5kYXupt74G/zw\nNfiideopemEPf8/eRcKtCbitbsKfC0flrL2RBEKI81XWtVKVqUkfA98AnwA3AnOBDlcYl6hjKrUK\nt8VN5uxMEjcllh/vcsAO9184MWtQUEcYmXe6Fd+/V4J6mBpjghGtXfq6hahLlSXyNKBZhdfNOLuF\nDp7+8wllz7cARiAUOH1uZRMnTix/HhcXR1xcXLWCFbBo0SI2bdpU/vr06fN+zGcpsRcT/M9gABzH\nHRBlYVXyKozhxrPK6ZroCHs4DLVbTdRDUbgookDzC0ezT9MrNphTp9Z7CnY9hQELnq9PQN3EwFGD\nP8F9jKi1agYUD0AZp4Aynf79+7FmzZqau3khrgHx8fHEx8dX65zKEvl2oCMQiScxjwKePqfMMWAA\nnpEr7fGMXsm9UGUVE7m4PF999RVNmjQp34Hk7bffpmXLlhct71LcfDrwE4a2GcqmDZu48+v36Dcg\njtF3jWZl/sryciqVCmO0Ea1WS/CgYPLydpJ9aAo67xtB7UNRkSdx5/Y/QQwHgZvOuo7BYKCgoIDV\nvqv54bOFfP/s0+TkPFzzPwAhGrlzG7mTJk2q9JzKErkVeBZYjqc/fQ6wC5gE7ACWAK8As4DXARXw\nBOCqZuyiGkaOHMnQoed+53xxfgY/gr2C8Tf6g1uHXqPDqDNWep63dwd+VcbTrVk07QI9s9wSNv6H\n63x2oNxcgDrNic2WhNvdgYKCPfj734RapUalVlHVpe5fut+Ez+ZmLHQW821Zo1+rhVWroFmzS58r\nxNVk/vz5vPPOO6SmphISEsLs2bPp27dvnVy7KuPIl5U9KppQ4flhzm2eiQYlOXkCRUXbyco6gkaj\nYs+eLTgc2Wi1weeVDd0fSkCLHJSOZtQLXDid6bhcFpKS/kT37turfe0je9Xcfnc2dxSYeOBfnmPD\nhkFOjiRycWlBQUGYzbW31VtgYCB5eVWbPbp48WL+9re/8csvv9CpUyeys7NxOp21Ftu5ZGanIDd3\nMeHh4/D19Uer1RAZ+SAAJlNrOHL2zhERuyL4bthfuWmWCbVjCPbfY1GcJor3FLPxvq1gU1FqPVPe\nbXdTWlaHze4g6rgbxXH2l6cafyc+bvijh8hgqL17FY2H2Wyu1aViz51TcSkTJ05k8uTJdOrUCYAm\ndbzOsyTya4jFcoLmzQ9QMPwV7DoTqakZmM05WCz5+Pv3xcsr29NHHjykwlkJ5c+2pW/j0Ru2cXz7\nozzyrBHrG1aWt15GTp83SHBo2GSO5innQX5d4lneFiBzZibH3zqOPkKPU1H4k8WFobk3Gj8Z2SIa\nh+LiYhITEzlx4gRt27YlPz+fO++8k88++wyTyVQnMcienY1YaWkwulIvvJ/wJnFgIjmzd5Kelku/\n51bTc9BSJkzYRURgWzpnv4L3ltOQnAzHj3s6qNeu9axlXsHJgpM0sxlo1mEyn947Hy+9ibs7DkOj\ndxDSys0X/zWgVkPrVmfOcTvchD4YSs99PWmx63pen6ujx44eaH2lDSEahz8+GSxatIgtW7Zw9OhR\njhw5wvjx4+ssBvnf1IhZrIGoFLCNtdGsWTN81Z34V6sRjOn9DYFxAagNanj1VXhjDjRf60niKhWk\npsL27TByJI+rVLTw9wejkQ45B3lwv50pdzenZXA71KjxNwSB0wg46vt2hagXPj6edYVeeOEFgoKC\nAHj55Zd5++23+de//lUnMUgib+QUtYKzj5Og64JwZPmQt15P4O1BqP/4LOZ2e2Z1/vnPnt0gtFrP\nn4sW8bdPPuHTrVvRq9WoAUVxs85iPe8aansAj2xYh4pgFmmXkOQ9C+fjX5Dyqxq7LRPw7ODjcrlw\nm81kZ2eXn+t2BeK2WIDzdx8SoiEIDAwkKurcCe91SxL5Na7QVsi6I7+y4fcs1h9fj1qjpvT3Uhak\nLCCjKAPHYG/8e/hhUmtI+TyF3LQz57rcLpb++itKwY/06HYrrmIXaocav++bUKJ7EZfyOnZ7Juqy\nRD72vk2cXnGYaH1yeR0Wy1iyvv2WfT3uwcfaAgCHosfiUvAsuCnE1e+xxx7j888/Z/jw4ajVaj79\n9FOGDTt/R63aIom8kUjKS+LjzR/jdDt58bcX0eg0jCjOrPRb/VNFpzhoPUiA8XYMWgN2hx1XiYvh\nzYazO3Q3xyNjeL73cG6LjubReU+gpO3l8N196K3VYrOoybbcQViUP4Pe+oDSncXoDuixNrsO5ZQa\nhbO/9V/7+y3ouhQyafQ95ccsGge75sWwt7CQV3Z7FtXMKO3EW8czWNujTc3/oISoBePHjycnJ4dW\nrTxfEI0cOZLJkyfX2fUlkTcS29K3sf3UdtQqNR1DO6LT6zBq09CoNPSL7nfJc8O9wxnT500Of3uY\nOT/OIWNLBuCZ/m/buocPf1rGrrg4tIoJNW4eevVzXmvdmr5j7fQKXc7XX9i4Ky2DQX4xqFER4a1H\n78yjyKmQfnojSnYGx3f/G5SPaNt+KuPGeREcPKjs6jo++p8/LVQ+pN7kmY7Q2ujEVoc7kIuGKTAw\nsFpDBC+n/qrSarV8/vnnfP7557UWzyWvXy9XFbWiTVAb9qj28HSPpzEYDOwxbkKj1hBoqto/SJfL\nRVRUFMeOHQPg4YcfZmf79jwYHc3OBQtApWKnuifP/jKbGD8/1E4XrcxZGMe/xs8HDqD3b8Jm95f8\nunY9h1zrecXtxrA+hcxwDbuOzkBhCiFkcfTo8wQHH6vNH4W4BlR1ss61QBK5qJapxr/w1Z9K+On9\n93EpbnaWljL44EGa//orO5ydcQ07wLiu/2B1lp2Q3DeI2a8Qehg+GfQBEV//RrL2LR496Ubj3AB6\nPc9FRNT3LQnR4EkiF9UTEQHttbBpE0S2gpjrYORfzswAqsDspYE2PcDsx7b2LbjxGQs+HeYyuegA\nXq98wvzYWPaXltK6Hm5DiMZEErkot6u4mFSbjdCNGwEozM7GER2NXqUiOTmZ3FwrdnsBmoVrmd+0\nKS6XC1Sg6LR4tnRWoPwBLrUK7r8fDpXiUqeyKe02gjvPoJUtnUC3m6Z6PdkOGX8uxJWSRC7KFTud\nBGi17CvbfPm54GBua9OGIX36kLJxIz/++CtOpw1NUhIpRafQ+hQT++541gbBAsr2+PsdxgPWT0az\naTsUFYKt9BIXFUJcMZmiL86iBkL1ekL1eoxqNb5aLdHR0UybNo2oqChCQ8No+sYb/OXdv6NCTVT8\nVuLWTeI++3JirFlw2xr2ru2Dt94JLgtvr3mTWQnfoihu3H9qRW77ZVhcsj+nEDVJWuSiUotzcliT\nn88ptxXHLWlo7BFMS08v60o5Q9/ahEqtws9pI6TUjtHcms77/ox/vh2V20rT1e9z13NPk+HnoNDw\nGU2zgjE4nfgNOYmX3RezOZDAwP71dJdCNFySyBuh4mL4/XcILPZ8B/nrr57j2ov9bbvV7Bm8h+u3\n+qCU9GBXn10A2HQ2AOZkZeGlVqNDDUU6NCoVXprzZ13qmxtQm9R4tffh5pCVxB9UGPjZ89jT7Xyi\nceH/aiZRoXYMO7X4XdcCizaGXLcdXaobv+g08k7/KolciMtQlUQ+CJiCZ770d8CHFygzCnirrMw+\n4MGaClBc3KaCAgbv2YMbcLrCcQaNxaks4PF1yWx7/jq+KfAsYPjFF57y7dpBhw6edbEqUrm05Mfn\nk9zNivVoEi0/aEnGVxk495xZGH9YcDB7dV7sX/QG6j1qlujVFBYqaNRnJ3SVRoXpg8dx6Vuhyl2K\ne9qjaFUw689WOu38H1sDNvFLspuIh34gf/BgjsfEMPrfVjLv94ZD/wf/nIRn21chRFVVlsgNwHQ8\nGyxnAZuBFcDuCmW6AK+WlSkBgmo+THEhOQ4Hvf39+TE2lp8O/If/Hf0fv6hUmFV24uIgaifoTpxp\nkWdleXbeueBkOA0UBDspOZlPQJ8A8pblwZ6zi3zwwXxeeCET51/38WqECZKeIjDl7MlG18dfz/yv\nDnF0Syl5Xkba/2U06Z+ms4fT+GXu5rhGw6YX/Wi/NB3S06GkhJ8SltA+MoEgmw7sdiSRi4bEx8fn\nrBmmFouF5557jk8//bTOYqgskfcC9gPpZa9/BIZydiJ/DJiKJ4kDyHSrOqRVqfDVaBg27h1uz87g\nF6eTqB2/8P5vD5Ff6k/F5U7GLJvCntMH0S4/s1Lb35JzCGx5w0Xrz8iYxfNRYyAb0MNXX515Lz+8\nRdlQlTPmNynkrTubYW3bE+u/N9PT6wj2sXZPHDLtXtSgoCCoxZ3eCAyEqkweLS4uLn9eUlJCeHg4\no0aNqr3ALqCyRB4FpFZ4nQbEnVOmHZ7Nll/C8991ErC4huITVeS908asZ0fD1zMwuPuy8ObOdG13\nFOWr9ygo8IwLP5R7nCm9bqJ/1+84XFrKpoICuu75GEtoGxxuBXOxBoyh/O9oMSXJdg4ec2E6WMi6\nqPc5smYcxq2haLVgnb6Nz9q0Yflb++h8zuz/IxYLnfLz8YmPZwnwW6dOJM1M4meveRwtS+QFdgcn\n8/aSV2ql2OrE4i7CrVx6f0O3zU3hlsKzFgFzFtbdnoji6mM2127b4HKWcVmwYAFhYWH06dOn5gO6\nhMoSeVV+TGogBk/rvRmwCdiAtMzrVCIfEb3GBq4Z3LhYRcvxL5CbbUIxlnDs2OsAuN0WfJTbWTAj\nioXZ2aTZvGh3wI+j63zoZlFRcqQFrv6B3LnlII8W2XEG23A3teDX1MnrjxhpPxaaNoVh2ZeOxdft\nZvu6dWCx8NJ991GcUEyqLpVCpx31/b68u/8U7+6/HmvYcFxeLbnN+wBRLhuKcvFhiXn/y+PQ44fw\n7uhdfszQzIAhUjb4FFeP7777jkceeaTOr1tZIk/Dk5z/0IyzW+iUvd6Ap1V+AjgAtAW2nFvZxIkT\ny5/HxcURFxdXzXDFxSioWf7Gcnhaxff/COIvGg1dBs9F//49dOvmaZHr17dk795RLJgBmm5ammmN\nhDq80DU1YMyAAbfmEF9cjHXMDRw/dJycVC+6+vkwtn0rwsL8zlzsQolcUeDUKSgqolurVtw+YgQv\n/vorL7zwAif/eZLlPsvZ3vwE2o4vcrNxEYpaRbKpMy6vaDrbDMA2/mg32JqWkK+3srzC51p1fhF+\nvX3puqgxqSzGAAAgAElEQVRL7f0QhbgCKSkprFu3jpkzZ15RPfHx8cTHx1frnMoS+XagIxAJnMYz\nOuXpc8osBe4CZgEhQHvggkvbVUzkovYoLhcuFM8U+gvo3dtNZq9FhKrVROckExJgJXtXZ8/OPZez\nWWyLFp4vKQcPhmHDMBUV0ffXX8HLiyFDhnBg7gF63tKTRc1T+criJPnHR1FUarI7QmaLzVx3VE2b\n685Ul/XYIQzeLj5OPdNmaJpl4eZiF72qH50QdWLOnDn07duX6OjoK6rn3EbupEmTKj2nskRuBZ4F\nluPpQpkD7MLTD74DWAL8jGfEyn48ww/f5MJtNlEHfIKCWD+qBxtxA33p1KnTeWXy8vJY+sILtO7Z\nk0HJyeToTxDtGEFWVham9u2rf9ExY2DDBkhM9Oz3qdN5to+7++7yIpF+kTzZvwNf/fYr/3riblCr\nWaAk8W3OZsLDPQ368v5OFbQsDGD5HbHl569IOE4yGdWPTYg6Mnv2bP7617/Wy7WrMo58Wdmjognn\nvH617CHq2ZSdO/l+dyGvuAdy442/MXbs6wwYMACAjB4ZzFo5i5K0zgTExPD07NmM+OgjnGExbPqH\nkQEDBrC6sLC8Llu6DUuyhczvMilMO4o2UEvMxJjLjk1TtiDEgAGAGvacAFUe+JZt1+kIVCgqTaCN\nNhXTgWTee68AAJVKR9p+E7FumSwkrk6bNm3i1KlTjBw5sl6uLzM7Gwk3btxuN5jtNDlmQ1EiyXDl\nkLUliw+mfoBv/lF0760jwPETTvtiNA4H3sOGQUYGvPb38+oLfyQc43IjaqMafbgOk9FE0ktJZyVy\nu+Jmd1ERK9LTsbrdzMrMJKG4mAHn7Kyi9lJz+KnDqP6k5it7IBue3gRA5iigbPOi0swmlHRyczj9\nFV72szJ1STorvTVERBhwOLJZttSHv3Rqd1a9eXmeDwB/cBwDaxHYbGCQ70BFHZo9ezb33nsv3t7e\nlReuBZLIG4HS0lLuYDT2Jxw0UZowkhvJ4QlyOMbrxtfxfsObXh83YZNJw+r73yc3ORLtAyeJNBgY\nHRYGMe1h4u6z6vRq54XXdV4YmhoIGhhMWFgUSS8llb8fpNXSzceXrCI7e4qLcSoK+0pKaGk0cmtA\nAOTnl5dtO70tLT9oSZbNzm0rVrBv6FDcVoWFr5z5Pjx3b1u6rAtEX3iUB7/4ktD9T/Oay8EQrZON\nP2rZvOH8eWYvvQRr13rG+wK0K4LeqbB/Fjx97jc5otEJDLy8IYLVqb+qvvhj+nQ9kUTeCNjtdnRo\neWDGg9yy7EHWNIVbbxvB7bevQ2UOZ0vX7czIyCDYqOJrn0gsxraoolWMa9oUoqKguPrjsXVqNcNC\ngnHpXTzXriULsrP5V6tWhOj1ACRWKKvWqdGH6NHaFIr8FPQhOlzW80e2Hlg0metjHyFl6V5Ot7ke\nxr8CMTFw6sJfcToc8M9/wujRntd5K2HlOMiWJc6vCbLT2xmSyBshBYVTVgdJeclozRYsLifHCtII\nRiFIq6NIo2VU06bcHRICgMtVgjJiPkrJPmJcNlJSPgCgpGQ/Nltu3cWt04KPDwpq3GqNZwRNJR9V\n1xozWXHI0/pvetJGlF8J3/lvZcmrP3Gjj095udtuu41bbrmlVuMXor5IIm+ECov38OdDmURkPEZA\nYTB/s71N+tEZmDR6bg2IJtnHhz9FnUlyFushlHvmw4o2aBU7TqcnMbrddnx8uuDv37t2AlUguCAI\nR3E2N564keQRFtLUS/hU483UUyUs3rGYflFPeooqYHG7+L8KneJHSoMpMWQwROtLJ29vTN4lWBw2\ndEnJrP7hB25+5hkAdu/ezcmTJyWRi0ZLEnkjpODi5gAvfn0yHpU5nLWfbuOOnhO5o2QNSeqLrGmW\n2wSVbz+SCgtp1crTIvf1TSM0dBBGY/Maj1FtUGNsb6RVemtOZG7n0O0baeEfifpUJCtvvwPjeDWr\n9qziYG/PVGeH4sKmsbCrILO8jowQC3a3hYGBzRkUHExecB4rLSW0LgkgoWlTJkzwDK6aOXMm69at\nq/F7EOJqIYn8GpLS7TDNmw8kKMgz5PsPTns+uGvxW6MLUGlUhD/ZhE1HThNy/UPYbKUciwhGV+zP\nQZ2d69Uabt99O9Z/BsLIMAy6dDo//iIROWeWzR0zxskK5500N35Xp7ELcbWRRN7QFBfDM8+Alxd0\n7gx9+sCnn3LWMocXYW6eRUnJGA4f7sIdd5w57rK4ODAmB+7cV3txV/Tss6BS8ajiJCd7M0dtMZxq\nouWpF+4h8HBrnp4eSFYzHWkt0tB0sREz/g5c7rWsLv2EOXF3lVfz1Jtf0bnn78TW05AvIa4Wksgb\nGpuNXCy899qtHPRqxlH/QD56qSfKS0sueoqmyI3/vKaUPhSAaXMYUTtj0N8diU8XTz+5s9iJKm0T\nnj1BallAAHTtCoDeYaFo9feEbjqFq1dTDv5iw2eFEfchL3KaqVnnf4zQlFI+1W1G0aspaFU3/1yL\niorIrzB80mg00qRJkzq5thCXQxJ5A6MoCun2XEwdrkfv8iPWdYJOLdeCycLYVhtxFrejXUAiGbpS\nVCod+jA9x/4RTOj2dDQ6O44mJnzzLeTEm7HHembNuByeNVncOh2nfviBlitWAHD69Gnuuuuui8Zy\nWUwmzycKwG4tYEbJRMbu8CGiKdx00yrwzkR/8gmCtdnofM34q7dSUgroazaMSxk+fDgHDhzAUDar\nKCMjg5ycHAICAuouCCGqQRJ5A/Xnm/7M4pwctid/QjP9DajsK+ncYi4bTUWYjufRPrM7hsD1AIQY\nsmnitQuDsZSiTk1wrPRmWno6X2w5gValwliq8K3bzZIBAxh6yy180qYNACqV6ooXAKqqMK9WtG0b\nRrHlBFq9HYPGhs5opeN1M+CXZpVXUIOsViuLFy/mxhtvBCA0NBS73V6nMQhRHZLIGwGdLgTcGnxM\nXVHZt3HP6gMkts6BhQsBuK6kBKei4A4JhrJBH3a3m9VdutDDzw9nsZNN6k2Y+9ff8DwvmtOmzaek\nLUtDKQ0mPziKCJ0OSMVoK0BX5Kbb6tVnzQIJsWZi0BRSWnoYACv5aMIzMWiz0Sk2FEU5awsuIWpL\nSkoKTz75JJs3b0av13Pffffx2WefodfXzUdJSeSNjAqwGHT8aWgcwz72rIv8c0oKpS4XIwsfL0/k\nDYFeo+Pt7FI0rRWcB634LPuMBfFaIv0iuckawk2+/jgGJbF3750AuLQuAl5x0irdSbQ7HYvlCF5e\n7Sq5imiogj4Mwmytvb3eAo2B5L1RtemjzzzzDJGRkeTm5mI2m7n99tv597//zWuvvVZr8VUkibwB\nO34cVu3fzOaCU1iHWhn4zXMMS+tKS6Xhz1G3ud1wNBzztn2MUzS4HL68lvYimuhi3C2W8/H2UYTs\n3cO8IbNY+nI4AHkr81j5eioH7s/Eobobt1u6Qxozs9WMMqH29npTTar6p7mkpCReeukl9Ho9YWFh\nDBo0iKNHj9ZabOdS19mVRI2bOxcSTu3AYPFBnaHBfrwrbrs/oOWZLn+ulWseefoID7xvp+jFE+T8\nnFNj9aZlZ5OQkMD+tP04nTZ8rXaykk/xxANqJn3SD70uiP59InhohBq9bx76kO2ExGbh03kHCZkJ\n7Mna41n9UYh6MHjwYH744QcsFgvp6eksW7aMoUOH1tn1pUXewKnV8Fyf1qz722HWLH+SlY9tQ3tS\nz233tGBnUREA6TYbgdor/6uO/SkWZ56T1OQctBFeNO0VSMBtVz6So5OPD1N37WLl2LE4851kFPyE\nuuAEgSoNLU2P0ulYGCrHAQb1VNFndCgLv8njeMAimuVrSVp7mL9uNnAi/wRfR8xF54yo3R15hbiA\niRMnMmDAAPz8/HC5XIwdO7bmR3xdQlX+dw8CpuDZ/ec74MOLlLsX+A/QA88uQqIGuRWFhOJi8oHU\nsCi2FRZSElR6Xjkfo42SPieZvu/fZx2/ITgYuz0L8OyM2XORE8vhY+zT6lCcVftSMHRkKAAbtqXx\npw6hRFzhRBydRkepo5R2zuO0vs2LDW2KPff6iYtI/xCmjryPwqQeZLpApSzA53AQN7tuoVfCt9za\nKZreOw6z8lsbQVoXmSUKKNPxyhtCeHLt9ZsKcS5FURg4cCAjR45k69atFBUV8eSTT/LGG2/w4YcX\nS5c1q7JEbgCm49nKLQvYDKwAdp9Tzhd4iQtsuCyuTHo6pKTAodJSnjtyDG2xjqQOj7BtXxIZ7RQ0\nJ85OwP7R+yi8KZFX/FueXZETVL7dsdvbcqRLMDmdc3kmIpgwL88enc1er9shfgBeOi9O/+U0Xqvu\n5Kvhf8Ie1xeA7l+pMOSY4euv6ea7y9PAVhRYvx6emwY6SI+N4JtNMzlls/FR69Y8PHsAb/Em2udO\no3ZfeKfBYqeTNJvtvOO+Wi2RshOFuExZWVns3LmT1atXo9PpCAoKYty4cbz22mtXTSLvhWcvzvSy\n1z8CQzk/kU8GPgBeoypzxUWVPf00HDsGOj8DOmtrtCe9KD7YgVdHdGPuXNjWx/M1h0tpz9Sv1LQ7\npRCcFMjvaT8AMGgQtG17pr41a6DUF/b116JtG0ATP7/LimtxTg67yrpuAKyX2T8daAoEjR6DKQh8\nPF9aalQ5WJ1WNrXx5c07fHG7QZmsYm0bPY/bLKC7rEvxt+Rk5p8+fVY3k4Kn66lYVkYUlykkJISQ\nkBCmT5/Oq6++SlFRETNnziQ2Nrbyk2tIZV92RgEVNtMirexYRd2ASOC3stfSQVmDXC74+GP4emUp\nsTMOc1NsAe30u3C5zi7nZCwLF6uwWDyN16Qk+OEHmDOn5mMaGx7OgdJSVpjN5Y+HwsLwr4F+eIAA\nYwABhgAi/CJoyzDCi4YBkF2Sh7nYgsMBhYWeZWfOo6hQ21WggLPIgbPwzKYZdkVhYkwMh3r1Kn/s\nveEG7NKnLq6AVqvlv//9LwsWLMDPz4/o6GicTidTp06tuxgqeb+yf+Fq4GPg0QrHpEVei9wOwOVH\nUUIRLU7b2eZUsJ3ydBeMGK7QygwOjWcdrcmToTYmJL7WvOaXta1Io9birfcmJiCGe9s+yMSJoCgT\nKSkwkpIJGVYV//znGvI/f4Jmrdwc8/YmsXUiXx76kuesj9NkZQj6VrBn0B7c+wuxvGWp1XhF/Qg0\nBlZriODl1F9Vffv2Zdu2bbUWS2UqS+RpQMXO02ac3UL3BToA8WWvw4HFwHAu8IXnxIkTy5/HxcUR\nFxdXzXCFNVMFzkjMK810y8jnR4cbS5IF1CrUhsb3O/SBBzwPkxpCQ6GtH3z+Xj/27rUyYUU/Otzl\nYGzTpiQfS2brzq08FaUmq2tL7Ceg24buJN3pwm2TYYmNUVUn6zQ08fHxxMfHV+ucyhL5dqAjnq6T\n08AooOK2tgVAxWXh1gCvcpFRKxUTubgC2lyav9acpH/v5bFEJ11aZfOMah1dtihgyICw+g6wdrVs\nGUxISADvHh1I69tt3N26NVNnT0XxP/sDpMORjdvHhYsCXK5SjK7TaJ1euFxBaDSmeopeiEs7t5E7\nadKkSs+pLJFbgWeB5Xi6UebgSdKTgB3AxddOFbXu2f3Ps87pxFddQAflFMEZ+3CH66HCkqsZvkUM\nTDxe/jq1ORQHQb7FgroRr0Nix8DBgw/heNJJ5no7ubkOHshegx47Bwrj6NTpl/oOUYgaU5Vvp5aV\nPSqacJGy/a8sHFFd799uZPLwHvzptzj+OfIZ+mV/AU3OrCue7e1ZMOv1sn7tJQlw4gT8eaCKLhU2\nJ24ozJY8ErP24m3bwjsDZ+GXrmLVaTVFRekU4SSvJIDjaTZSXFF8v6wf/ef0JyVyIUEtNSwOH89N\nbCfEMru+b0OIGiUzO68BEQYDA4M8e3UeKwF3FtxW9e9xrhqtglrjzHPxe04QOttNrD8dQ4RJi3n/\nDLpHDeLHrv+h9PhOIu0BqNy+NNn8DfrC61Cnb8Oeb/AMAdJUfh0hGhpJ5KL+GY0wciT8MSknZwWF\nrgIO5DclYJPnkBuIdrehqb4fH0ZOIz0NNq3Jol3HEmYVz2HjXT8xyl9Fwu4lBBbOhZwd5N/zIfnJ\n4aQ1705O6R4yduaSkQ72YHjpJXjySRj5QL3dtRA1RhJ5A1BcDOTB/SV/5T+h+8GnP0lJk7nbOxNw\noFI18LXPFiyAClur9Z/oy8z5sXybfBsL/+I5plKr0OyycrjgTnjqMDYbvJxuw5CkMOvBM1UdjewP\nMSqabTlAae/uFE/PJo1QjKi5z8fAHb2CCGYTL798PQAJO2G6Usz27T6oVGrat/++Lu9ciBohifwq\n53LB6NHg0z+Z4Q+t4Xi2H+qm21ib78vIW6BbpJpgvygGD95AUJAGu37DWQP5s7KgKB2WnfC83r+/\nPu6iEiaT51Hm4y/hUKqaF15QMWSI59h116m4420H1335Jaxfz/Hj8OfXjvLmkazzqtMqapoZDDwW\npOWA04zumIUOrlS+bOeDcl03Sko28sMPblJTod+tbh7ZtYtlrTqTdfxFMoqP41AUcux2nG43WnUD\n/yUprgmSyK9ybnfZNpcTVrNwmxOjTo/NpeLFQRuwJ7oY2rY9RjJo1+4EXl4mFIsN/+IRAPTsCf9Z\nCamH4NOlZ+p85JH6uZfaplZ7kZn5LWr1KgoKNpG4ZxAq50SinFoc7lAyF1lgezamttFYrf4UFICf\nrwImBzcfcvJXh5slR4+yt7iYUQcO8FqzZkxq0aK+b+ssqamp2CqsFxMSEiJ7iQpJ5FezN1a+wYa0\ngdgGzuDz7Vu5xVfFjqxSOHkzSslBwmYbWHpTT343GPjmm4d58Mt7GP57Kkd6mVielgYdoHOzQlQq\nFXNeqO+7qX0335zFvHkaNJoosrJSiG0/nvk9fsA72Q+n2x/zZjsO+2kcZgc82B0AjUrFoV69AEhM\nDOChZh0Y4utL9/BwLFfZ+uaZmZm0aNGCmJgYACwWCx06dGBF2WbZov4kJiby7LPPsm/fPsLCwpgy\nZQp33313nV1fPjdepZzFTqKmRNE+rwP3L53IuKP3onGryLYWYNLoUavVaNQawsLCaNmyJf379+en\nqCOYnU5OO+wkWSwkWSwE6XSMDg2t79upE1qtDxqNiYMHTWRm6vhtWQBL2+9gmcaISXeU9h/4Ez2h\nbjaTrg12u52IiAiSkpJISkri+++/v7Y3hQ4KApWq9h5lI70q43A4GD58OA888ACFhYXMnDmThx9+\nuE53CJIW+dVi/nzYsaP8pT3Pmw5ru6Nt4iBNCaJZKx+Ust7vGC8NPj4++Pi4efLJJyEmhpMnYT3Z\n9PD1JTQskKZtmtbXnVyW/fv3s27duvLXKSkplZ7jdHrWknE4YPVqz7GoKNi5E4qK4MABKPHVo9EU\nokWB6dPB2hLSW3LD8t9olQvMiIRx4yq9Vu6KXAq2FZx1zNTKRNRL564hJ+qM2Vy7m4hUccLcnj17\nMJvNvPjiiwD06dOH3r17M2fOHN55553ai68CSeRXi2nToGNHaFm2jrjGgJZiSqw/k+DeTv7vB8kv\n8Cx5qFa5LlHR1WVQYmL5c6vbfdGPgNOnTychIYFOnToBnmnKnTt3vmi9ISGeCaym1S4eWTyWbV8k\nlb8XmZGGta2Lt96E55fkk+H/I/aItuDvD0UOUBQ0TjtGuwX+8gmWuAewHLXg0DkoyirEWeDEcNIB\nnc5cL+fnHEK8Q/Dt4QuAI89B6kepksgFygV+mbjdbvbt23eB0rVDEvnVZPRo+GNd7COl2KctwWzb\nhKJoiO7eBs2pXaRvUQjVdbp0PVcBtUpFS5OJl6POTnRhev1Fzxk9ejQvvFC1znw/Pxj4up7jYV4U\nJ+by0P1nNoYofLuUpCLnWeXtUVGe5SC3FMDBJLYMvYtT+/K47cQMkl5JwpZiw/onK2mWr7EUpRCz\n/Vu8e6/i+PFAXK4SbC1WENT1BcIe8ixkYz1pJXNGZlV/HKIR69y5M/7+/nzyySe89NJLrFu3jnXr\n1tGvX786i0ESeQOgVXenR28L3kd+IgXwx43b4cbldJOWBk4863NfbbzUagYFB9da/YpJTdIYE0v8\nlzDrlVnlx3MnG6tXkRtiJsWg7vMORUU70U3fh2Iz4VT7oNH4AQqW2B+Aa+AbY1Fter2eRYsW8fzz\nzzN58mS6devGyJEjcTqdlZ9cQySRX+U0NjtPOT7nb3efwK514QSMuQ+xO9tGYU4Awx7wJb9s2rlm\nTL2GetVyu22Ulh7hxIl/YM3wxWZrgdlciKKc3XUTFHQHQUF3oFf/jGvzII75DSA6uhVq9ZR6ilw0\nFN27d2fLljM7Xd56663cc889dXZ9GbVyFbMatbgMejS4+e+93bn//zQEAsal/0XTvi2B+zaQkBrM\niROehbB0F++1aLQsbjdurR/Zdnv5Q6nwHZVOG4habQBcuN1WFLcNUMjN/RVFsdZX2KKROXDgADab\nrXxnoOTkZMaOHVtn15dEfhVz6NQ4fLwxq4KgdRvKN18aPLhe47paRBkMLMkroKDT/xG7fTux27fT\nfMsWbAFnEvSpklwszdRsTErj1glzeeHr5RxMy+GnX0tYtmzlBb+oAs9Pet7p0/TbvZsil4til4vJ\nJ04wMDGRknP32RPXvJkzZ9K0aVOCg4NZtmwZq1atwqcOVxeVrpUGpNOGwdxET/bevRfbIzaOTD+C\nf6SBlv9oWd+h1Yv7Q0MZ4KOh7dS2ZL+eC8Drx46RpT4Ebmija8Oj1z3Khus3kLovlZv63URYShjK\nAYXW/bJJnp+P23Amka9Z49mNqCgH8tFS/FZ79gAquxqjWsN9TZpwX9Ep8p1Oaq/nX1RZYGCVhwhe\ndv1VNGXKFKZMqb8uOEnkl0FRlAtuZnolGzUoQL4ZHKc9r9f+uo7cvCwiKUKvhMLillx/qhXxbCZ8\nbDhFvloCbvbn9JTsazaRX0yRlwblhJVD7Q8xiEG4bC68XF48lfAUXVZ2Yem8pQQHqzmpUXvGIR84\nAN/+RoYjkpt8upDiyCTSWcih+f6siVcxdqwKrQrae3tjkLVXrh55jXOrt8tR1UQ+CJiCZzXn74AP\nz3n/NWAsnnyUh2cz5uSaCbF2JJWWMifr/AWX7mvShE6VfCR6/PBhZmZmnrU4lQpI7NGDjtX8OOVW\nFN5OTiaz/1BWrnVzeskyXPsX4b/1F25V+pLOXiCKooIC9jRfg36gD03ubkLyNg3+/fw5+VwhW9ts\nBWCq1UlBQS7hd1zb7cWNHXwhy5+l4/oAsGfPUdJSM3Huc5OYePavYJXTCenp0N2Il9pJlDGbQy4b\npYV5/PzfaRw4HI3b7cZmc7Bl9xZo0eSs85OTk2nfvj0Oh6P82Lhx4/j6669r/0aFKFOVRG4ApgN9\ngCxgM7AC2F2hzBbgU8AGPAN8DIyo0Uhr2HKzmd/y8hhWYXjcarMZjUpVaSI3O50s7NCBERW2VLt5\n1y4KXS5sNs+Mw4q02jNLbZ/L6nYzJTWVCaeyuSFShcpvK9t2b8eqUeHj9kHfbASPhR/gxO25JDf7\nkUXjzrRCDJFGeiW1x233rAny+I6drOjShdB2vtX8aTQu3brBoS2esebgWXRMp/M8//13uA7YbdyB\n+fZ0MjaBPddK0bLf6atNoI/Nh42lBeiBhMREUtNdKIqC2+1i6tSp8MAklubm0iRXwc/tZmFKCmEt\nW7Js61baeXnx888/8/33shSuqFtVSeS9gP1AetnrH4GhnJ3I11d4vhGofM7zVaCnry8TyhYgAnBd\n4XRflwuCg8+fNexyeWYTmy6y369OpeLh1fG4u3am9Hor+yKseAUHcNvOAXw3cAEntmznt+Oganb+\nucboM2OmM7JUGNqYUGka716cF2Jz2pid6Nm+bX9pACe9jqNoTxJu+Steei9OundhKDmAWhlDZHYC\nUX5RtLW3Z0NmGN//43o6TPBi43N38zdlD+F5Q8j/agaUNmHUjP4oCmxCQedVQq9HDtEt/T0OZOsx\nlaroO8yHXYlpnLYUMfHkSX7q0AGNRrYgEnWvKok8iv9v787joir3B45/ziwMy8AAiiiC4L7jrqWW\nW5qYZXatrmnbXeqWltXt1r2lqbdudbu/22rrtb3M0rQ0Sy0FcyEVN3ABRJBVZJsBZpj9nN8fBxFc\nUUEEn/frdV7MHM6c85wZ+M5znvM83wdyaz3PA0afY/sHge8voUzNU0kJyoJ/4bQt5YeO3ck/cand\nty+zEx7C7b75rIHcK3vJ8+5lu/9z7NrroKikiK7WbhjbHWd+XBnmG9tyjb8Bj08on+z8PZIk0dmV\nB1xdAftMggxB3B17N79k/gKAQxdJqd2LU4ZP27cmPKIrGywWepaVQRpEF+8kIHgsvZz92JbSBVNw\nEHq9kw6Rg7nWrMFcoKVU8dDG/zHS17/Fq5s/xLpAIrL3g/i0OYLdbge3E41Hg0GSGa5LZrXVesZ7\nJoJwudQnkF/I3+gMYCBw+camXimqqnhvyhTkH7X8rqKCqP79McgyvffswW6/E6g658v9lAgmHf+U\n0UN38PLRl+mQG0XQqGMEm8oJ2NWJgJ4dKNBsJih4PLttDqqMcYzy73p5zu1K4vFA+cnkVXrg3XGv\n1rnc2RS0iaf/+RZTi+OZ8+ATjEhOhrZt6/RwcCkyLkVhhSxzp8nE/kobW8w3MKqkM5mOWbRVFKYN\nfYDPd/1CFkeIjvkrQ4aezCLpyHGw59k9tBlbBGxiTWkpMYmJVKWlYS0rIyYxEa0k8VNsLN38/S/H\nOyNcxeoTyPOA2hf1UdStoZ9wA/AscD3gPsPvWbBgQc3j0aNHM3r06HoW88o39+hR9gYE87UkodFo\nuO2ll3jPauXz119nyaqfz/t6e/GjdDuusCYpn2G2YdzjvgdvwGYK5PZM/d5Fa1MwSd0PMbzrH0nN\nK6VYUZCkq+wy3mSCtDTo0KHueo9HzVFQj2YNXVlbXHYXGo+CjwcC53+MT+ZEWq9LQV9i5OeCgQQq\nCrsEy4kAACAASURBVHs7d+b+XbvIqs59cKSqCkuV+mUcoNXW6X4ouVwcGjoURVFYl53NCpOJ9/v3\nZ9qBAxS5XCKQCxckISGBhISEC3pNfQL5TqAP0B4oAu5AbT6pbQDwHnAjUHK2HdUO5C3NpNJSxlts\nzEciQKtldmQkX6em1vv1iqIje5BEzO0xvLfsbX49/BNLbuoASm/s9iMcP56GaehINBq1TbzK66XU\nXff78sqaBqERdO165i5nfn5q5sgTNW6bDR+rA6+2bldBXfdsPMcNKG4FSYHY9v3pYk/BIAcRERFM\nXEg4+12tcLnC6Z2by08xMVzrUShVFP64dy+6kBAcBgNZTifm6CF19h3tq34ubQwG/LVaYvz88BVd\nFYWLcGold+HChed9TX0CuQN4CFiHOhL0c2A3sBA1yP8AvAIEAMurX5MNXL7pMZqp1JJUFu/5GE9u\nLjlBg9ge8iNZ6bvwKF50+KCLnwbTUwkMHEREx0nQbwagjmj8W14eHxfWzb5n1Grxu0KCR0BAAIcO\nHSIgIKBm3T333MO7777b8AdLT1cTkJ+wcyfF/36OjN4nc7K7ZBlzvyLsh/UYdV3x+kC2tx/7fGPo\nJGeQmtyFDE9r+vWEI67W+B0/TpdOncj1uOjg9pIwfTpt3G544w30ffqcVgRFge3b1TlRS0pg0yYo\nlxWOvWfmWBt7nW1DbwzF0P4s3ZgE4SLUtx/5T9VLbfNrPR7fMMW5uqw/sp5vEpei5PhS7hlIXjaU\n7C6mo6MLvc2PkVSWDLKCf2ndlqw/tGvHH9pd2RNHdOrUicrKSuTq6dLWrFnDnDlzKCoqqtnm3nvv\n5ZZbbrn0g0VFkZWVVTOXZbYkIfv5suTgUjbmJJCXF01VuYcZs7vQ/ZCW+xdbGTH6G7788Ul0GSW0\nUirJOAzPLoa+fWHmTKPaTFNezrh378D81EbIPgyvvXaGNJMagoIUduyIY/NmKCg4jtWaT3p6HDe3\nCiT4mVmU3xdes3XFjgrcpW46/O2U5iGh2Vq0aBGffPIJ+/fvZ/r06Xz88cc1v9uwYQOzZs0iPz+f\nIUOG8Mknn9Dh1KbBBiBGdp5PVhZYrXXXVVZCPaZP0wL3TZkCq34mbt8+onLdDFzi4OWHvXg04NL0\nxDn0bXSDfLDv1tDdkc+IsndI85X4R+dXcOgC+FYTialzKzjHJAtXKr9aNyBvuukmdDpdTW6TVatW\nkZCQ0CCBvLCwkK5du9KlS5eadRMmTGDWn2YBsGLJCpIsSby/bRPrEvYQ4f9PfMIq2f/LD1R9m0fp\nKzHEtK9ixAgXgYEDL+jYrVv/CbN5HYGBj/Lrr3D77dvIzt7AzTfPJOnQozg0jyAtOvmP6z8v75LP\nV1CFbtmCuRFTxYbodJSNHHne7dq3b8+8efNYt26d2qupWklJCdOmTWPJkiXExcXx3HPPceedd5KY\nmNjgZRWB/Fy8XrVdtmfPuuunT1evpc8TzL9XFLLj45kIPBMZQkDGbja0NdPaGoBhdg/299oEIVl4\nfn4ZOXwnthB/Qtv3hr5e3DOGY/k5AHT7kFaubLxzvEwCAgLqpPXMzs5m2bJlNVNh7dixgx49epz1\n9QaDgRtuuAGf6okpgoOD2blzJ1qtFrfbTbt27Ug9yz2JdoHtMPmaCAsIQ6/VoZGgbdv7sVp/wt6+\nBDnkNnr2TCEnZ+MFB3K9Phy7XUKrHUtysg8zZ1ag1e6jRDMYt6KgQ2FycjKgZmp8uERiRnj7CzqG\ncGZmjwelETtMSPW84Th1qjr2MSkpiby8k1/UK1asYMCAAcRVJ7mbO3cur732Gunp6XTr1q1ByyoC\n+fkoCqSk1F33zjtqkD+Pr4Gfr7sOvl7OtP2rcYZ6YIofYEF5cCganRPfJHj9rQQivU6iQmR++vE4\nJWYvB0xmAu5w4mVAo5xWU5s0aRIWi6Um+f7EiRO58cYbz7p9fHw8Foul5nn37t3xer0XNwDHCRH8\nEwxQnJBE3hELK3KmM+WV7lRU/Hb+19ei1+uRJInY2FhcrvXMnDkTWZb5rc9PfPCFH/jJ5FY3+chA\njlPh6cxMdm0/Vmc/pW43sqIQqKv7L9nZ15eEAS3zb6ClOTWT5oEDB+jXr1/Ncx8fH7p168b+/ftF\nIL/SHH3+KLn/lwvOUXgUCcUj4zruImlIEhs+NBJ3IJutXglX+kdE/joMa6mR8LxU0o5lEBz8NyrM\nS+n4+F5c/3sEa6dibKVJVOg9mMPvxx3Qm2sDGvYDv1L06NHjgiamDQ0NJbTWrObSxSQo8/FhzO7D\nZHoKSO71AwBerwFZMlDY6xtWp2+gM2uwVHjYP8+LeUs45ZUBeCUHi7fOYmLuEVofLmHB7s/Yoe2I\nzTKDgA830atNG1av28mom4N47bVv+Oyzz5j1z8ewHrkByarDMUq9PN9ksbDZ5yB3h4ZjD6p7j0Nv\ngOh2Etpa52X2eBizd++Fn6fQJE79m7TZbISHh9dZZzQasZ7aVNsARCC/SEXHjvHzzz+Tuz0Xw3QD\nrUrX4tH6wvIx6Fvp0YfosWZAwNYhaGQJ5endHJN2AxDdW2LtB7+g18uAAbckE1E5nWssqVhLcjg6\neDCz+j3btCfYEj36KE96ljF7qJuh7dVa7rGVdhLXZFFgeoGtq8axUxNHmWUTkW/DZ5164u+NBL4j\nPjuRko5ehhTZmP9tLgG6dHSeRPRfuhipKPgc2EPdcXA6jEYP0rt/ZtcuNXeP4vHS72Y7BWU+LHnm\nRVJSbqrZ+uhRKCxUJ5U+wd99xuEYwhXq1Bq50WjEZrPVWWe1WgkMbPhcSCKQn4dTr6fYUXcmGbte\nz8dvv429vBxjqRHtES0GZx4yerxhSVjsFr55+huOh45l08RP+cv8+yg79g7T2/djWu5MHLOeYlz+\nf8HtwSXL/D0ziz9klYL1QBOd5VXC15eciACqukRDjHrfw/e4mfde/AeBDh8OrFUTdkbTlyrlL7hf\nd2I2uFEc8ST/K4kDmjZ8hQ0v4YT+uQcffjufiP3d6XDL3RyyZeMOSqvppSNpQ3j04ba8onmcD0ap\nSbQsHg+9Mq4hYmQB//3vQTp1OhnIIyLA5Wr8tyA5LpnKPZV11rW7vx2dXhKpkC/VqTXy3r1789VX\nX9U8dzqdpKWl0bt37wY/tgjkJ1RWQlKS2ia+Zo26TpZ56oEH+HTnToy12mKlNm3opCj8feFCeq7t\nibG/kfb57+HW+uLzSzyefR60FVqkINBWgN6qJzBfh19HA26tP5IC2ifnwrRp6BSF2MJCtVtbtD90\nOL2PstCwcspzSCtJU5/0AWWcTKm/mR+ePVqzjSH2EXyKJ3FzhYtHNB7+G3QAk1yAQ2fnDouCx+mH\n2eni4aW38nlxDq/unsuxW8zsKHgYgIgOHXD9fh7y8z2Je/lxAPbbbFj32akq9VBevo6srJMBddo0\ntf+51xtKZOSci2s6qoeqtCr6ft8XQ7Taj730+1LMG82Ncqyrhdfrxe124/F48Hq9OJ1OdDodU6dO\n5amnnmLt2rVMmDCBF154gdjY2AZvHwcRyE/avh22bFF7qRw6VLPaMXw4/+7cmQcjInCVuCheXgz/\nt5z3GYJreRrH5c0U7XGR7bUhK1pm+YXzkRdyf/yU6Du1/L7kCNe8/gvmseCzfAeJn+3jT4qi9oR5\n/33cXi+PbN1K4r9MMOdGOPSZep0tNIp+4f341+Z/1Vl3LP8YXYZ1ps44H+17rP+qM//58gjSEh0T\nEvtiNBvZPnk7SBKdtq6gtWErP095gLAv3ubZXrfx/fZMzL47UBQjkiSx+IflKMQw+oUXABjn9XIo\nawJHK4IJfPJ6JEkdobvfZsPhMbLXaqND2eN85r0Vf62WKq8Xhyzzeq46jmCAve7AolNZNllwFdat\n1hsHGfHvUjdFgD5Mj6GtGsh1wSIEXKrnn3++zv2eL774ggULFvDcc8+xfPlyZs+eTV5eHkOGDGHp\n0qWNUgbxKdbWujVMngyzZ59cl5ZG5vFdPLBrAdGboon9MpbCYLV/dG6GlXZKH3z9owg6mIBkMTPt\nxxf5aqqGJwa5yQlOoNWoEjL/1A0kCR/tXxjfw0DUX2fBxo1NdJJXtzfi3jht3V3b7mLyiMln3L48\nYCcOuYpXE18lrDKMGHsMAEUeLS4MrC1MYbLLRlplHqCwLXcL7uL2vL3tRf6zN4l4rZaf/jqFuK5x\npFdWkvpYKp2TjxAV9RwGAywrKuIfxZkc+7o/y9dPYMVieHXCeGQFJKMR+/PPs/Q//0G++25yU1Kg\nqgqWLFELd/AglJbWlPXA7QcIujYIja86uteR6cDY30j3/3Vv0PfwShGi09W7i+DF7r8+FixYcNb0\nI+PGjeNQrYphYxGB/Ay8di9eq9q90FDmJS1vE/bSbGK3x2Lzs1LZ/hD55JMSYybCMpRWkYOJylmC\n7w0DyZE1yPZApu68FmPUH1n0wQcoh2ZidJsAeCyqhCVKO5KnptL23rY4ZZnrUpXTalJC0xvfeTyv\nV5SQI6eQf9yJ2+Yk0qOA7MHh1aArCaDjuHs4bLuNkGQNq2SJLZGH2GhJ49Z5n6BVFDwaiSdKPuPw\n9HlYLRbKA/NPO87AwEDiJYn21ekMEr5dgSRJWGSZG4uKaJeby8ACB/aViSg2J1Vf/QqAt/II7N8P\nDgf4+oIC3Rd3xydM7WtfsLiAit9OjkT1esErg7kMbNWTblRWnJ4/v7moz2Cdq4UI5Kf4obSU3lPz\nCcz0oGglxisy3w614CacsIwBZHaxUzob7jIlVb/iCPAVB6YAHMXuDMALVI1rh38XE2F3xxH030Da\n9i0gILySv4UHo3tfQtJKFC8vxqsojCxR8O/pj38Pf2j8L2+hnrq16sbv27zAS44P2PnqP7jPvJrA\nIj8M6NBnaZFw4WP1EqRJJ2lgIYF7hxES1IZgyuhjDeGfsx9g2Nv1z6lyIi9Nnz59kCSJUrcbd2kp\nB4YP58EZXrINo3G6VxGfMhNjpULhhByQNtR7/y+/DJ1y4M/joaj6ls/gSrivs5oVT2i+RCCv5e7k\nZL4MW83jY4tw3h2MM0S9JHW7rDhSJuJXCX0liQF7Mvnw8BP89NNs3vz4CZYdKSFi0BxcfkbSXohA\nI43CPzuOR2/rSP8Ro8j8JoWAuWMwDTeR9emnxLQPpu+qvoDaRvrS1q3Mu77h72QLl+755+H99+HX\nX6HNjKWU9xiA9103XpONA51KefBBOLR1NOtcHnodCsavmxGlJAJzSAdW3xDHsLcdHLUcxe9ffsgK\nPFN5P0ZDGY9PlTBlmFDMetrLMnean6LSrabJzc19BZBQFIWX3GnkhBWgvzWD9X39cL2p47/fGZnx\nrYTvBX7pV1VBSDDsSgK/6k4qH98D3gsbAyVcga7OQL50KWzdCuHhsGJFTT7rrh07UpWxk/c2v8tv\nc4JZrpGJPXoURVbwtKmkY+Q+Ig6GomudBcWfUul8iv/Ly2VCl9/xYORtuN3w54QStFoNpu9HMO/N\nKzuxlXDhtONHIr//Gtm+pfz9hoW8ZoXbcu+gV96NuOwu9JVeKqw5FI/X80j66yjKw0R/mYpW54tT\nMlGZm8Yh12Zusv9Gu65t0fm0I8fpJPzn7+jUcwC2Ti/jdp9s9+4tm1FKjqAZUsj1LomdWi0jTSbg\n1ORdwtXsqgvkDoeDowkJlLaG7h0+4auH7NzxUAEuowZNch67kyBU/iuH4yfzwq07CB/uwemAY7km\nDF1ziZraAamDL9EFHdErgeTM28HKVrCS6vQrMnhlhSkhxRz/Ur3p5C4WAztaEh+dgbb+XbGv/o5K\nBTbgIiK2ip6HZXL3DcKiyUSX3Y7o/Gh0RhdvvvodNtsBrBGvk/1vLz163cZr1+zB7rbjYw0i2eHg\npsMKk1PXkv/xYCYWXEOR7VpoEwYZGWgOHkQZnAGDElEUdf7XsCrwWMGOH5lZEjEt836mUE9XRSAv\ndrl4J6WY/ev9OJSQQHqCDzp/PT7SBAz6bUwIK6CfQaHrpFYc6lDMp+1CyQ+vpIehiGMOiaJjMSz7\nch5xI3+gS2kc7Z7pxJ49i1AUePRROJH33e2GTn4B6PUSv+tkpvRH9e0NGh6EX+ezTNgpXJm0Whg9\nGjQasFjg5pvV2Ym0WiQgNMiXXbvUJF9lbjcxK3fT9XsPrsEF5P5mw5qRh2PXY/h6PRhMWgKN3+OW\nCgj2HYmj0sO12kMkWgqxHjXg79sGWa9BX1HKyszVDNoYhc19hNBbq/B35mM3VFA8SiLYLxObzUVk\n2p8xdfVwxFpBabQPXyy7h/79P8Xg9fJgWjqOYrUC0aPAThuLm5SiIm6vR7bOhlDmdpNadfq0hkFa\nLX2MxstShqtRfQL5ROA/qFlZPwX+fcrvDcBnQC/U6727UCeWaDKKAtV5igBYX2Thi0VOLD+3Rm8I\no3XoZIKG7Cc/agmPDMjjUBi8ppOQKMOrBUOFm4l++zAbhqEvfZjn5iRRUTEc/80HcMl2Xlq8CLc7\nGfDh889h/Xr1OLIMJXo/goN1dHu7G+2u8Jzhwjns3KkGcIBbboFnn4VWraBXL0AdajBsmPprj6Kl\nytwbP30WssGETvHDXKinJFymxxEd5Td2Qt/3aXz1VkyZMTh1DmJTrqP3xE14Oh3H6y1lUc6LRMb8\ngYe2OfG4zQQ5dhGVkULUhg1cA6TPN5AT48bHBu50A96jHfAtsRNu3sPQoeupqipFUTxcbwrEN1Tt\nteJnhFLJzY9lZZctkL+Uk8OyoiIiDHVv8m6vqMA9ahSaRhrodLU7XyA3AO8CI4HjQCKwHthTa5vZ\nwDHgTtRZgd4EpjR4SWvbuxfi4tTIWVt4OCQn8847ak1Zr1dXy4SBsxWrfO+jq+dHJK+Css2NXe+h\noq2GmGU+vBw+nvDQcO4adRf9wwfxYUwF+W4XZe+9gNcbQ3h4IA/+rh9+u/34aNZEJCmOmBg7Go3a\n02D37gQGDhyNyQTjxjXq2V92CQkJLWp+1VMdP3789JV9+558rNfDNdeoaYutVjQadQagE6mwyz0y\n0/ZnMHWTH3uD+jBi0H5ii4q46/FC3vhLEGO8U9DslVg7oD9bBj6LT9lmNg9cy50VH3E4oA2JHSTy\nXN2ZFbODHwcNYc6abhgcfmzsZ2DCjLbIR3JwV7XCvs9MpXyIXREP0/qnVMryj6Kr1GC1tqdVqyj4\nFkylwIkm9oEK/oY7OLbjJjglRfDs9HR+q6ggJsLNwDZeBiclYZNlAjQaRphMdbaVgL9GRRFVPZ3d\nuXgVhUcjI3kiKqrOek0j9vcWzh/IhwEHgBOdX78GbqJuIJ8EPFX9eBXwP9TPvvF6pxYXqyMwly07\nuc7txtEtmo82P8bineH0uM2PzsM/QgH2OnO5M1DGYgvh7S6xeDSABnToGWxI5fVRf2J7YR9KSpx8\ndMwOx7ZAoR7iy+DT/UjSrURGBjNy5EhKy0qZNHPSaUVaty6Ba68d3Win3JRaeiCvPWtRfQ0adPJx\nmVtBp1gJ3FPdfBYYCN9/D9tSINiNOTMTgN1bHBye/wXpR5LIyS0lS34Sr48/uvv+wRRDED7rPMR6\nf49GW4XXz87udCtBAdvI8MticncdrcMn491qILJLP+IH+OEyaPg1tA+bQ99AAlbcBmNThxHYVi1H\n6tJF5Pr8SNq2bXxx3XWkeBwMVVx899t2VkfAi8CxnHBCLE7e69aJSq+XXZWV6E+ZLnDxsWOMCg6u\nVyAXmsb5AnkkUHuesTxg9Dm2kVHrA21Qa/CNRvEx4JKDUbzV3xduD8/crufLLW+giwrCVAGpGRVo\nNNCrDYyMgIzCXtgrPbSW8gk1aSm39GfLsbsxGG+jyx4z3rRfqUmJXQqhwVZ8nxjD2LGDePrpxjwb\noaWSkOgY0hGAuOssJNhSGR3bn8Rr7EQEtmLXknRQfmX15ATQWqiI/oLYTfejlbV4Emczdc1MPrvj\nSVZ59xJs/hWXtooN305i+Yc9WKV3U+ROZd4dn5FdZsCoTOF4xFBSfdQrVd34tugf3sqQTVp8Dq9k\n+lgdAbEanCFe3pHL8d/oj0Z7Hb7XdSG8vB3hQBcJjAH9CQkZU3MOCbXywJ+gKAprSktxVo8mOpFv\nJLWykjaSVJP1T6PR1JkpqiU621Rvbreb6dOns2vXLrKzs4mPj2fUqFHn2dvFOV8gb/IxX1uyVrN4\nyzx6by9D71HQ+3to28UCN3sIe7cV7Sw2vNXNbrfcD7cAWqvaNUtB/UcCMO7Ws9o8hm0lk3ll69cE\ndQ7j/bC57NoFU6dC+zB4YOR1jBmjttzUrpRUV6gajN3lYneWmmnPIcsoJSUUFBQAUF5e3rAHa8EK\nCgrw8fGh8JRJqM+kqqqq5j0+lbse6WILCwvxeDynpSU9QVYUqrwyNpsbc1klB5Iy8T1cRIks1xy3\npLwch8dOuF8f5t38KhnmIxz67gOMpS5mTAgFgogIXETP0p5o/bRsNgex/Vo9kba5SOWf4CunI3mz\n6GHoyqYYf8rMdvLcMlt7rkJBouNvcbw5JpcdHcrxr4xi0JH+9Jz/F4orP0SX4wK7HoqfRNfmReRh\nVRj1VbQK24tbLmP3x3tBAq3Jg38XO44sAx6PAhJMiI7GuruStXYzxWvDiVB6Y2vVmsfvHM01hUUo\nRn9wbKXSZkcrwW979rC9QP1MvF4XQ4bcQuzIMbz11vfoqgci6XQ+XH/9ULTaAGS57v8bKOh0UWi1\noYSEgOEsY6q2hG7BY268qd50ITpGll38VG8A119/PY8//ji33357oyVCq4/rgB9qPf8bcGqi7A3A\n4OrHGqC4+uepMlBjq1jEIhaxXPByqnjiT1vXkC50/3PnzlXuu+++M/4uMjJS2bRp0zlff45zz+A8\nzlcj34k6erc9UATcATx4yjY/AjOBJNSbnImoTSyn6nKGdYIgCPWhNHUBzkdpmKQ1F1VtP18gdwAP\nAetQa9mfA7uBhaiBezWwqHp9ClCJ2v1QEAThqtKUTSf16Uf+U/VS2/xaj52oNXVBEISrVgPVyC/K\nmdqyG5IvavPMHiAdeK2Rj9dUtKjnuLqpC9IIjgLJqOe3o2mL0iiCgWXAPtTck9c2bXEaVHfUz+3E\nUg482qQlasEaoUb+d9S4uR+Yc64NG3uIvgO4HrBXH2sLMAaIb+TjXm5zgINAw8+q2vQU1C6nZU1c\njsbyP2AF8BVqxaYljSNPAwZUP9agjgdZ2XTFaZnONtWbVqvF6XTW1NSdTicOhwPf+vXHH4R67zEW\ncANrgY2oTdhNyh+1dt6rqQvSwCKBX1C/oFpijTwLaNXUhWgkrYDDTV2Iy2QCakWqubrkXiUXqr77\nnz9/viJJUp1l4cKFiqIoSnR0tCJJkqLRaGp+Zmdnn3E/1L2hexewuNbzucAzZ3tzLkfrvAb1Bmln\n1OH+T51782ZnGeoguSDgSeDmpi1Og8sELKhXVB+g3txuKa4BXkUd6NYL9e/0YcDalIVqJB+hdlB4\np6kLcpGqY91JV0o/8oZS3TRzIib3Rb1SHIbasrEB2Iva+aRJmYDfOH1kaHM2GXi7+vFoWmaN/ES2\npTBgF3BDE5aloQ1HvWwdUv38dU5PCtcS+KCO7whr6oJcgoapZl/BOL2L5UOo96e2A++jVoTPqLFv\ndtZWDqxBrQW1FMNRB5NmobaxjkXNBNmSnEhEUgws52TQawlyUduNd1Y/Xw70b7riNJo41C/h4qYu\niHBB3kVtIx+GmpjwrHNCNXYgb8XJG4B+wHiugMb6BvQMEAV0BH6PejPiniYtUcPyr14AAlBTGh9o\nuuI0uFygBOhW/fwGWuasqdNRKxpC89K6+mdb1C7eX59tw8butRKBWkOVULsiLkGtlbdUV/zoswsU\nDnyHel7+wFLUDJctyR+BL1HPLxuY0bTFaXABqF9Qf27qgggXbCXqvTc3MItzJCIUWd4FQWgOqpuR\nW65TbnZekMvZRi4IgiA0AhHIBUEQmjkRyAVBEJo5EcgFQRCaORHIBUEQLsGiRYsYPHgwvr6+3H//\n/TXrExMTGTNmDMHBwZhMJqZMmUJ+fv459nTxRK8VQRCag9N6rWzZEorHY260A+p0IYwcef5ccStX\nrkSj0dRM9XZizs7169fjcrmYMGECXq+XOXPmkJ6eTkJCwhn3cym9VgRBEJqD04a0x8c37rD9C93/\nuaZ6UxRFSUlJUQwGw1l/zyWMQxFNK4IgCA1AOU8/9/j4eGJjYxvl2I09slMQBOGqcK6JJZKTk5k/\nfz6rVzdOXj1RIxcEQWgAZ6uRZ2RkMGnSJN566y1GjBjRKMcWgVwQBKEBnKlGnp2dzfjx43nuueeY\nMaPx0viIphVBEIRLcLap3goLCxk7diyzZ8/mgQceaOpiCoIgNLlL7lVyoeq7/zNN9bZgwQJl4cKF\niiRJitForFkCAwPPuh8uodeK6LMoCEJzUB3rTrpS+pE3lEvpRy4CuSAIzcFpgbylEWlsBUEQrmIi\nkAuCIDRzIpALgiA0cyKQC4IgNHMikAuCIDRzIpALgiA0cyKQC4IgNHMikAuCIDRzIpALgiBcgrNN\n9Xbw4EEGDhxIcHAwRqORIUOGsHHjxiYsqSAIQtM6LTdJSEjIifwkjbKEhITUK9fKihUrlO+++055\n6KGH6swQZLFYlKNHjyqKoiiyLCtvvvmmEhoa2ii5VkT2Q0EQmiWz2XzeWXkuxbkmiqht6tSpACQl\nJZGXl1ez3mQyYTKZADVDokajoUOHDg1fUEQgFwRBaBBn+1IJDg7GZrMRERHRaE0roo1cEAShAZyt\nBm+xWLBardx7773cfvvtjXIVIQK5IAhCAzhXgDYYDCxcuJDMzExSUlIa/NgikAuCIDSA87Wpy7KM\nLMuNcmwRyAVBEC6B1+vF4XDUmerN4/EQHx/PgQMHAKiqquKZZ54hIiKCvn37NnGJBUEQmsYZu+s1\npvru/0xTvS1cuFD5+uuvla5duyoBAQFKcHCwMmXKFCUzM/Ocx7vYN0fMECQIQnNQHetOCg0NM7uq\n/QAAAH9JREFUxWxuvKneQkJCKCsTU70JgiA0lNMCeUsjpnoTBEG4iolALgiC0MyJQC4IgtDMiUAu\nCILQzIlALgiC0MyJQC4IgtDMieyHgiBc8XQ6XaUkSYFNXY7GpNPpKj0eT1MXQxAEQRAEQRAEQRAE\nQRAEQRAEQRAEQRAEQRDq6f8BkxEurSKmbAMAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(M_JNotBest)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAEnCAYAAACE69lsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNX9//HXnZkMCUlIJmETEAQUZFcWpYoScJe6ixWX\nimvrUvHr2qpIQPtrLbZuuNRqoWgBd1wRFQmISBUEWUQ2IeyQkJA9k1nu748JITBZJsksF/J+Ph7z\nIHPunXM+E5LPnJx77jkgIiIiIiIiIiIiIiIiIiIiIiIiIk2QCrwN/AisBX4V23BEROSAt4ExlV/b\ngFYxjEVERCqlAxtiHYSISHNkq+f4CUAO8BawGpgOJEU6KBERqd9pgAcYUvn8GeDJ2IUjItJ8OOo5\nvg3YAXxf+fwdYHz1E7p3725u2rQpAqGJiBzVNgHH13VCfUMc24BcoEfl87MJzOQ42MKmTZimabnH\nhAkTYh6DYlJMzTEuxRTaA+heXwavrwcNcDPwX6AlkA1cG8JrRESkiUJJ0D9ycAxaRESipL4hjiNW\nRkZGrEMIophCo5hCZ8W4FFP4GGGow6wcTxERkRAZhgH15OBQhjhERCImLS2N/Pz8WIcRMS6Xi7y8\nvEa9Vj1oEYkpwzA4mnNIbe8vlB70UTsGLSJypFOCFhGxKCVoERGLUoIWEbEoJWgRkVrk5eVx2WWX\n0apVK7p27crMmTOj2r6m2YmI5aSlQSRn3rlcEMrMtzvvvJOUlBTy8vJYtWoVI0eOZMCAAfTu3Tty\nwVWjaXYiElM1TUMzDIhkWgml/pKSEtLS0tiwYQOdO3cG4NZbb6V169b85S9/aUBbmmYnIhJW69ev\nJyEhoSo5A/Tv3581a9ZELQYlaBGRGhQXF5OYmHhIWWJiIkVFRVGLQQlaRKQGSUlJlJSUHFJWXFxM\ncnJy1GJQghYRqUGPHj0oKytj69atVWUrV66kb9++UYtBFwlFJKasepEQYMyYMcTHx/PKK6+wevVq\nRo4cyeLFi+nVq1cD2tJFQhGRsHvxxRfZv38/6enpXH755bz00ksNSs5NpR60iMRUTT1Mq8yDDoem\n9KCVoEUkprTcaO00xCEiYlFK0CIiFqUELSJiUeFZLKlPn5rL//xnuPTSsDQhItLchCdBv/VWcNnf\n/w7r14elehGR5ihyPejWrcNStYhIc6UxaBERi1KCFhGxKCVoEZEaTJkyhcGDBxMfH8+NN94YkxhC\nHYPeAhQCPsADnBKpgERE0p5MI788cvd6u+Jd5D1U973eHTt2ZPz48cydO5eysrKIxVKXUBO0CWQA\nUbp7XUSas/zyfMwJkbv925hY/yoXl112GQBLly5l+/btEYulLg0Z4gjHuh0iIkeUWK4T0pAe9BeV\n578CTKl+MGNaRtALfrd6E+7UZK7334fdZm9imCIisVG5qFFMhJqghwJ7gTbAZ8DPwJcHDmZmZAa9\noNu3L/PS5rep8FWQYEtoeqQiIjFwJPSg91b+mwO8AwyhWoKeOXxm1YmDUwczOHUw+34ZzeCyIXgL\nvKB7VkTkCBWuHnRWVhZZWVkNek0oCbpl5b+lQCJwPvD36ic8Of3J4Fe9PJe975+AN1cJWkSOPD6f\nD4/Hg9frxefz4Xa7cTgc2O2NG7LNyMggIyOj6vnEiRPrfU0oCbodMJvAOHRLYBbwYfUTUoenBr/q\nkzx8NncI1YuIWM/jjz/OpEmTqp6/8cYbZGZm8thjj0UthlAS9GZgQKQDERE5wBXvCmkqXFPqr09m\nZiaZmZkRiyEU4VksSUQkjOq7iaS50K3eIiIWpQQtImJRStAiIhalBC0iYlFK0CIiFqUELSJiUUrQ\nIiIWpQQtImJRStAiIjWoqKjghhtuoFOnTiQmJtKnTx9mz54d1RiUoEXEetLSwDAi90hLqzcEr9dL\n7969Wbp0KSUlJTz11FNce+21bNy4MQrfgADd6i0i1pOfD5FchzmEJURbtmzJQw89VPX8ggsuoHfv\n3ixbtozjjz8+crFVox60iEgI9uzZw9q1a+nbt2/U2lSCFhGph8fj4dprr+X666+nT58+UWtXCVpE\npA5+v5/rr7+e+Ph4pkyZUv8Lwkhj0CIitTBNk5tvvpmcnBzmzJnT6N1UGksJWkSkFrfffjvr1q3j\niy++wOl0Rr19DXGIiNQgOzubV155hRUrVtC+fXuSk5NJTk5m5syZ9b84TNSDFhHrcblCmgrXpPrr\n0aVLF/x+f+RiCIEStIhYT562vAINcYiIWJYStIiIRYVliKOmidtxOTncb04IR/UiIs1SWBL0W2+9\nFVR26bBhFJpF4aheRKRZilgPOt6h648iIk2hMWgREYtSghYRsaiwjEO8m5MTVFbocOBxRP/WSBGR\no0VYEvSMPXuCyvbHxVGWkEKxz0f99+yIiFjPNddcw1dffUVxcTEul4uxY8cyadIkjEje5VhNqAna\nDiwFtgMXHX7w3RoWsO5XVgamSQT3RBCRo1TaokXke70Rq9/lcJA3bFi9540fP55p06bhdDpZt24d\nw4cP55RTTuGii4LSYESEmqDHAT8ByRGMRUQEgHyvFzMjI2L1G1lZIZ3Xq1evQ547HA46duwYgYhq\nFspFwk7AhcCrQHT69SIiFnHHHXdU7er96KOPMnDgwKi1HUqCfhp4AIjtsk4iIjHw4osvUlJSwoIF\nC5gwYQLfffdd1NquL0H/GtgLLEe9ZxFpxk4//XSuuuoqS60HfRpwMYEhjnigFTAd+G31kzIzM6u+\nzsjIICOCY0ciIrHi9XqJi4tr1GuzsrLICnHs+4CG9IqHA/cTPIvDNM3guRr92rThWvMvXLPgUjr3\nad2goESk+TAMg8NziJGVFfGLhPXVn5OTw6JFi7jwwgtxOp1kZWVx+eWX8+GHH3LGGWeE3lYN7+9A\nOfXk4IbOg9asORFpFgzD4B//+Adjx47F7/fTrVs3Xn755QYl56ZqSIJeUPkQEYkol8MR8lS4xtZf\nn9atW/P1119HLIZQaMk5EbGcUG4iaQ60WJKIiEUpQYuIWJQStIiIRSlBi4hYlBK0iIhFKUGLiFiU\nErSIiEUpQYuIWJQStIhIPTZs2EB8fDzXX399VNvVnYQiYjmL0hbhzY/cllcOl4NheaHfrXjnnXdy\nyimnRG0vwgOUoEXEcrz5XjLMjIjVn2VkhXzurFmzcLlc9O7dm40bN0YspppoiENEpBaFhYVMmDCB\np59+usYlQyNNCVpEpBbjx4/nlltuoUOHDlEf3gANcYiI1GjFihXMmzeP5cuXA8SkB60ELSJSgwUL\nFrBlyxY6d+4MQHFxMT6fj7Vr17J06dKoxKAELSJSg9tuu40xY8YAgd7zU089xZYtW3j55ZejFoMS\ntIhIDRISEkhISKh6npSUREJCAunp6VGLQQlaRCzH4XI0aCpcY+pvqAkTJkQgkropQYuI5TTkJpKj\nmabZiYhYlBK0iIhFKUGLiFiUErSIiEUpQYuIWJQStIiIRSlBi4hYlBK0iIhFhZKg44HvgeXAeuDp\niEYkImIRGRkZJCQkkJycTHJyMr169Ypq+6HcSVgOnAmUVZ6/CBgBzI9gXCLSjC1alIbXmx+x+h0O\nF8OG5dV7nmEYvPDCC9x0000Ri6Uuod7qXVb5rxOwA3siE46ICHi9+WRkRG795ays0Bffj8U60AeE\nOgZtA1YQSMzzgZ8iFpGIiIX88Y9/xOVyMWTIEObOnRvVtkNN0H7gJKATgeGOjEgFJCJiFU899RTb\ntm1j37593HfffVxxxRWsW7cuau03dDW7AuATYCiQdaAwMzOz6oSMjAwyMjKaHpmISIwNGjSo6uur\nr76aGTNm8NFHH9GzZ88G15WVlUVWVlaDXhNKgk4HKoAiIAE4B3iy+gnVE7SIyNHKNM1Gj0kf3nmd\nOHFiva8JZYijA7CQwBj0cuBLAr1oEZGjVkFBAV999RUejwe/388777zDvHnzGDVqVNRiCKUHvQo4\nOdKBiIhYicfj4cEHH2T9+vWYpknPnj15++236d27d9Ri0I4qImI5DoerQVPhGlN/fVq3bh213btr\nowQtIpYTyk0kzYHW4hARsSglaBERi1KCFhGxKCVoERGLCstFwm3bngkq8zjLSBg8D79/JNA6HM2I\niDQrYUnQ5eVbgspMw0fL4XMp914JdAtHMyIizUpYEvQJJwT3oJ3u/+LLaROO6kVEmiWNQYuIWJQS\ntIhIHWbNmkXv3r1JTk6ma9eufP3111FrW3cSiojlpKWlkZ8fuS2vXC4XeXn136344Ycf8sgjjzB7\n9mz69etHTk4OXq83YnEdTglaRCwnPz8/oltNGUZo63xkZmby+OOP069fPwDatInudbWwDHEUuguD\nHn5MKkx/OKoXEYm64uJifvzxR7Zs2UKPHj1o27Ytt9xyC2VlZfW/OEzC0oPu9I9OQWUltmLuK9zH\nUl9FOJoQEYmqA734Dz74gCVLlmC327nooosYP348Tz31VFRiCE8P+k+FQY/e/nTsGHhNXziaEBGJ\nqqSkJADuuusu0tLSSElJ4Z577uHTTz+NWgyaxSEiUgOXy0WnTsGjA9GkBC0iUosbb7yRF154gf37\n91NYWMhzzz3Hr3/966i1r1kcIiK1GD9+PLm5uXTv3h2A0aNH8/jjj0etfSVoEbEcl8sV8lS4xtYf\nCofDwQsvvMALL7wQsVjqbD8mrYqI1CGUm0iaA41Bi4hYVFh60AsXLgwqK/F48JsmFR5POJoQEWl2\nwpKgH3300aCyPSUleLyw5LtV/Oq0cLQiItK8RKwH3a9NG9YYufj9ut1bRKQxNAYtImJRStAiIhal\nBC0iYlGhJOhjgYXAKmAd8GBEIxIRESC0BF0B3AH0AwYBtwADIhmUiEisJSUlkZycXPVwOBzcfffd\nUY0hlFkceyofAMXASqAD8GOkghKR5i0tDSK44xUuF9R3s2JxcXHV1yUlJbRv356rrroqckHVoKHT\n7I4DhgA3hj8UEZGA/HyI4I5XNHSZj3feeYd27doxbNiwyARUi4ZcJEwC3gbGAUWRCUdExHr+85//\n8Nvf/jbq7Ybag44D3gVmALMPP5iZmVn1dUZGBhkZGWEITUQk9rKzs1m4cCFTp05tUj1ZWVlkZWU1\n6DWhdPQN4D/APuD/ajhu1rT7br82bVhzWS6TTxzHffc+06CgRKT5MAwjaAdvw4j8EEeo9T/xxBPM\nmzeP+fPnN7Kt4Pd3oJx6cnAoQxynA9cBI4DllY/zGxyliMgRaPr06dxwww0xaTuUIY5F1JPIX345\nuCyvvCWm6Yjop6CISCQtXryYnTt3Mnr06Ji0H5bFklasCC4r9zrAjKO4OCkcTYiIRN306dO54oor\nSExMjEn7YUnQNfWgv3m3EO2JICKN4XI1fCpcQ+sPxcs1Jbco0pZXImI52vEqQIsliYhYlBK0iIhF\nKUGLiFiUErSIiEUpQYuIWJQStIiIRYVlmt2emXuCyrxuB11yOwX2YxERkQYLS4Le9+G+oDJveRxX\nL7kSTg5HCyIizU9YEnTv078KKoubXUSbUkjbkh2OJkREoi47O5tbb72Vb7/9FqfTyZVXXsnzzz+P\n0+mMSvvhuZPw55+Dy/x+WrlhxPyFYWlCRJqPtCfTyC+P3J5XrngXeQ/Vf7vi73//ezp27Mi+ffvI\nz8/nnHPO4dlnn+WBBx6IWGzVhSdBT5kSXPbGO+zVJUgRaYT88nzMCZFbCtOYGNpCHxs3bmTcuHE4\nnU7atWvH+eefz4YNGyIW1+GUQkVEanHBBRcwY8YMysrK2LFjB3PmzGHUqFFRaz8sPeiHNm0KKsuL\ni8PjaBWO6kVEYiIzM5Ozzz6bVq1a4fP5GDt2LJdccknU2g9LDzotLi7oAVCREOKafiIiFmOaJued\ndx6jR4+mtLSU3NxcCgoKeOihh6IWQ3h60J07B5X92+sNR9UiIjGxZ88eli1bxldffUVcXBxpaWnc\ndNNNPPDAAzz55JNRiUFj0CIiNWjdujWtW7fmpZdewufzsX//fqZOnUrv3r2jFoMStIhIDRwOB+++\n+y7vvPMOrVq1okuXLni9XqbUNGstUjGEo5KcnNlBZf64chJ7rsC70xeOJkSkGXHFu0KeCtfY+kNx\nxhln8N1330UsjvqEJUHv3j0tqMzfooz0Ee9TtLMsHE2ISDMSyk0kzUFYEnS/fsE9aEfxMRSvGQwu\n3UkoItIYGoMWEbEoJWgREYtSghYRsSglaBERi1KCFhGxqFBmcfwbGAXsBfrVdMJzzwWXuSsC//r9\njQ1NRKR5CyVBTwWeB6bXdsLGjcFlBxKzluQQEWmcUBL018BxdZ1QUw967uuNikdExDJ+/PFHbr/9\ndlavXk27du2YPHkyl156adTa1xi0iFhPWhoYRuQeaWn1huDxeLjooosYM2YMhYWFTJ06leuuu047\nqohIM5efD6YZuUd+/fsdrly5kvz8fP7whz8AMGzYME4//XRefz16wwNhudU7MzOz6uuMjAwyMjLC\nUa2ISMyYZvCeiH6/n9WrVzeqvqysLLKyshr0mlCXizoO+IiaZ3GYNb2Rnq5juPXiwZyRuJBTXyxo\nUFAi0nwYhhGcDA0j0NONXKP11l9RUUG3bt247777GDduHAsXLuS8885j+PDhfP755w1oqob3V1lO\nPTk4lCGOmcBioAewDbgx5MhERI5QTqeTDz74gDfffJPWrVvzxBNPMHr0aNJCGL8Ol1CGOMZEPAoR\nEQsaNGgQS5YsqXo+cuRILr/88qi1r4uEIiK1+Omnn3C73VU7qWzevJmxY8dGrX0laBGRWkydOpVj\njjmG9PR05syZw7x580hKSopa+2GZxSEiElYuV+BCXiTrD8HkyZOZPHly5OKohxK0iFhPnra8Ag1x\niIhYlhK0iIhFKUGLiFiUErSIiEUpQYuIWJQStIiIRSlBi4hYlBK0iIhF6UYVkcPMnQv33lv78d27\nYcyY2m9GGzoURo0KLl9x9gq8eTVv0pk6MpXjnzq+EdFKpEyZMoVp06axevVqxowZw9SpU6uOzZs3\njzvvvJMdO3YwZMgQpk2bRufOncMegxK0yGE2boT+/eHRR2s+/vnnUFxc87H162Hp0poT9P55+xm0\nbFBQefGKYna9tqsJER990hYtIj+CO067HA7yhg2r85yOHTsyfvx45s6dS1lZWVV5bm4uV155JTNm\nzOCCCy7gscce4ze/+Q3ffvtt2ONUghapQVoa9OlT87HaygHmzKl5E+UDkgcmB5X5y/wNjO7ol+/1\nYkZwZyYjhJ1NLrvsMgCWLl3K9u3bq8rfe+89Tj75ZC644AIAHn30UZ5++mnWr19Pjx49whqnErQ0\nC3/+c6BnWxObDSZPhm7dDpbFuT3seHkv1JI70y5MI+G4hOC6fshjyOYStv09DEGLJRy+G8qaNWsY\nMGBA1XOn00mPHj1YvXq1ErRIY7z7LlxzDXTvHnj+xhtQWBj4evlyuOMOOPbYwPM1a+BCVwFb/7KV\n9FHpVXWYtgo8rjWUrC6m2O+i/fXtD2nDMOJwzLBxTEE87p0tgmLo+kTXiLw3iSzjsFX1SkpKaNeu\n3SFlSUlJFNc27tUEStDSbIwcCQMHBr4ePRqmTAG7HXbtgh49oF8/6NTpDK65ZgkG4PbDrgO/IV4f\npj3Qk3J2OIY8fJS8WW1n6KQkijuVYT/ndyxbeyJzNyUGtb/5y5PY9vfAGPbgwZF9rxI+h/egk5KS\nKCkpOaSsuLiY5OTg4aumUoKWZsXj91Pu92MmwG/GgsMBb30Mwy+AkpNzMTbtYG37OTgXtqPNjCI2\nvdYen2kyfsMGOhtOfHYnV3zjpzQJ5lxvx2OaFHi9tN+9m/NsX3N2x584acTPFLkMPKZJK5udHvEt\nsXu343e05aF/v8ZHebAjF/olJtItIXiYRKzl8B50nz59mDlzZtVzt9vNunXr6FPXxYlGUoKWI1px\ncTE33XQTbreb0tI2eDyH7nbhcMTx8MMPU1oamBN31o8/srSoCP+bBp2/D5xTdgd84zQp+9nPB4aP\nXXlFJBUkk1TuZ3vufkzgno8/49Z774U2bdjffiu2FAf/N7ADAOW7duG45RbweMjd8whdU97CGb+B\nre3aMfmqq5jvdnPCCW3p32YxxwyeycYymLfKRp5hMNjno+1mg8GpLXhguQGGQa7Hg880SbDba3zP\nf+vWjREhLjgvjefz+fB4PHi9Xnw+H263G4fDwWWXXcaDDz7IZ599xrnnnssTTzxB//79wz7+DErQ\ncoTLyckhKyuLf/3rX9x66zkkJHix2w9e2du+fQffxz+FZ8TXXPdFEeX9r+X+sikU7ikmPT1wgcfc\neibnuZeTuG8re85086cH76J082B2Fo/g6sufCVSUkABPPAEJCWxyOHDEOehyoPfbrVtgbh5QMuwH\njv3rVaQOS6UncA7AkiUUvXQvG87dzCO+8Rh7wcgzKGnhBMBh92MbV0jvJQtJbtODs84CA0iuIUH/\ndetWfi4tVYKOgscff5xJkyZVPX/jjTfIzMzkscce45133uGuu+5i+/btDBkyhFmzZkUkBiVoOeIl\nJiZinGhQPuQZbroDWrUKlJeWruOrr75hubGVjjtTafG/eLqeuJ5u5j6+WOsg3+HF2d3Aub+Uir12\nSvueSVGL4/niz2fhWNKChC8TKPtiLQlxTRyGGDqU5KGLGQh8+il8992hhy96/V4KJ7zHKUlPs2l1\nOsf2D67C5RpJmzZX0NbpbFosRwiXwxHSVLim1F+fzMxMMjMzazx21llnsXbt2jBHFUwJWo4ot90G\nubkHn5eUtGXv3pcY++/HKInvTam3A7YK+N//oEWLudgTWnP/53+i186exHtNitJX0qbbSVz/2dV4\nyxwkbe9JYYtCSj1+yu0Gbntg9YMK/Mzt/Sl337uABy4/p2r2B4Cv0IeBQeuK1iQ6gy8G1uXCCwOP\n6goWw7o3xzLgLg/rsyCx4OAx029SWL6BnQXTSXaPImG3D0eCh3KznIKvCyjbVEZN7Il2Oo3rhGGL\n4L5+EVTfTSTNhRK0HFFeew1mzQrMvgDYs6eY5ctnk5IO4wfdwT0Xn4JhwH2fwogRcxk8+BW2vOmj\n/anZJH30Is+f2Ieu/l2cuP8TTH8ZjrYFxBub8XgdzBlzEzuP647Xm8fOnbt5/tvFUFbOTTNewWbL\nqYrh5v/dQlFKESd/ezL3D7+/6W/q+ONx/Ceenhuf5jfroeS/Bw8Ve4dTdFoPPKM/Zuu0Vzk7yYdh\ng6nFO/h623I8x9jxJTnwlbUFDNo6nfyq8xC6z+5O+xvaE5cW1/T4JGaUoOWIMXfjXMxBv7C3C9gM\nMPHzi+cjPCctpNTmpGvX18jOnkt5+TYGDiykRYtfqKj4Ev8gP/ZTtuIf4MQxNBd78iDaPvBmUP1j\nKv8tL9/O5s0Pc/XVXZg06Q7Ky1tw4ombqs7r5a3g+5x1vPDiD6yeOhaXa2/VsX6bR/H5vz7hkvQr\n6dWr1yH1+3w+7r77boqKig4pr9hbQam9lH/c9T4bVrRk6jRIbBk4dpKZxznb/8ZGs4KK3/4TX4pB\nUmeD+dN2s9ZXSr+Tk0g2cslOuobl5Qn0z81hX8XH3NuyjsVE5IihBC1HjHvm3oPZZQCr9rgwDPD7\ny/ll1xd40hyc1747Jy3YTiK72Nl3Hh1IxL67JQXuN/H1TyQvfhd2l0kr/3HYW11dZzvx8Z3o1Ws6\nAPffH5i3DKdVHXc4FtDJXUDZzllM/3Y7dufBRSET3YspnlXMs4tfZNeGQ9fXKC8v51//+hevvPIq\ne/fCgem1/uO8TM56gB/nbMZZ0pmMdtXX8oijbX5PBs7dxw/LYV8unHIqfJddSncjhUd+7MBPd+dh\n73MvD3gMhv78Az9/+GETv9NiFUrQEnV79sCvfw0eT/AxrxcKCg6ud+HzlbBz51q2bCmg7OZSyBrP\n/JUZgJ+CAj8OB5Ts6MIP707H5T2ND22X0uq9eCYXPkJFfDsSiuHO59J5dlwBOd1dLDPj+Kb1wJBj\nPeuswOOQ+PufyNa/tyT/x92sYwO3OR88GH9cKX/q/Sw7s+eSNu4c4qqNMJgeHx7Tx61/9+JdfRPx\n8dlVx9wVSVwzrwUOR0tuvrkDPZ+rPoPjEQA+mABPPgk9C2G3ewKGYWNl8XVMzOtJUdFJPAYs3BoY\no/e+9z7frAy82vjiPGzPPVJVW6vTWjFg7gDE+pSgJSK83sAt1P7KGW+maTJnzhzKysqYX/EZqzs5\n6Nv3YIKy2Wx0Oa4Lb299ERt28uyJla/z4fFUYPoNjDgv4x/+iGF9R5NjLmNjcTwul524uCQcvod4\nZ3d3zC5FOMvLufjEkzmlbX8MA8yJP3PXsL4YvRKIMwz6JTbswt7h2l3bjnbXtuOrJ5eRnVVI8p2/\nqjq2bdszuKbuYUd+PIWfuTGMg3ehmX4fmCZJPZ/hj9d9zjHHbK06dv/9e3jssWd56KHPGDXqPb75\n5tD53AADBjgxjMGsXm3g94NhwJd7O9P93qdpYbp57/8dT8q2b9ifm8Xb88dh8xl0bTmX405exBf/\n3M2IY5Po5PWQP3kt/9tZOSxjOEhKHkyfpPDfBSdNF0qCPh+YDNiB/wBPRjQiOSosWgQXXwwHhmG9\nXh/Ll7emTZs25Nwylja2MThLA9MV/H43q1f/RFvnyfyu8yWMSD8ZG4HZB6Wlq/j4k2WkpZ7D7b+7\nnZbOluTkvM+e7CwW/HIavx4UT2JiMmZFCXGbCtnZYzA58afRIbkbOZ4KAFymyYkJCXRKTQXglltu\nqVqdbL/Xyw63GwCb3c4ZmZkkHXNM1fu4qm1b0rduZf78+Ye8v2Kvlw8XLSCpjYu8wburyhMHX83F\nHbrinjSJ1z8+dJy7pHAH5w0Yyv5+q/hj+SrYXO2gF/6w4T2OGZPCww/fWMN31MbWrW5effUZrr32\nWiZMCCzyNGFCHPAHcnPhuatyMXvsJK/FSpZ0DHxo7C/bz3HmF5zi+hM7d/jZU2bSdlgc7lmBT84W\n7baxacaTuI0RxBk22l7TlnZj2tXQvsRCfQm6BfASMAzYA3wLfA4sj3BcTZaVlUVGBJcrbIyjPabs\n7Gz+/e8jm+QAAAAODklEQVR/AzCt9FM81zjY2z6QvPx+P/aTd9LnjDNYmF3Gppn/IMkZ6CWuW3cb\nf/vbVpa9/RPbgC+Lv2TsWA/t2vkwTTjnjDgWLnyfM4e+SmqSATY/blrgLnqdtd4STm/ThoeSz8Xc\nei4l348EILfiJ5755i68fg9xxSa7LwRbfGCs2L11K13++lcMp5N8j4c+iYkMTEri3ccfp31+Psef\ncAIAX+bn8/G+fZT/858sXrz4kO/TmpIS1rdsyZCMDL7Mr7YmB7AmP5/sigpu3rbtkHJ/WRk+I45r\nRq9kfJcuhxw7d1pfzj2pD69t/YRdxxZQk665qdx11y08+ODtFBa6MQx4/vknadHCARyLLe87nry9\nFa9t8fPP8yrHj8yR2EuG89yUHCa/fA7xzrbY/Qen5sUneckvuo99o6YwqouX3MUmhX3bAmC32ejQ\n6WTiU04I5b+/ihV/zo9U9SXoU4E1wI7K528Co1CCbpSjLSaPB9atO3ixa/bs5cyatYazzjqLre2W\n0v6b1znzmC/w2Bysa+PixNYeBu6F0xP788qrj5CSHJgZ4fUWcuGwQVw6ojV07MSM/y7htDOWM3vZ\nQ+zZnU5CPKzZ/gnndv6ZG1NvwwTKc7vgLHOxzrGYv+54mh38hJm+huTNCwEoc5fhsxUz6/6ZVBgm\nRSNbYsQFEnR8QgIdqyXI4xMSaGm3s/zll+lfVMTAyoS7afdu9lRU4N63j44dO/LMM89Uvea1Xbvo\nXFDAayeeGPR9WZyfz2/Lynjw558PKXe73dxjs/Hf3r2DXhNns/G7oZPxDp2Mt9riPJs/+ohdixdT\nUbiSLfnZJHSLowI3Hr+Plv2ceEwTf0YpycUbqJj9CdMXPM7XSzbTu/+Bu11MTMOJu6wVTtcIUntN\nO6Td54dewv99sIbX5t/JaxgYpgHTAu0Xlfl5+U/t6PzdTcSntiA1BRwJgWN+YKsRR0X+UJI/coLf\nxEwMfH+nF07HSInDadhoeWJLBnyh8e7Gqi9BdwKqdwO2AxkRi0YsZ8cO+Oyz4HK/6ePZDXezfnMx\ngSFdE7O0gN8mbqbl9xsZlw7nD5xBIsV4TBvFBS1wHtghwzCwpezE3WYvm0u64TMMtnj9OP37sO1c\nQ8mOPWz6oQ+2bxJp64Ckigo27fFSWtCHnHZDWfJgYLz0pvbtOc0xgG7f9mbqzh10P7YVZ7VJq4qx\nQ4cODE5ICFw1qyiDisoDJSWBMsOAaiuQDe7cmb9NmgR7A+Oz+xISKIqLI6WigmPbtePVhx+GFi2g\nbVu+Tk3FYZrw3/8GPqFKSuC44wA4vqiIM9LT+fL55wMfXmnp0DIwb+7Oa67Dv65ybCMtBVu1eDf/\nvIqr27Y65Ps86ZMPOLNXD445+w5e2b6FBzofW3Xs1GGn8u5/32XwJcO56f1HMAc+xcf56VBtiVSS\n9kGH9VBmx+9cRC4Ht9Uy8XOdOwXP6Pdo3WMz6QUGpyxLqTo+54s/ke1MInnMJ9i9NvZWG0/32W24\nOqxn9yejWT2qK7/0K8aMCxxf9uVGSi/+grM/3MCJ825l5Z3rMKrtfuo0DGyGgWuki9aXtA7+4bKI\n2ra88ng8jBkzhmXLlpGdnc38+fMZPnx4RGKo7zajMcCZwO2Vz68mkKB/X+0c8/Dl+AB6uo7h6rP6\n0bftctY4ahpTi6ys/31DxqmnR73dulgzpkUMG3oq+A78KLgxDRMDExOT7cUF+PJbcdauVhiY2P0+\nDBMwTOy91mE/ZRnuCi/uuDKK0tuCYWBWVtXJ2MaKldezpX087QryGbJqE7tatSGnVRonrXRiW9sX\ndhxL9cXCXjb/yXzm4yT4Bos7bZdxVase+JN8YKuoKjd8Pj7v258uubs5YV0cYIDhAyC5yE1JggPT\nYcfvScPEwDA82H1+MMGDDwMwzXgMWwF2x07iPSZLujgocSbibtODtrtbsmDju1yRck1Vm6bpx+mt\nIL7cjmnzYMZvwVeZhHx+Hw57HDZfC5wFvTA4GOuB3xQDMHFS4VoCho8ni99mkzcwLc9uAqaz8jyT\nR2xj6RrXjQ3HdsXu95NQarD+RD+72/v5ftXrDOn3W+IrKrj0x0WUJQduSzdblgLgtO8goc8SXlq2\nn9KKwLizUfm9KXd6+Xaoh/z9p2L6D1u/OmkvfLQSLjgT2/EpGMbB7adMmx9sPu6I38slztXYjEN/\n/1/72MaYu+NJMkrYsvMUbNU2PfDZ7Dh8XtqUFOJb04fvji9m0j2fBy3puShtEd78yG155XA5GJZX\n992K77//PjabrWrLq+oJ+qWXXmLQoEGMHj2aWbNmceaZZ9Zaj2EYQe/vQDn15+A6nQF8XO35AxyY\n83PQRgI/d3rooYcejXocbj7zg8rCqSH1P/roo+bYsWNrPNapUydzwYIFdb6+jvcdWGGrDvUNcXwP\n9AU6AnuBq4DfHXaOtiIWkaYwYx1AXcwaer+N0Kiecn0JupzA8MZcwAa8DvzQmIZERI5Ehy/YH02h\nzIOeU/kQEWl2wtSDbhRb/afU6XxgFfAT8FDTwwmLfxOYs70q1oFUcyywkEBM64AH6z49KuIJDGEt\nB9YDT8c2nEPYCcT1UawDqbQFWEkgpu/qPjVqUoG3gR+BtcCv6j49KnoS+B4deBQAd8c0ojCIUA/6\njwR+71YD42o7qSm3elv1JpapwPPA9BjHUV0FcAeB/4wkAsNEcwn8csVKOYEZOmUEfg4WASOA+TGM\n6YBxBD70rXL/sUlg9lJejOOo7l/Ae8BMAh2t4HvDo28dcHLl1zYC90+8H7twmqa2La/sdjtut7uq\nZ+12uykvLyc+Pj7UqgcB1wH9AQ/wGfAVYe5UnsmhMzzuBx4NZwNNcBzW6kEf7h3gglgHUU1LAr3p\n4Dsooq8T8CWBDwur9KA3A+n1nhU96cCGWAdRj3MJfOiHokmzLBojlPonTJhgGoZxyGPixImmaZpm\nly5dTMMwTJvNVvVvdnZ2jfUQfBH0GuDVas8fBR6u6RvTlB60bmJpnOOAIUD0J4cHsxHozXcn8NfQ\nT7ENBwgMtTwAtKrvxCgygS8I/L68AkyJbTicAOQAbxH4UP2BwF9oxbEM6jBXAzMa+2KHy0GWkRW+\naGqovz51bXm1ZcuWpjS/CpgIpBH4S3YUsKKmE5uSoC09NcaikgiMG44Diuo5Nxr8wElACoEhlwwg\nK4bx/JrAdM7lWOvDfiiBuNoQ+HP0ZwK9/FixEfiQH0fgL59ngPFY5zqQE7iIJsRT300kR7hVwD8I\n/K6VUUtyhqZdJNxO4OLXAcdyaI9aDhUHvEugVzE7xrEcrgD4hEAiiqXTgIsJDCnMBEZijWsJB7ZM\nySEwPDUkhrFA4PdsB4HkDIGYTopdOEEuAJYR+H5JzV4iMAZ9KrCLwIXesIoncHW7I4Hk8z0Q+kro\nkXUc1hqDNggkGivNlEjn4EW4BAKzTEbVfnrUDccaY9AtKx8AicACAh8isbYU6FH5dSaBXrRVzAJu\naMD54RxethxqHm04sAhJewJDixFZ4/UCAjMTfgL+FIkGGmEmsBNwE+hpWGGsdxiB4YQVHJyCdH5M\nI4J+lXGsIPAn+2OxDSfIcMAKezd1JTDbZgWBaVGTYhtOlQEEOkVrgE8BV2zDqZII5NKwGTixzqER\nRc0J+msCP1dLCVwQr9GRuSe7iBxNKvPY0akpiyI19UYVERGJECVoERGLUoIWEbEoJWgREYtSghYR\nqcGUKVMYPHgw8fHx3Hjjwclg3377LSNGjCA1NZWUlBQuueQSduzYUUdNjadZHCISa0GzOBYtSsPr\nza/l9KZzOFwMG1b32le1bXn1+eefU1FRwbnnnovP52PcuHGsX7+erKysGusJx9ZWIiKxEjR3eP78\nyM6Nbkj9dW15ZZqmuWrVKrNFixa1HqcJy2JoiENEpA5mPXO058+fT//+/SPSdlMWSxIROerVtWD/\nypUrmTBhAh99FJlVCdSDFhGpQ2096I0bN3LhhRfy/PPPc/rpp0ekbSVoEZE61NSDzs7O5pxzzuGx\nxx7j2muvjVjbGuIQEalBbVte7d69m5EjR3LXXXdx2223xTpMEZGIatIsi8YIpf6atrzKzMw0J06c\naBqGYSYlJVU9kpOTa62HJszi0Nw8EYm1yjx2kBXmQYdLU+ZBK0GLSKwFJeijiZYbFRE5CilBi4hY\nlBK0iIhFKUGLiFiUErSIiEUpQYuIWJQStIiIRSlBi4hYlBK0iEgNatvy6qeffmLgwIGkpqaSlJTE\nkCFD+Oqrr2IYqYhI5AStX+FyuQ6sYRGRh8vlqnctjvfee8+cPXu2efvttx+yo8r+/fvNLVu2mKZp\nmn6/33zuuefMtLS0iKzFodXsRMRy8vPz693JpCnqWoT/gMsuuwyApUuXsn379qrylJQUUlJSgMCK\ndzabjc6dO0ckTiVoEZE61PZBkZqaSklJCR06dIjYEIfGoEVE6lBbb3v//v0UFxdzww03MHr06Ij0\n+JWgRUTqUFfibdGiBRMnTuSXX35h1apVYW9bCVpEpA71jVf7/X78fn9E2laCFhGpgc/no7y8/JAt\nr7xeL/Pnz2fNmjUAlJaW8vDDD9OhQwf69esX44hFRMKvxqlpkRRK/TVteTVx4kTzzTffNE844QQz\nMTHRTE1NNS+55BLzl19+qbOtxn5jtKOKiMRaZR47KC0tjfz8yG155XK5yMvTllciIvUJStBHE215\nJSJyFFKCFhGxKCVoERGLUoIWEbEoJWgREYtSghYRsSitZiciMeVwOIoMw0iOdRyR4nA4irxeb6zD\nEBEREREREREREREREREREZFG+/+5aJed1hm8SwAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(M_JW)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEnCAYAAABSTgMJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNX6wPHvbEs2vREChI60gIACIlIiYr1gB0VFxYKK\n5eqFnx0pClgQK4IoKhbEjlhARAm9GDoICQkkJJCE9M1m+878/piQQkLYJBsSkvN5nn1u9szMmXdz\n8c3ZmTPvAUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhCbtEyAL2FfNPrHAdmA3sO4cxCQI\ngiDU0VCgH2dO7lHAfiCy5H3YuQhKEARBODONB/tsAPKr2X478A1wsuR9Xl2DEgRBEOrGk+R+Nt2A\n1sAWYC/wgBf6FARBEOpA54U+tEAvYATgB2xFTfQHvNC3IAiCUAveSO7HgBOAteS1DriQ05J7586d\nleTkZC+cThAEoVlJBrrU9CBvXJb5DRiCOoL3Ay4FDp6+U3JyMoqinLevadOmNXgMzTF2EX/Dv0T8\nDfsCOtcmMXsycv8aGA5EAGnANEBfsu1DYBewCvV6ux74GHVKpCAIgtBAPEnu4zzYZ27JSxAEQWgE\nvHFZplmIjY1t6BBq7XyOHUT8DU3Ef36SzuG5lJLrR4IgCIKHJEmCWuRqb8yWEQRBqFdhYWHk51f3\nLOX5LzQ0lLw87z0DKkbugiA0epIk0dTzx5k+Y21H7uKauyAIQhMkkrsgCEITJJK7IAhCEySSuyAI\nQhMkkrsgCEId5eXlcdNNNxEUFETHjh35+uuvGzokMRVSEITzU1gY1OfsyNBQ8HRm4qOPPkpwcDB5\neXns27ePESNG0KdPH3r27Fl/AZ6FmAopCEKjV9U0QUmC+kwpnvZfXFxMWFgYhw8fpl27dgA8+OCD\nREREMGfOnBqcT0yFFARBaDQSExMxGo2liR3gwgsv5MCBhl3SQiR3QRCEOjCbzfj7+1do8/f3p6io\nqIEiUonkLgiCUAcBAQEUFxdXaDObzQQGBjZQRCqR3AVBEOqga9euWK1Wjh07Vtq2d+9eevXq1YBR\niRuqgiCcBxrzDVWAcePG4evry6JFi9i/fz8jRoxg8+bN9OjRowbnEzdUBUEQGpUPPviAgoICwsPD\nufnmm1mwYEGNEnt9ECN3QRAavapGtY1pnrs3eHvkLpK7IAiNnij5Wz+XZT4BsoB9Z9lvAOACbq5p\nEIIgCIJ3eZLcPwWuOcs+WuA1YBXn9tuAIAiCUAVPastsADqcZZ/Hge9RR+/N3ssvv8yqVasqtcfE\nxLBo0aIGiEgQhObGG4XD2gA3ACNQk3vTvjDmgQ0bNnDrrbcycODA0raMjAymTJnSgFEJgtCceCO5\nvw08i5rUJcRlGUAdpV922WWl71NSUhouGEEQmh1vJPeLgWUlP0cA1wJOYMXpO06fPr3059jYWGJj\nY71wekEQhKYjLi6OuLi4OvfjjeTeqdzPnwK/UEVih4rJXRAEQajs9IHvjBkzatWPJ8n9a2A46qg8\nDZgG6Eu2fVirswqCIAj1ypOpkOOA1oABaIs67/1Dqk7sE4AfvRadIAhCI/f+++/Tv39/fH19mTBh\nQkOHU0ossycIwnkp7LUw8m31V38g1DeUvGfOXn+gTZs2TJ06lT/++AOr1Vpv8dSUSO6CIJyX8m35\nKNPqb+a1NMOziX833XQTAPHx8aSnp9dbPDUlqkIKgiB4QWOrfSOSuyAIgheUFPhqNERyFwRB8AIx\nchcEQWiCxMhdEAShCXG73dhsNlwuF263G7vdjtvtbuiwRHIXBEGoi5dffhk/Pz9ee+01vvzyS4xG\nI7NmzWrosMRUSEEQzk+hvqEeT1esbf+emD59eqMsrSKSuyAI5yVPHjBqzkRyb2A//fQT77zzTqV2\nPz8/fvzxR3x9fRsgKkEQznciuTew+Ph4OnfuzPjx4yu033jjjZhMJpHcBUGoFZHcG4FOnTpVqm1v\nMBgaJhhBEJoEkdzPF0VF8OKL4HRW3jZoENx997mPSRCERktMhTxfHDsG334LvXpVfOn18OmnDR2d\nIAiNjBi5n0/CwmDSpIpta9fC3r0NE48gCI2WGLkLgiA0QSK5C4IgNEEiuQuCINSBw+HgnnvuITo6\nGn9/f2JiYli+fHlDh+VRcv8EyAL2nWH7eGBvyfZ44GLvhCYIglCNsDCQpPp7hYV5FIbL5aJnz57E\nx8dTXFzM3LlzufPOO0lKSqrnX0D1PEnunwLXVLM9AbgM6A28CHzshbgEQRCql58PilJ/r3zP1mf1\n8/PjmWeeISoqCoBrr72Wnj17smPHjvr89GflSXLfAFT3KbcDRSU/bwLa1DUoQRCE81VWVhYHDx6k\nV69eDRqHt6+5PwT87OU+BUEQzgtOp5M777yT8ePHExMT06CxeHOeeyxwH+olGkEQhGZFlmXGjx+P\nr68v77//fkOH47XkfiHqtfZrqOYSTvmax7GxsZXqqQiCIJyPFEXh/vvvJzs7m5UrV6LVamvdV1xc\nHHFxcXWOyRvJvR3wI3AXUO3t4cZY0L45OXgQZs9W7xVVJTAQ5s8HjZggKwg18sgjj5CQkMCff/5Z\n56J/pw98Z8yYUat+PEnuXwPDgQggDZgG6Eu2fQi8BIQCC0ranMDAWkXTVPXqBQcOqD+XX0Q3NBQe\nfvichbFrFyQlwaOPVr39vvvgzTfBz++chSQI573U1FQWLVqEr69v6YwZgEWLFjFu3LgGi8uT5H62\n6B4oeQlnkpsLW7fCbbfB0aNl7Q0wRO7YEe66q+ptEyee21gEoU5CQysOluqjfw+0b98eWZbrL45a\nEoXDzpVT/wjL/2Osz3+YHorvF4/lkAWAn2zwTzhIQJf3utD6gdYNG5wgVCdPLLNXHZHcmzn7CTsD\nDg7A0NJAqygID4cbC1KwPuvk99cr7jtvHowa1TBxCoJQMyK5n2defx1SU8s1HL8AEv/L4K/gzjtr\n16fWqEVr1LLnkLomiOktCckXJj1Sts/LL8ORI3UKvV7Y0mxkfZVVqV0fpqf1RPHNQ2i+xLyI88yb\nb0J0NPTsWfJqb0EjyV5Zr6NVK+jaVS2pERGh/nzq5eHlx3Muf3U+J5eexFXgqvBKfCgR5UzTggSh\nGRAj9/PQffdBy5Ylb9YeZ03cJg5yMwAOB5jNVR93pvbzXeCAQDq/2rlCW9praQ0UjSA0DiK5NzG3\n3AJxcerqe1URM2IEoXkQyb2JKS6Gn3+GESMaOhJBEBqSuOYuCILQBImRuzctWwb//gvJybBkCWzc\nqLYXFVV/nCAIgpeJkbs3zZkDOTnqw0laLeh06mvaNHUCuSAITdIdd9xBVFQUAQEBtG3blqlTpzb4\nbC0xcve2hx5SC7jcdRdcdVVZe0pKg4UkCE1R2MaN5Ltc9dZ/qE5H3pAhHu07depUPvvsMwwGAwkJ\nCQwfPpyBAwcyevToeovvbERyFwThvJTvcqHUY9lwqQZld3v06FHhvU6no02bhl2UTlyWEQRB8IJJ\nkybh7+9PTEwML774IhdddFGDxiNG7k3YwYPwzz+V24OD4YYbzn08gtCUffDBB3zwwQds2rSJm2++\nmYsuuoiBAxuu+rlI7k3Y669DQgJ06VKx/csvwWoFHx/P+/Lzg+eeU2vMVGXIEPjpp9rHKghNxWWX\nXcbYsWP5+uuvRXIX6s+DD8KECRXbvvnG8+PT09WCYVdfDYMHl7UHB6u1bUBdh+SJJ+oeqyA0FS6X\nC/2ZHhM/R0Ryr2e2dBu2IzZMGSZku0zB+oKyjcqFOAtc4N9w8Z3Nk0+qU/cjIsra3G7Ys6esVk1Y\nWMPEJgiNQXZ2Nhs3buS6667DYDAQFxfHsmXLWLFiRYPGJZJ7PUt6MgnLvxayA7Jx5bs4+mLZSkwu\nHifv9y0EPxjcgBFWz+2GWbPgppvK2qxWkdAF4RRJkpg3bx733nsvsizTqVMnFi5cyNChQxs0LpHc\n65sbOs7qSGS/SAyxBvqt71e6KV+6D0U5N3fUZdmFojhL3vnidttwuwEUZNkJ1G1RX0E410J1uhpN\nV6xN/56IiIhgw4YN9RZHbXkS/SfAf4CTQO8z7PMucAVgB+4HdnklumYu949cbJk29U2mBXJGIlvc\npM/PwB4oEzI8hCAP+9q9O5aion+QJA2KUsDmzVEYDA5k51L++SeGoden1NfHEIR64ekDRs2VJ8n9\nU+A94PMzbL8FaAfEAP1K9u/rleiaAatbwxdflJWhOaWwEFa8mMs1w2R0kXrIdYMUiiwr2LOd5G83\nYfnXQtDdnp3H7TZx8cX/EBBwIZIEQ4cW4uMDm/SbcLqaaKF3QWjGPEnuG4AO1Wy/Dvii5OddJX1G\nA+l1iqyZOGGxkVRkg3tWVWh3rJHZbNKz7Io8UrpI6sXvsQMpuEvm5dtsfHI0ksL1hTU+n81lw3n7\n9Vz+pQWNBM/anmX2fhlNgToKah3Ymld5lfy/81HcCgMPge+3kLIPfDv5EnVXlFc+tyAI9csb19yj\ngfLL3qQjkrvH7LIb9AodLsuu0H5Yq4DLxJ+9+hHRP0KdbzhpEqG6fVhkucq+MjI+Zdy475Ak2LsX\n8vKeIi1tP3v3/onNdhTQUJSwF6X1dkasexatRsbgMNA7fxhRRwYSPbINTx6exOJbFyNpJRSXgkYB\n3ODMdpH5aaZI7oJwnvDWDVXptPdi8coSyfnJPPrto2xcvxG5UEY3s+xXfpJeaCQtRq2eVcPGVzjO\nTzMZSalZUaSCgrXk5PSgU6cRJCt7KYzMJMPfh4OuQUj+l1F0IoXCld9hVGSSd1wLwCXOAjL+Gcf+\nvT2I3OWE2yCwXyCB/QIB2LoPuo6D6L5Wcn/NreNvQxCEc8UbyT0daAtsK3l/xlH79OnTS3+OjY0l\nth6L/jQWDpeDW3vcyuK7FjPyp5EkvZhUuq1o2gB8dSWPiZavbqepfcmfrKw+ZDsu5N5fbiEi7HJy\nXbB5tx2XogBrQM6jf1Bvhq2OwF+rJbiPmf/971FyvnyXL5O71fh8pu0m7KuKuSQPMsot0h14cSAB\nFwbU+nMIQnMVFxdHnBdmAXkjuf8O3AV8D1wEuIHjVe1YPrk3JxqNBp1G/VWf+l8AQkPBXAxSEfj6\nqm2KAp061el8iiLTMqAlI5JXMvACN4932sCDrVurG/ftg8JC9hYXszgjg7/r+E/gyPNHsFskOlt8\nKFyvtlmPWMn7I4+YZTF16lsQmqPTB74zZsyoVT+e/Jf9NTAciEC9tj4NOPVc7YfAD8DlwAHUqZAT\nquhDqMqPP8CYp0ETCFklI/ecHOjeHW8W7PTVaAhbsoTc3Fw1uZtMsH07UmYmRaaH+PErmas96Mcq\nu5mVmorTJuFSopmVmkaMzca+cSF89UN7nv3UCEDWsixylud4LX5BEGrOk+Q+zoN9HqtrIOcrd7Gb\nQ/cfQrErkHI/PGXGvN9MyowU9i/YT9DBIE5ec9LzDn19wWIBq5aWKPgOGAQkq9uGDIGS+67Z7mxu\naHMDbLNhu9pCgfZHrvwtm6KglSzd40tIgLFCt7Nnz2bBggWQlwcGA/TtizYpCd3fOn74Ea6+ibMq\ndLnZYzbTQfIDwOJ241YUdrgKKOoRCNSsfnVcfj6PHD5c5bZQnY6N/fqhkU6/nSMIgifEE6p15Mxx\nUvBXAV0XdYVd/8DoSzHkGQgZGULLvi35+6K/MfU3ed5hQICa3P0iydJI2OK2EtC/XGGXSJmTDgcb\nTZnYFCcvXvgmBz9JYI3pDmbMmMKq72IZOehmrr08mMmTKnb98MMPg8OhrhT18MM8t3Ejxi8kqMES\nr/dERTHCL5z3JJjVqRO7jSZ62Kzojm+GuBbqTv+iPvJ26rqhwQCXXqouP1jOUZuN7n5+zO7YsdJ5\nev3zD7KiiOQunFcOHz5M7969GTNmDF988cXZD6hHIrl7gcPgYGmrpdyh/5vVEa3I9MlkbdhaMlpl\n8Hvx71xmvMxr59IiYT5o5PdDFlwhWj442grfYH+OHmzNAZObomMtaG3sSJjx7H15y8ANa3hkwyKK\nMzsDYM/thbugO8VPfw+Ace82pP37kbp0rnRsiE5HD//KldNEShfOZmPYRlz59bfMni5Ux5C8mj0F\n++ijjzJw4ECkRjAoEcndCwpsBWxK28StbgfppnQsTgsZ5gwM+Qa6h3fn2i7XgvPs/XhElrDO6s51\nt59kD1rez4KcNet5tuU1LDWMwfhwJNOCdjFjFxy6UmFTkIxVlqF1aygoUL8VeJlOkvmu+1gWm98E\n4GJbFn1cOXxiVq/W/ezoinO/m55dqutFEGrGle8iVomtt/7jpLga7b9s2TJCQ0Pp2bMnSUlJZz+g\nnonk7iVPDXqKNoEJPDPkGf76OYdJAyZxVbkFslO8uEC2vz/0uhD0x+Dyy2HNzxDUxkWS1IIlHQsJ\nC7sEtmzh1TdM9PBL4t2XB0NUFHTooHbw/PM1P6ndjqQoaCwWwIhRASyAW8aAm2HDYLKa28laBjnL\nYcoy9f0xX7DW3wBLEBqcyWRi2rRprF27lkWLFjV0OIBI7h5x5jmxJFQ94nVkOM5xNGemx8VgfztR\noaFgMrGkIIquj44BTUnFuoKCao+XFA12l50+C/uUtqV0g6ztDq68pYAWyjyk0f9lzoABPDwOpv0X\n+iSOIKWPwt5+/ei7fTtX+vuTk5ZDQWGBOn8K0ClVP1ErCE3F1KlTeeCBB2jdunWjuCQDIrl75Ois\noxz47AD5QflVbj/c4TC3am89x1F5V+TJ/Vybk8CHflNxFJb9wfp+DVzSLgdX252kmuCbL76g2CUT\n934wL74A0sFM/vlPR461c7Bk8GB6duuGq9CFy2ZGGZ1DQYGbG65VeEA/mG1/aEv7DbC1gaL/qV9D\n0tLgyisb4mMLQp3t3r2bv/76i1271GK4itI4HtAXyd0DLpeL7y/5nqmfT61y+zDNMDqHVr5ZWFc2\nv1xGbxmNtKdsJFB4KxRp4JGcQrSKtpqjz9CnzcbRo+qCIe6UFFJcEm7cBO1dQm+pF5HJFR+g6p4L\nLSM0GO69D+3bWvxyZIb7BXHgq1Y8Owv+lfLp6qcl2k/HtoAADhw4QNayLNISFmK8dT/ff9+WjR9u\no22LDoSXTPqxG80kXhQHGRnq7KCPPxbJXThvrVu3jpSUFNq1aweA2WzG7XZz8OBB4uPjGywukdw9\nJEkS3SO6n3W/T+x29hcX88axY3x18GBpu/n4cZw1/Itu88vnpP0kX9xYNqXq2rfAaIQ5F+bge9S3\nRv0BzJs3j3nz5tGiRQuKrVZeLAQzZvoXmZjYbiaXLri/wv4f3gR33w3RQx3I7/zInWMK0Esm3ref\nIL4vSFoJW3jVVeV1uhAMhhbsV4aR+eAc2pWsFayxHoE9I+GuuyA5ucafQRAak4kTJzJunPo4kKIo\nzJ07l5SUFBYuXNigcYnk7mXfOBwYJIm+AQH0Cg0tbZ9/5Aj2M1RzrI6/1p/BbctWptZngo8/DPDJ\noNBVCGTUqD+n08mjjz7KjBkzCN24kS9vkbj+5Gh8JRMy7jMepw/XM+6pcdxw814G+4cwLaYt1kx1\n2+cJCQQW2Wr82UqZzbB1a+X2bdvUufG9e6uXbwShETIajRiNZXOPAwICMBqNhIeHN2BUIrnXi3C9\nnivDwrgqqqw87u++vhxpwJjOTsGuN3PixEcVWjt1kvDxMZGWpjAmGmKsnxPlNnLTTSEkJiYBEhcV\nFuA2OTFgJTHxMayBFuxd9hNIn6pPVZ6fH7Rooa7EXd6sWTB5Mhw9Cs88U3m70OzpQnU1nq5Y0/5r\nY9q0aV6OpHZEcm9gGpuCVquQ9XVWhXbFraB3689wVD2QwK21U1RUdinJ4chmxIh1aLW3YbcbaeED\ngXIWBrcPERFmJEmPThdEkS4MSWdHQYufX3fcbhM+R1rR+voxwMrS/px5TtxmN3anHcWloE134l/k\ng7JuA5L2tBkGcXFY169H9/zz6kIl7rJvFUZtze81CE1PTR8wam5Ecm9Afhf44QzVoDmpkLuiYq10\nxQ15gblIhqqnVR3MPkh2Zjbxe1ZDsYMscwYKCisSVpCdmMbteQA1WFhDkfCzhdOt23OlTUVFOzh2\nbB1W60y6dGnBB0vf5oY+/8dg/xA++qgt776r7nfYkUCgXISTRURHP0bWxizkAzkEBsZQPrlv67oN\nja8GWp7A8YyD1k8d44YCNyfmnqDNIxXr0rTx8SFy82a4+mr10symTQA4ZJkvevTgjpYtPf9sgtAM\nieTegHza+FB4iS/O9Rp6ft2ztN3lKkRa7sbUezcGOZtjx+aWblOUR2jdOoU/j/xJO1s79G4bPoqC\nrMiggEN2sP7EelqlKEDdyx4oikJh4VaysooBkOxJFMl6oBUWy1H8/C4AQKvR4FYU2mzezKBEN/1z\nFK7avJmi1FSKB1s4JluItMkMShmES3ecbdtycP3wJHKqg2MBBrJ2GkrPqdH4kDxgOTpdMEyZoj6A\nNWUKAA8nJGByiSeiBOFsRHJvhIqKdqIoLny0ICsuHA71zmV+vhWr9S10unVs2+Mm15xLt6QgkqwH\naeFj5LgkcWuPW5ECimDvz3WOw8enPZKkwWzeSU6OerlG40ih2GlHUUZy7NhrdO/+MQARej1hej3b\nL76YouQczPvzuPvirrz/11/MPZ5MvuIksqTfLVuSKSqaxQ49tFinp0ugE8dlan2GoKBADIZZOJ15\nanIXBKFWRHJvtCQOmSSiXAZW5rYHYO/6vVhti/k30YzidJPqTmX7akjMysK9aQJug5EZUS4STQ50\nickUmn5iIENrHYHBEIEk6WjTZhIxMS3gh29xB44kyj8ESdJx+mqKEurllCy9DrdGQxsfH4J0OiS5\n7NKSIitcccVIRo26hc3BE7krSceeQ/DH1+o6Jenp6fz9d82neJ5y9OhRVqxYwWEOs/ud3aVPCxoM\nBh544AH0+nN4H0MQGpBI7o1Yv9YXk+qOIzE3EYATphOgdKPHwEwirZ1ov7k9hiKFcKmYtXIHFL8T\nfPlJKxSXFkXpj1X5nIk+86o9h+JjYfxEC8uWynQZ/S1JSYcqbDcYinDUQ4WFDz/8jk6PZhAZmUaP\nTq0YenVbZFlmwoRvsVpr3+8PP/zA0qVL6UhHNEc0pcl9yZIljBgxgm7dar6UoCCcj0Ryb8T6t74Y\nd1A07133HgA/O3/mdxZwUcdRvD13JsX7i+GfeJRFi1j+0gTusWxi1RgHm45qCfg/AzN087n1NoUH\nN1dzksgMYq928M2XYC8MxccnusLm9evfol+/iDMcfGaFhYVs2rSJ1NRUFMVBUtJeLpBltmzZUrqP\nwQAhBuh/EbS9G2QZJkzYgaJo+fff29BofOHSI+qOu1YAMMJqxap9keoWBhkxYgSjdo1i+DvDS5P7\nqlWravwZBOF8JpL7eUpj0BB4USAUAkGZtBrqC3+46DzIze7WBURoQtFKskdrbZsKJDRWibT1V9K2\n7cQK2/btg3794PRLMNVRZIU/Vv3BGtMa0tPTcXXvzdKlHzDCfi8v/d+rDB8+moMHQXaD3Q72055/\n2r79V556qmT1qpUfQFgYDL0dgIMHX8LgSPQ4ltrK+TUHa2LlrxChV4QS0Ecs/C00fiK5N2Fup570\n547Sug+kA8nPJJO3KQ9ZkSm6sQbLL5XSsCHpZ/a4i7DfuZm7/j6M35ZhHLZaCXFWXB1EQWHTpk3M\nmTOHWdsT0bvfBvbgcv1JTo6OSZPA0gVSc+DX4/Dks2XHFhd3JySkpNRD3gowREHIMACsmhb41eq3\nUTNHnz9KQJ8A9C3KrtGbd5mxpdi44N0LzkEEglA3nqzCfA2wD3XxtGeq2N4d2AbsL9nnBq9FJ9Ra\n3pA4kBS0YXpcJX/C9WF6tEYtjhMOcn+tOK9eAjYdi8bXlwqvFSsgKEitrTPk8q/pETWQqztdh379\nTP7b62JeGfEKA3r/l8SMLZViOCUkBL74Qq2Js227+m1g7Vq1ZliLFhWeT2pU2v5fW7rM61L6irip\n5penhOYhNjYWo9FIYGAggYGB9OjRo6FDOuvI3QdYAAwBsoAtwGpgV7l9XgQ+AT4EepRsr/s8vMZs\n6dLSh2oqSE8/97Gc5tNP17Arz4bLuRObZOMX/xVkaVsB0O6ZdgTbgnHZK88TlySFn+/4ntYfX3da\nO/j4qD8HhXRHL0l08g9Bk9aKAZFf0r39MJbaEtBIGlyyi92Zu7EX2sEXdmfu5kTRCVyymJcueN/G\njWG4XFWX4fYGnS6UIUPyPNpXkiTmz5/PfffdV2/x1NTZkvslqEsuHC95/w3wHyom9zTg1ITkECDV\nmwE2Sp99Bl27wul/nefMOScFroYOXcz69W+VvJPhOQc5+/rjHzCLw4ezyTQV48634JJlDh08CCEh\n3HHnnWft16B141vLWYidWvYn2bGNe5ffS7/4frRt05Z7l99L1r9ZZOl6k1pcQBsgy+5Ao3eT5QLF\nzwXFtTufILhc+cTG1l/t9Li4mi260VjquJ9ytuQejZq8T0kHYk/bZw7qiP5xwB+4wlvBNWrXX88G\no5GxY8dW+D813+VCNpkqVInztmefTSLx1D3F9etg7qv89dVSHP8m8cknK5m/fT62z77haHI+8957\nj8UbNzJh1Kh6iwfgwSsW8uorl/N+r90UHl7NtuRD/NdnKL/p4vnRZebxxL185Q5g0Pa/cAWFIMta\nikeD8WOfGtyq9T5FUbD8a0FxVYxCtorVo4SaefbZZ5kyZQpdunThlVde4eqrr27QeM6W3D35724e\n8DHwFjAI+BKIqWNc54XMzEz69+/PRx+VVVK8/cABHomOZqiH86kdbjPWdn9w3VfbStuczlycWgu/\n2Z4jUqp8W8Tp9ENbWmjLCE4tktYP9cp5Sb+yAwWFk8XZAOTbCsgyOzE7zLjl+rnIbbfDLbfAKL9W\ntMGHDz+8m+PH56FEv8H7hf74aeF74zS6xbyL1TqYi8ZCx56HG7Rapnm3mV2Dd2HsWvGPsTZYW+Fm\nqiBUZ+7cucTExGAwGPj222+55ZZb2LFjR4M+V3G25J4OtC33vi0VR/KgXo8/VeNyK+ALRAInT+9s\n+vTppT9F/y0RAAAgAElEQVTHxsYSGxtbo2Drzfz58OqrldslCT7/HEofnK/M19eXqHKlfX2ysghp\n0cLjUztkE4pPHo8NfKu0zWzewzp5P8MMT/HsjRd63NcpbYLasOXkAewuO5csvoSAfm/z8dr/8pk1\nlcS9Vjo5OlEc3oeBcg5KrywkScIlu7nnhx84umEDdlnGVfJtJCA0lFl//AHACYeD9qcuwJ/B6NHw\naI/f+GmKha1bhzNnjpEXfgWjsQ9wAJ0upMafpz4pTgX/3v5cvP3ihg5FOI9dfHHZv5/bb7+dpUuX\n8ssvv9QqucfFxREXF1fnmM6W3P8BeqE+MXISGAs8dNo+ycBIYAnqDVV/IJcqlE/ujcqRI3DvvTCx\n4hxvnnii5CbpmZO7V7iNXHdB2Y3M/HwjGkVHV91IekXW/Nw3dr+RgSNf4++Vk0l84ggTNj7JpI4m\nIgJjeTd+L3lKFubI7xmhWFFiJPrG/Bed5m1eveoqwufO5bq9e4nU6wnSaPjtuutYnpMDQA8/P3w9\nmTgvCM2coii1vgZ/+sB3xowZternbMndBjwC/IE6bfILYCcwA4gHfgH+B3wGPI16XeABqGZJn8Yq\nJATatq3Y1oRW/1GCrqZ3h7kYjVPI+ncnUbvf4r1hx7nsDT+63xIDvE2rwECiO3XCkJvL+z160Nvf\nHw2wqNzv5dnkZOyOxnXjSBAaUmFhITt27GDo0KFotVp+/PFH/vrrL1577bUGjcuTh5hWUr4ot6r8\nUiMJwKVei0ioH0eOQL9QwiSJ4S430a8OIOk12OH6Crl7L5AVMg5GI792jP4OF/SA9evXAxAdXVaS\nwC7LuGw2tJpf6xTOCy88Tl7eAV7aacUqa/htxKnLPc469SsI55rT6eTpp58mMTERRVHo1q0b3333\nHT179jz7wfVIPKF6Nt9+izbDwVX5bnjhBbXt8OGGjak2XC743//Iw8qvG37lvqF/8k56Orcslzg2\nYS2ujwZhl1piT7dz8xd2eEpdxR3AZDKVdvNUUhJ/TnqMxDgzbrcZmy0NP3cGWqcTRVFwu83I8tkr\nf61Z8ytG4yuM6eDmhN3A2BcjiY+PZ+3a+fX2KxCaFp0utMbTFWvavyciIiKIj4+vtzhqSyT36jz0\nEKxfD7/qcGpR1/sE9dp8//7w118NGh6o9VmQNeBU0LoUZOcZpvAVatn47hUUKV8zyD2IjIMZXOVS\nUBzQ8ZWO6D530WF4OpFPtyfhi+NV91GBhMm0mV27BjPS6cJiUpBlK7m5v2CxHAAqjloO7IfLZNi9\nuxeZhUHY7aDXD6Z3mAt/iy8jRrTFJRbhEGrA0weMmiuR3KszdCgMHYr75L+sTVrN/adG7o2Ey+Ri\n03WA63l00fv4RYEN0gYUt0Lkfw0Vd3ZqCIwqJOD6AL7d9S2aCRp+D7uLEaZlzP/zfaxOK8sTfmbX\nr7ncxHgPzq7h0kvViVMPJyTQJdSBVns5kZHjuOCCy/mTD0r31Grg11+hvx0++mgCGv/2FBbC9ddz\nhlvv1dM70zCZ/gHA6pODM9yMyaTWynG5zDXvUBCaIJHcz4HUglQ273iZIlsuY78bW2FbhnkrULsF\nn2WbjM4fLuv7Cn/+8AP/2bcPx/Dh7LthH7I1udL+Gq1CeGg4o3uP5oaBN7A8x8B/Oo0iQKOwQfsr\n3cK7My9lrYfJ3XMGvQbbbSNh86s47rgFgiJQEk9wqN8N7Pj1doKk2zzuK1/fk9aWnzl8WK1l44xw\n4hro5vBhX5zOXHJzQ4HLvRq/IJyPRHI/BxJyEzCZj2HQGbm1560Vtm03FpGd1L5C2/r1am3zjz+G\n1avL2nNLRrl1mY0oSRLdIroxJmYMEzdu5MbuNxCq1/OU5n56RHTDT1f5j0LVFN544w3y8/PZlptL\notuN3e4gPv4fvsmuWEB+/IXjuX/U/RT/r5j/9epA684TuctvGjNjZ7J+xSb8JM9X50jyv4OAlhO5\nto1azz1jcQaFmwvp+nE3tqQsxux+lwKnHYCNBQVIkoROqr/rsoLQWInkXiJjezjON45Vuc0Sb1Gr\n5ngoeZ+WF8ol5SMSuPIiUSxuru88tkL9ljm+G8m1hlc4PjFRfX7qyithwoSy9g0b4Pnn4auvPI+l\nPj399NPMmjULvdWKwe1WE6lOj6/Rl/79+5fuF2oMZUCbAayX1tMjOJDOUT3w0frQJ6oPG6Wt7NwJ\nWq36Bw3gzTfhrZJnut7zgUkzzx7LXrOZWcdS0dvtxJsKeAh47sgRkCR2mc20kEU5AaF5Ecm9RMJ3\n7YmOdiBpKo/y/C/xZ5d7VxVHVW3LSj3p22D//rexWCy4OxzG3iMDTAqtWg1Cp0smNDSUhISEavtp\n3x6GDCl7f2rk3rmzx6EA6sMHO/z80YaH82ZaGoos8/HmzRS6XMxKTWVuly4167Cc559/nmMJCXRx\nONj06VL69u3LjSNbkbM8x6PjdTp46SX45hn480+49lp46il44w012b9rOHsfoD5Y0drgQ6ifHxcY\nWwKw4aKLkCSJi+LjEbfehOZGJPdyOr/eGUlbObkX2Ys4Nq/qUf2ZDBsG69b9j4yMDNalr+PRX3aS\nt7yA33//nS5d3ERGRp6zKnI6YHhREVJ+Pg+2aoUsy0y5+GIu2LaNIzbbWY+vbxqNOnI/dbnp1Pu6\nXk05seAESDA41ckvhW6yvs6iw8Md8ImqvoSCIDQFIrmXc+UXVyJLFb++pwZdhk3jj6PDQzxRbn67\nXpLo68EqEy1atCDEHIJGrwNJIiwsjBYtKF3b01s0ZjMtcnJg4EA4fA/ofwe7HeOll/LYwGMYjf6g\nKATpdMiyTBsfH86bK9G7d8M336g/Bwaqc/Y3blTf7woEpVOlQ9q90I7ifWo94VbZbhSHQtbnWeS2\nzqX1xNbnKnJBaDAiuZdSsLvszLiiYh2HUcck7gpWCDH4E12ujO+s1FSinY3naUrJZELncsH778MU\nO4QXwu9rsL/zDj+nv81dCrC/M+piWeePvxnBZOcS+PFHtWHYMMjJgX9LPsePNrh1WqXjOr1SlvB/\niDeh2aMjoF8AeavycOWXzae3pTX8NxdBqA8iuZcT6R/JiI4jKrRp0zfwZq9LCdRV/FUtPHHiXIbm\nEUWS1JF76D5o2RI0GuSBA0lztgS7A/TnXwnbldJ18E251aESEtT1+UpmyxByh8drd4ePCsd4wIgz\nr+yPstZfS/ST0dUcJQieWbZsGTNnziQtLY2IiAg+//xzhg4d2mDxiOTeROglCQXotX07E/Pt/N3F\nn2yjkQE7d9JfTAUEIPiSYDrfXcO70UKjFRYWRn5+/S2zFxoaSl6eZ7fiV6xYwQsvvMDy5cvp3bs3\n2dnZDf7EtUju9ezw4adIPraREOdhcpVgDh26D5stHVBISJgI+FU6pvPn4OvQ0O3teLZ+Hlbannfd\nmf+htfHxQSdJLOvZE1NgEl2tVjbb7XzXsydKdls4nORRvLJGxmiGwmsPkpSvHrNz+M7S7SevseG2\n1k/Rz4yMTwHIy1vFoUPfoCjw9NNw6BD4+fWgXbun6+W8wvkpPz+/Xicl1OS+2PTp03n55Zfp3bs3\noN5ra2giudeznJzlhIaMxaI1oUgOoqLuo21bC7CG7OzvgbsrHeN3Apw6maPjezL6cbWe+4kFJ3Ck\nOs54nlP/EHsFBLBPpyVIltHJMr0CAkjL11PgYbyBkYE89vpx/A5/TUHSQTgAD3Z+EABZlunonovs\nxZK/iqRQ+Gkhe9fvJedoIJ0JYuSaQByBNxDxTD5794LRmEVGxkciuQuNktlsZs+ePaSkpNC1a1cK\nCgq4/vrree+99+p1uc2zEcm9lnw1GmampmLPzaXdli2l7ScdDsadNg/F3783Ds3fQC4hIUMIKxmM\nu1xFhFv+4ph8BTt2DCjd36B/GlkCR7gffl3Ukb0+XH9Olh7f9sA2LvznHz6duIy0desYtWYUOz7Z\nAcDEXyaSmeDdr5q/xf7Gfb3vI8IvAn7cQvYhG7ldO2BboyfqrRtZtQpatDhMZuZir55XELzl1DeI\nn3/+ma1bt6LVahk9ejRTp05l7ty5DRaXSO61tLZvX5YmJPBrSAgL+vUrbdcAH6/14UzfFmVFQS7Z\ndnH/XRT6vI5LE8QFF5QV2trssKAoHj69U0cuRaHY7UYBLBoNxW43she+6loOWjj2+jEK1hdgtpk5\n9voxlCpG/AXBBfhf5U94UDgcTMREFLnRIZDhSWXKyuz241gs60lOfqa0bZQ9k89cuWRlfUW3bh48\n7ioINRAQEADAY489RljJyO3JJ5/kxRdfFMn9fBSs0xFhMOCn1dKufD0B1IdvTs+PeklCVhR6bt+O\nlGlFAULic8BqIFgyEBRUNnKXla1wDmahh+v1/J6bS+SmTVh9fOjTty+aTZvQSxLBOl3pYrlXXHEF\nAIdyDuG4sjXF2Wm4XC602qoLngUPDibsmjCcOU7cxW7cDjfOHCftp7Yn17fu00e/z84myarWo2k7\naBChNhur09JI1/bnssAB2GxF6PVl9yoskgWA48fnAyK5C94VGhpaYUGbxkIk93Oko6+RLEli/yWX\n0K2bOsJ3xcbywJd/8cfeiknS6bQgyy52797FkiWZAATtDCI19czXZRzORAb4bObkSQV712M4jEnI\nOjcnT36L2bwLdd3yil7v1InlOTksi4kh2m5n686dRN9+e+n2A5LE4MGDef755wGYt2Ue+coFpAWG\nkanVsnXrtipj8W3nS+fX1Fkp4XPC0Zv0dJ6jvs/bWbdvBQ+2bs3acjMkgi0WjH4SfQMCuKPlAP4N\nvRy7PZN27cpG7n+fjEfS/gYU1uncgnAmEyZMYP78+YwePRqNRsO7777LqFGjGjQmkdwboeLiTBRJ\n5siRI/z991YALjxyISdzT55xtFxQ8CZXGtPJzj6O44JCipx5yFp3yU1b8HddRXENYngsMZEdKSkc\n1Wh4v6Vaq+XAJbdjN7ci+Bd/JElTYcV3T+n1YezePRSbDbZu7YTdDlu2tKWFD1T1B+h0FwcGcnFg\nYOn7jAMHKERizG3LAfj3xAlwOmHTJnWHESPgpptqHKcg1MTUqVPJycmhc0nhpzFjxvDyyy83aEye\nJPdrgDdQi44vAapa9XUs8FzJPvuBO7wVYHOl1eq5+eZbeOmlRwBInZ3Kqp2r+CLz9zNM0VL43XID\nD8a8xr7n9xHUajs6+2PExHwLQM6RHIrJ8Pj8S7KyeCQ4GIePD3eXJHdz2lH6x4Wz1a3jSC0/V+/e\nKwDw9e3IoEF/45MxlEsv3Up0UDQOx2rgwZp1OHkybDHB88PU90uXqhXWHn9cLVuwdKlI7k1UaGio\n18t4nN6/p3Q6HfPnz2f+/MazTOTZkrsPsAAYAmQBW4DVQPkSiX2AySX7FANhCE3CwKAg9hsM3FQy\nZ3elK51LD/dlp9KIHopq2RIifeHS7ur7TZvAxwcuvVStQSM0WZ4+YNRcnS25XwIcAE5NXfgG+A8V\nk/sE4H0o/dbfYL9xi8XCli1bKj3YoNVqGTJkCPpG9vj97Nmz2bNnD0VFvZg9e3Zpewc6VH2AoqBB\nBrsd7IDdqT56L8sgN6KE6wX243YSJybwrA5ejyyk/4DxTF6XyKdSB0xS2UyiFQ9D5bJhnvv3X+jX\nr+q/A19+CePG1aFzQWhAZ0vu0VA6aQIgHYg9bZ9uqOW0/4s6xWMGsMJL8dXIzz//zFNPPUWvXr0q\ntO/YsYMVK1Y0aJ2H073xxhvk5ubicjlRFBmzuWztT6NvOFQ16Ny0iZGO34i8IEh9rwSDc5G6isdW\nH7jgkhrF4K/V8kNODqEbN1Lo40NMv35oSqotOmS52sX/ZBnWrFF/Tk/zQ3Z6b6BcHGqky9tdUJwK\nkwaAw2HlxIkUbk3N44UlLQm6VE3uDzwAxcWod6eroZUksp0OCl1uhu+qWJd/WHEr+vWLKr1Ef8rj\nj5fVzxeE89HZkrsnUxs0QAfUUX5bYDOwkQYYwcuyzBVXXMFXpy1VFBsbi9uD8rzn0uTJkwHIzHyB\nnBw/Zs8uW3z79wVbwVzFSNzp5B/dZZw8toGWLYGTDui2CfoOhxF+UFyzK2KjIyLIHjwYBYhxOFg9\naRJtSp6oM7hcrDOb1ZuTv/wCo0eXHidJ0L8/vPqq+v6QJYxDsoTbXXFxkdpStBpa3duq9L3FUkz2\nvg3o4x5Dq1MX+ICS+u8e/Av9ukcPRuj1+Gk1zOzYsbR9eU4O/xTl4wgJ4cRpMzQdPlqgcX3TE4Sa\nOFtyT0dN2Ke0peJInpL3G1FH7ymoNWW7AltP72z69OmlP8fGxhIbG1vDcAVvCym5VKUJDCRk9WpC\nT1VbBHUB1yefhKysCsdIEjzzTNl9yocT0unicPDq5XDvvTWP4eV1LxPoE0jKjhQIyyfOZwpTVoNB\na2DqsKm1+2DldPHzw1ejRXKbCDxSNj1tlMtJN9mGawr8sk3H+/qXKZJCURSFk9e56ZvQeL7pCc1H\nXFwccXFxde7nbMn9H6AX0AY4iTor5qHT9vkNuAH4DIgAegBVrrJcPrkLjVBQEAQHl73396/batwe\neOvqt0gtVOfvm4wmcGvxl6OICoBXN77KvX3vJdpY9/sJkqQlJuYbOnVqWaHd9wC8txCefHI823u1\nIyCgF05ZxjduQ53PKQi1cfrAd8aMGWfeuRpnS+424BHgD9TLL18AO1Gvq8cDvwA/oc6UOYA6FfJZ\nILtW0Qi1k5YGaX7gWwxvvw1HOkL23oaOyiNjYsaU/rzavJqPCv9ggHMKUwbDoh2LvHouf/9ehIR0\nq9Cm0UBqKmg0/l49lyA0NE/mua8seZV3+tI3k0tezdbuzN3c9/N9KChkAkigTFSYsDUDl24q7bV1\nmdNRDa0ObrgBrCtAL0NKClhaQpQ/+FUuJ9ysGAwQHw/du8PRo+rq24aKNXtCHnob9VEOQWhaxBOq\nXpJSkEKQTxBvXf0WHy4CWYGPVlzEc4vD6d7jA3TFkQxmzNk7qkbx4H20SMjlxIn7yc8H2SbjmpTN\noTta4sizgRIIb8+Eo/vgxt5w4DPvfLg6+v3338nJyanQdvp7OFWAKY133w1g4UKwOC30e64fGkni\n1VeDubSmJx44EPbuBbcbrr2WuHvuIallucsyX3+Nfu9m6iO55/2RR/6aygtJBA4MJHJMpNfPJwin\nE8ndi0J8Q+jXqh+tABmQMiW6Bhno2zLm9HuStWK9KAFzQnsWFrdGawOfYoWrD7bg3XwfnEwgSVvz\ncgA1pegULAcsHH7iMNtf3A7AtQ4HdsWEq8BF4iOJdF3QtXT/O++8k4iIiEr9DB06lHbt2lVoGzRo\nEPAEDz/8CrNnQ9+FffluzHdMf+IZ8vNrcZlJkuCCCwC4+fbbWbF9e4XNuYcOwZEMpOjKxcRkSWFJ\n9L9sKbfkbEymhaA8N3azmV4llQDPJPPzTJAh4KKy/axJVk58cEIk9yYmICCgwpOyVquVSZMm8e67\n7zZgVM0suf/w7w98c+CbSu3jE/cQoPynXh9l9pYcVyS2gPE81ikKJduJJe4gExZfCMAL5+AhrezJ\n2QQVB9H2+rbEjIwB4PujR2nj9EV7t5ai+KIK+7dr144HH6xJSQE9BkMAAQGg8dHgH+CPweCL05mN\nybSNXbvuR3IcBODOO0FaeTWm1BuB7tX2OmfOnEpt62+8kSnx+yvN59drNPxncy/C27m5Krys3d9f\n4qA7nx0eJHdQ12xteWfZN4X8tfmkzjwHRfmbibAwqMdV9ggNBU8egi3/jEpxcTFRUVGMHTu2/gLz\nULNK7n8e+ZMgnyCu6nxVhfau4RYyJJgZe36Ug22t92FAUBAOm4N/JIkBQUHn7NxygIwuSIdvO1/8\nY9SbkCadnkiHQrVPPdWBRmOke/fPCQzshnHLUHyOqdfNV66CC6QjyB1rWelGq8VwMp2FhYOwHDkC\ns+6ALPU+xXspoAv2p+3Y39VyBkB6oJMTWpM3PpLgBfn5lUtre1Ntxnrff/89LVu2ZIg3Hvioo2aV\n3AH6t+7P2JjT/qqGbyMDiR4tetSqz6ysr0hPX4zZnMShQxPIybkBWZYABaez8rXlpijRYsGlKJhc\nLtaUG+70DQggwlD3hUc0Gh3tX+hA8b6y2pYOLTgucOM7+t9qjqzGvfdi3XeEtw1vM7HVnerkfY1a\n1e+HufDEr1eCxVKa3AXhbJYsWcLdd1deOrMhNLvkXh9OnvwOjcaIThdBcPAwfHzaI8sAEt26fYiv\nbzvgWANHWX8uCw5m0Ynj2GSZdLuV95IOAHDCKXNNoI6HI3wI9Q2lc1jnGvXrp/fjko8vwXLIwsoV\nK/Hp61P60Kheo2fIRVvQ9bYQ0i6LU5fTjx1TywZs3w6tW0O1aygEB+P2C+SAcRAYjdCzDwSopStS\nokDWVP2fR4HLRabdXrk7nQ7jGUoyC01famoq69ev59NPP23oUACR3L3G3/9CfH31tGo1gcBASpI7\ntGx5B5JU9iDQypXqBI5Tjh49x4HWgYTEwviFZB3PInNTJl85y8o8pCRuw+00gyUNefc7AChhV/Bb\npp74zb+SZkoj9+maFWvZfP9mih3FPLj9Qf5z1X+48dYbS7ddvuRyOvfOZ88e9f2XX6r/m5GhVkzY\nuRNatID16z0/X37+GqzWRED9w5A32IG+4BdwBRASMhyAIJ2OKampzDlt4RSHonBxYCB/9ulTo88o\nNB1ffPEFQ4cOpX379g0dCiCS+znl70+lAlWZmdC7d8mbrCxYuRIfexv0so1uu5bBZyXX03cGQ0w9\nXmD0wDNDnmFnxk5e/+51hrQbwiW9ygqVXdfmOia/MZmehXriH98HwCvjemEzGHh5yUGKJAdMyFYz\nrof89H746f3w0fkQ5BtEC/+yY3UaHbeNhda3Q3Y2PPGE2j53rvo7vflmmDLF888WGTmWwsL1FJYs\n1tS+PWRf7sCa9glO6Qh+fuMh62a6ut3EhYcTGBhIm3KlGjYWFPDskdpWuReags8//7x01bLGQCT3\nOkpOTmbhQisZwbkk+OQwc+ZM4uKGoShSpdLDISHw3XcVj3/hhXLPGn33Hbz/PjrXG+gUF61SNkGc\nWsiLI72hlwaX1HDFrDqFdqJTaCe+CvyKwW0Hc1PPskUwcnJy+D/p/7AV+5N862po1YoORUW4FIWD\nDz+O/cP5BL+URtvZIehDvf8Zli1bRn5+Pps3b8ZkMiFJC8jMhAULICIigjFjqn/GoEOHlyq8/+AD\nmesW+HF1l+NcM66InJyPUX7Io4WjBd9s/4b09HSKi2uytpXQlG3evJkTJ06c9d/ZudRsknvh5kJG\nvTsKg9bAVp/TaprljUDSKLVak3rXrl0MGNAVt1tGVmRcbheyLKMoEvPmzaswvdJut7PrtJKzmZmZ\ndOpU7unVkSMp/qoFVnMAcTe9x7CXSuZEz04F1/O462tKihdIWol2UetQwm6Elr449VZcioIuyAen\nppCsFcWEj7cQPDi4ml4UtmzZwsyZf5a2HDhwAEVRyM3NZdKkSZWOcLsVxo0bx8MPP0xGRgZWq5Wk\npL1YLLB7t8zixYtr8R+d+od5+/btHM6ZjtHYCbrfgjXJytQ3p+LX3J/+FSr4/PPPueWWW/D3bzxl\nLJpNcndkOjD3NCM/IXPHhaetAjhrNtq2EUiaEZjNZo6WuxDuTk7mQEAALYKCStdHPN2kSd3ZbevJ\nT0cPMvP2mcyYoV5zf+qpy0v3CQ0NpX379tx3332Vjm/ohXS9RoK2rTbA+DFwSTuOp8jYZJmWrcMp\nePMb3FFPVH+4JDF69PVkZ8u4yhWHVxQFl8vF448/XmVyB9BoNCxYsIC5c+eSmZnJzTfPZcoUmD/f\nxeLFi736MYXGITS0dtMVa9K/pxYuXFh/gdRSs0nuAE5/J3K0jLGTseKGEAsEqslk9uzZfPLJJ7Qo\nuTZsLy7mfj8/Eg4doqCgoOQR+ZoLDg5m69ZKVZCFciRJYtiwYXz2GRw/fllpu9WaQGHhjSjKuoYL\nTmh0xCp71WtWyd0TTqeTyZMn83//938ABG7YwNZLL6VtRESF0WRdjRwJiYkV2+4pgs4utbgjWvUB\njVOX7evzYY3G5PbbK4+Y9u6FPXskONPyg4IgVCKSewPZuxdWrYLyZVcCPgN9MuxZC/ocmD5dfQHc\nCXSdql7u0TXh/9eio+H++yu2rV6tzogRIzVB8FwTThONX3Q0RJavIRUGnFSTt58RjqSUbU+dDV+6\noHNn8PVtgGBPZzLB7t1l7/Pz1eqL9TiDxN/fv+wG9cPQb0Y/1PrKVFmcTBCaM5HchdpZsECdl39q\n5SaXC4qK1L88UVH1cEKJdevW0a+f+q7fh/349KVPaa05THb2t8TEfFf94bWggPo14vL9YAqAH4rA\nHIw2cwNfut2waBFMnOj18wqCN4jkLtSO2w3vvAPXX6++z8lRF8WIj6+3U0qSVDo7QpIkJq+ejFEq\nxm5PJ+jALQAc3n0Ye6GdYfbJQKszd+aBMdJ1/DV2LARawR0Jhy+ETC3y9aGkfv89/PijSO5CoyWS\nu3BeWnz9YlIKUjCZtpOe/hY63WYAbPpiNposHDP9f3vnHV5FlTbw38yt6Y2QQOgt1NBRehHBAqIi\n9sLyCeqKsoooq4gg6uqyqyLWtSDigi5FQJSi0iHUBAyEHtJ7uUlubr8z3x8T0iEBEpLA/J5nntw5\nZ+bMOyf3vnPmnLf0Y+ZMI5mZC5BlmVGjRlVqw2QyER+fTZeLxIvbLrRUVnjPRIJHO4jvA2etyA+0\nYccTT/ByXd6gispVoir3BoZL60D2LEDOl3A6TTidijenW5MPrhvEZKYG9GnWhz7N+iDLd2OLmMYF\npyM59iuiU75Bq/2Qsye30q9fPPv376egoHKo3ujoaF56qXGEeVZRuVxqotxvAxaiROteCrx3keMm\nAiuBfihJtFUuE7MhhUN3fQW3/oDrUTNRUf0JCFCCjkl9JfjdC+9TLtq/ms0pHxuSVaqyHV2gjmNT\njhYR/AYAACAASURBVOHAwXZhe0l5yBMhVR5fHzgvRFZ75BFITS0p18gyoiwrq80rVlTbjiCIivdo\nMTpdEIKgQRDCSE8PYONGOHu2X6XzdDoYOrRmHjAajQ/nzs2Cbq9CV0iLFJixQWKn5nfY6U1o6GPQ\ntHIyEBWV+qQ65W4APgOGABlAJLAFiK5wnA8wA2jwXjpn3B5srZi+JSiIIA8P6juen1t04JPXFOes\ntejEu7jppmM0LTaXscZbObt6BS7vZRR11eMdpDhTBd9XORBX5yWd8X3bF30/PSNSR5SvnF/Xd1E9\n67KzuefYMTSCoCxYajQgCEjABGCN3Q4TJ5Y7RxBgxozS9dsL9OwJb71V+Rrt24NfAeh0x9DpVlWq\n/+knkY4dPSqfWAVt275Jq1azSf08Bes5K63/0ZoHg4JYNWoEOV89SWZm9Q8hleubhIQEpk6dSmRk\nJHq9nvvuu4/Fixejr4VcBldKdcr9JuA4kFK8/yNwJ5WV+wLgXWAWVxSh5dpgR8/H1pZEVwjX6goP\n55ifHw3ZjNqjjQdBtwVhPasl/VFfwlqHVX9SA8XkcvFYSAhLu3QBT09s6cmYtRK7Csy8n5JFdtc2\nBCGTY1ESncjIPPMMlebGk5Jg8eKqlfs2SzbNIsIJNUfj17I0/ICAQAcPD5o02UN6+t9qJK8giGi1\n3oiSF+50N9YYCLB2wJrTHEciuCU3giBwwmLh3mPHABhjKiQhycKpY1noBYEvwsOvrLNULkrge4Hk\n2eouz16AMYDcV2qmFZ5++mnCwsLIyckhLy+PW2+9lUWLFpU4Q9YH1Sn3FkBSmf1kYESFY/oAYcCv\nKMq9wU4My0CQ6GRrr17lyvNXrKDVmDFVnwR8sHAhNpuN119/HWMZI/NTp07VlajXHTJgc1qJz4sn\ntdBNvs3BiawThCMzdtlYjhSeBr/eWMIm0vfXeRx3Wuj8cWeKnEWE54QzsTWMH1++zRMnFOVeFZ+k\npvKX8NGkNxlarvzLtDQ2dYkgaccD6HSX91X1DPck7Zs0zj55ltvllzl5zAfXh0nYI0wM7O/DN507\n4y52JfYyOmnh503/EH+eO3OGNLudhjMpdn2QZ8tDfqPu1I0wv+bj1LNnzzJjxgz0ej0hISHcdttt\nnDlzps5kqwnVKffqek4E3geeKFPWYEfuV8r8OXPQ6/UEBwfj4VH6Kp+enk7fvn0RxevulmsVo9aI\nTtRxLi+OH7b+m+i8phR5h3Pv3qVEuexYXBaOPn2UONmPtxIS2DoqAd4LJfvlbOZsncO6P9Zd0XVf\nbdWK4Aqvxb9chZtr4NhAAscG4nQ6mWe8mV8G3UrmP58i9jswiCITyjhSxRqzCPL1JSQ4mFfVOO/X\nPbfffjvLly9n+PDh5ObmsnHjRt6q6pXyGlKdck8GWpbZb0n5kbwP0A3YXrwfCqwHxlPFouq8C770\nwIgRIxgxYsRlilt/GAwGnn/+efz9/UvKVq5cic1mA5z1J1gjwKA1EObTnG6B3Vg+cRJr21nZmpfH\n0rtnwyxPDk49CJ6exNVlKvs6QhQ9of8+Nm0KLFeue8hNiihi3NUK9P+pJ+lUrhXz5s1j9OjR+Pr6\n4na7mTx5MhMmTLiitrZv38727duvWqbqlPtBoDvKtEsmcD/wVJn6fKDsit42YCYXsZYpq9yvlu++\n+46MjIxyZVFRUUSlRzFy6chy5UfSj7BGt4ZWju4IV+nY0lgwGAxkZWVVcsu3WCy88cYbV92+JMtI\nklSST1CSqrbcqUj60nR8A51EWG0kNE0A5/2wMFUxX+kpKt+0CrgQmHHmDC9HRpYrd8Z7kGcLB2q2\nMFoXBPiNRn5wHQvCB/Lii6XlXl+c5PcCA3e8Mxzqb01N5RogyzJjx45l0qRJ7N+/n8LCQqZOncor\nr7zCe+9dzLjw4lQc+M6ff2VWENUpdxvwDLAZZQpmGYring8cAn6+oqvWAk8//TTTpk1DpyvN6tOi\nRQu2+W1jbu+5NPdpXlL+wmcvMCBsAO1cvfjZcHWKwOq0IhfPVtlddtySG6vLhcPdsEbvQUFB5OTk\n4HA4KtUFBgZWcUbNadKkCZPWrlVy2ZWhU6dOlzyvxRQfzCk6RLMDrU3CbXYDHmB2YzlrQzjghHmV\np7jciLhlmZ0XYg8Uc9wgM66GD5UrQ6RGzZt98PUNLGfgE7vGH19nQwgCpFLXZGRkcPjwYbZu3YpO\npyMwMJApU6Ywa9asK1LutUVN7Nw3Fm9ludjQb+RFyuuEd955p1JGnNWLVjOw5UDaBZTaPvsb/Wnh\n24IQRwiiYL6ia2k0GgbdMogTuScQUWzP5SIZMVRk4y8gCL/xRM/KiTgq4nIVUFR0jE6dwGKhJGcn\nQJGx1N7b5HLRJjISoUz8W9fx4zitVnw0NcvG5OvrW8O7uzy+/PJLvszIgCefLA0/UAOa3uFF07Zt\n2ZWeTlReHjO6tIMPl8L8f5O5wUzW8pSLnqsRBFpXiJiWp3ejjD8qY8/4gy8OmPGuEEIzKykZc5sX\nqpU1MBAk6d+VInAajWXM8jMySFv2Hb86Y9HH/o+vp5cel3nYA7HJI9VeR6Xx06RJE5o0acJnn33G\nzJkzKSwsZMmSJXTt2rVe5bphPFSj4qNIcuVQuMfKr9mKiV1YWBg9e/ZEAIpEkfExMcRmZWFwu9kZ\noyR5trrdAGzatJoV+7+gSbqemf1LMzm1a9cMp/NTWrZ8heDguy8thNNJyqIRpHQ+wbyHPcneC7ll\nB6oOG/7mzmQBEjI7evWia4sWJdUbcnJYtm8fz4U1XjPIa0Gv0F5sQyApPwGPCg/CzLgVHO8yrNo2\n3nhD4r33PHE6y7+RBQSAwwFnBAHatGHVRx+yUjLRIxP2lnmPXZWYyd9dV/eGpNI40Gq1rF69mpkz\nZzJ//ny0Wi0jR46s9+xMN4Ryv+OOO9i0dBO2rD/ITXPy8fnzFEkSGU4nJ3v2xDchgd86dsTcowdL\nvL3x8/Xl3mbK3PyLLVowGggM3IFf8614eYi0abO1pG0lvro/np41sGMuKIDYY4R2Gcfbf3+I9/9d\nwSnHG+jfn6z3lDi2nhoNXmWUk1EU0QhCubysKpXpGtyVg+H38Fb//pWsZb4+u5dNebkMa2LlSJYJ\ngFS7nX8mZjAlNJQmNXQ6OS8I8NNP8K8P6TN7F9YRq/m6zPvtLn0LhIZrFXxdEGAMuCxzxStpv6YM\nHTqUAwcO1JksV8INodxffvllHvZ4mOSV+3jybyK/Nm/O6cRExr30Enz4IQAje/QALy92enjQ1MuL\n8ZXig0v4+Q0mQDbSs+fyKxdGq4UuXfjZMIl/3AU0reqg9CtvvxGjFQR2mEx4RUXBqlWwcydOYSQu\neTetRfGq2z9/HoKdHhSdN5CY0on9R30ATzJzZN6MSuWnXZ40O6/83x999KovV44TFguFFid2t4sj\nhYUl5e08PPC9nrOv1CE1dTC6UbnxvlU6Hdx8szKpajQqn+sYq9tNrssFTicFHh5IbhfuADtpTvBx\naytNHdyoBOp0mIcORTKboV07yMxk/o75/CLk8mrbtlfd/pgxkDlGh25LMMnxMyksPAOEMqaXkVRP\nL0aMgP6DYf162HGF6VqjCgt5JS4OpyyT5XDglGUK3G4eP3GCAXECD1pkPjl5EoBMp5PHQ0J49yKJ\n11VUrobrU7nb7XD4cPmyRIeygonhmovz+MmT/JGXhwcwYexY9GnpmP5xmBHnJMaYAvixW7drLlND\nxUOjUWLN2O2g0aBHQkRGWwsjd5cLekbA/JnQ1Pw34uKGcs89R1i3Du6KgYHN4K4mEB8PFSJU1JgT\nFgtuWUYjgI9Gg0YQ+K5zZ/4sKuLoyXT6++g40l/xkP53UhKpdvtV35eKSlVcl8rde91GePVtaNOm\ntDBzCGhag/Ha27nbJImlnTszXhBI+Pta3LNfYPl9g1gYmc0aS9o1l6chIugEcjflcqD7AWUhw/IJ\ndD/AzUU3szNrJ3EJcbjudKH1Vr6ysizz05pvkAvyWLSo9IG9a9cuOnbseMlruSQXTknCJblBAKfb\niSQ5cdWSOWszvZ5kBIwaDSIwKjAQvShy9AadblOpH64r5Z76n1TuX3c/6UIzCkLnw8jbSurMUWbo\npAe/KzOFVKlbgsYH0SeyD7Isg8UKI/4PftjPH/v/oOCLAhwnHLgL3SXKvbCwkHcWPAvGJ4mLK/V1\naNOmDRMmTGDpxa5jbMr4FeNBdiMn/AYtwfMdT9wy/Cq72fbENmB4tfK63W4mTpxI3Ok4WrvbEB0d\nxcSJb5Nkt5Pn7X3JGBx79oDJBLFayBXhl+IQRV27Qi3MPqmoANeZck/8ZyJSGwmtjxN9vhVCSy0f\nAu8IJHeQEVCVe0NE1Ip4dfNSdsyAmADdvSnKLMLt7UbQVFaXBoMRl/1j9u8vP2Wzfz/Y7z4B/Stf\nZ9Gw5axvu5w//7xDmZb55lWcrzu5KyaG9KhZ5NvzK59Uge++0zF9eixWq5V0z+VAHM2aNefhhx9m\ne3Y2n0yfTgcxlL5Ja9Hai0CvZwjQxR1Bivwo/YcMwKrzY9bsg9h84NPtkJIC3brBf/972V2nolIl\n15VyB9h5805eataEpgdj4aVW5eoKzGaIrSfBVGodUQTdJ9F82KNvufLPP4eYc54XOevySLDZOFzG\nuuWOv3ry+3ERaE2IXo9G3IEgxPHyy6FMnDgRc3IyTJ8OHh6s7fA69xoeAnMue0wmlqw6x/P/M+C9\nw4xd9uL//iKT6oZ/z1LykqxfXysiq6gA16Fyb0z4ihp+zslBX8E0Y6lNCXBgrIVFxEaJRgM2G/Tu\nzV/NacSk54OlEG4dA33bwNLSSRexk7mSwdOGDSipZWqBhYmJ7MrPp/2FaKAPgSdwymKhd5Mm9F4D\nuw7CQw9VPlcWtAiCk4y8lUhFRbQOyMARoWG47gQZGpmAog2kGyrndlVRqQ1U5V6PDPYKwDassrfk\nYeMBAu1afK4D++d8t5skm00xPV2yBPz9yQkMBC8vWLcOnFUsYnp4QGwsFBWx9sCnHP5gOV0TBBYN\n0fHYT6t4+gcTTosTq8sKshtkWTFxKfYmJjdQKTt/Hpo3Bx+fSpcQRU/i45X8qbt3B/GM280Cs4XY\n2D306e5LSsqfgBLzelrz5jxbwSv43YQETC7XJe/d7dJTVPQXcnJ+RXY6aOFViLODyE2+x8kVJVrl\nziWlSXOUwKoqKrXLDTo0rHsyMmDAAOjfH3btghdfhNGjwWpTdFxenuLPpBfFSpuAkjGosdPWw4O1\n2dkMio5m0LvvMmjgQAZ16cIHISF0MJmUVcX58xVlXpFOnaB3b+59ZAFt2vZGqzPQe/gD+Bp8mNJr\nCo9FPIYoaHBLboiKUtI03Xabsq1YoYz8x41T0vhVQdeuy+nWTUmPd9NNp1ni/zNuryF06vQZguDB\nyJEtkGUX4xJ70+54JzZu9GbjRm+++KIfNTZLlzWYTJ/Ttet/EVt/yc70BXj99A5vv/1furyrxa5t\nrTyEVBo9R48eZdCgQfj6+tKxY0fWrl1b3yKpI/e6wmQCgwHefx9etME9vWGEGQw/KvrngQeUwWyD\nRxDgzTfh00/Ll587B888c8lTHwkJ4ZGQq8s/FOodSphvGDpRx7A2wzHovJjQeQIFBQVoRQ1OYN3v\n6+kY+DgxE24BIHZPd9qf1XG454t0P5GBbkUGIQ+Vl0MU9Wi1SuwHnS4Im+iPLOjRan255ZZYrNYi\nBKEpG8N2E+7pxdRmzXE4MjlyZCBZWVd1Syq1RWCgMkqqKwICoAbJXZxOJ+PHj2fWrFk899xz7N69\nm9tuu43o6OhqzXLrElW5V8DmshGdFs3ymNIQA3J3mfXnY4jKTgJdzf9ZAQHKyN0/Bjo2gz4CJKyE\nZs0UB8xGQXg4VBW2VBShe/drL09ZEQQRURDJ36HDlHsTpjNKrBhbrh3B7cvmTAs2W0eyn0iiX5cQ\nauovJIp69Hrlzcmt8QKtF3q9N1BUJ/cRNTiK0P2FPCnDjtWl5e3ebUfLF1te/MQbnby8un3zqWEM\npz///JO8vDyee+45AIYMGcLgwYNZtmwZb775Zt3JVw2qci+DybSb/Wc/5aRbInP3/0rK5Y4yG06v\nxcenF/d3G1daLsPOnUqUwLKcO3etJL4G6HTQp099SwEiHHs6GyFlNgyJwuwyI1tkFj2voWPWEEKC\ntjFovZLUwHcFPDbXTHzuGLa6vClyBeM9GVq2VB64DQ1HuoPsd/ux9oAHy75XyhLfS8SZ1bByBKhU\njVzFA0aSJI4VJ0uvL1TlXgaXKwetNpDwwFZsnrarpFw/3YeNy03odN7lIjKeP69MsQwZUrmtm2+G\no0evhdQ3Bq3ntKZ9mD+8uArenURBUQHCvQL/mQbDBIFccwj2Cz+mHiB+lcPwb+9lddYw9v7+N4Yf\nqd4x6QL79u1j+/btSJJE9FdfkarXY/HzIzDQQHgNgn9eCbJWRNKIiMWuGYK28a+53ChERETg5+fH\nBx98wIwZM9i5cyc7d+5k+PCaf+fqAlW5V0AQBARBg0ZT3k5ao/GsFGpXkiAsDH77rXI769c3PuV+\n/Phxsotj3QOca0CvIMYwI/79DGA8C0P8EQtEBI3AwkciKIiNhaXR0PS+kuOnNGvGN/aCy77O4dTD\n7PpwFwV5BUh+EhmJR7FoNMg6PZt/3MRvv/lV30gNkQQ9/XOeYfcjbvbtcuJyCzz4oFInOyRCHMP5\niF9q7XoqdYNer2fdunU8++yzLFiwgD59+jBp0iRc1VhT1TWNWrmvzcri8fPnS/aXWiGp89s0DxN5\n2BDId9WcbzKZ+LTMQqHZfJS0OCtNetWRwA2YoUOH8sorr1Qqv+syMi3VB2MCAxW7+GPHoGn5+MlL\nLrOtXi2HcyB1J6dyThHUPQihtYBrqBWnRkNk5mHccu2m9Dvb9CtynHkc+exNclsZkHR9uecepS4t\n5lcWr93IR7V6RZW6om/fvuzbt69kf9SoUdxbIQ3ltaamyv02YCGgAZYCFVfYZgGTUcyCc4EngPPU\nMbkuF5NDQ/m8OHfnIY8DtDj5Iu+5J/Nf46U9FFu0aMHDDz9cbl7MZkskqLmBZhE3RhLtsqxYsaK+\nRah3xkVM5a5Rf+exTY8x6qZRTJs2jXGvf0VXLy+2bn+en2uaMliScLldWCxFxMXFcfBgDicKC7HE\n52CxlNrLS6IPVq0n2Dzo2WkcJp7mwvP10HfZLF4eXQd3qVIXxMbG0r59ezQaDZ9//jnnz59n8uTJ\n9SpTTZS7AfgMGILi9xcJbAHKfvP2AR8BduBp4H3gnlqV9CKIglAuHKyAhKYGGXA8PT35sDhRxwWy\ns9fxSWQaiVLFRB0qNwR79sCcOZCUBNu2KTGCf/gB0tOhdbKygi5JBNlT+dcbhbi9JBxfyYx2w4V0\ntc7hGgJ634T1yHmSk5PZ/e1+fv55I4VuN4HZLTmYMgoYVOuiW91uNuXmUtW7hUEQuDMoSM3gVYcs\nWbKEr7/+GrfbzZAhQ/jjjz/w9vauV5lqotxvAo4DF7IX/wjcSXnlvqvM5z1A9ZmirwNkWUYvSbgr\nWMgJOoFK/mG5LgqTXdilAKR0B4UmJV6JvrkeQ+i1jzGvUgXJyTBokJIBe8AAxb7/1lvhyBHY9Q24\nXAh5ucQF9uNdw3hMkkjQJBf7f1BOBRj1jojx2a/IfPBuOrUJZ8pLT/Hoo2+y02Tiy+UnkKfvrxPR\n9+Tn89Tp0wz1q7wmsDE3l5MDBtCqQoLxRk9AQI3NFa+4/RqycOFCFi5cWHeyXAE1Ue4tgKQy+8nA\niEsc/xSw7ipkqldOnmzLhqOw7YXSMkk6Q5cuIps2lbdPt6xKZ/H5U+xpWkaRy6Dx1cB/Bpdr1zgn\njWP7LMgjbkL+JQfzxlO4C90Y2xnpublnHd/VjYkgCBxIPYhTcjJu+bhydaIgcp+HsgD72muvcSIz\nk2WJiewvKuJIfj55F8zbgoLgrrvA93fk1euJM/rif/Q3MlNTKfjtN8SoM8gIeHg50Wl01Dipligq\nrso+PmC10nb7Em4V1sMdSrVjuPLAP2e1lr8noI3RiFhBqclAT29vVlfhe9A6MvL6zOZaAwejG5ma\nKPfL+V48AvShJgGx6xCtLLOnaVP6HjpUrtwqSeiredKb8nwJDYXNv5eWdegwBg+PM2RllVfuUpGb\nbX5hvGUqdWxy/3maPQNSCI7eQq9MlAksrRayoN29ZmyWTbj/7wXavd2PvK15JLx1hSl/bkS0WmWI\nPGCAEkemqEj5XFgIlXLewpsj38Q3dQOnBA1P93u6fN2ON0lxpdC+fXs8PT3RGI0Y9Ho8HQ40Gg1G\no5FPPvmECwZPESER/CT/xNyYfDzP3U+204nbVoDB5KKfPJgfj//IoxGXkXh123YoLFBGnvqtZHcc\nxBbhVnpPB8vevezzOIsMjKlgcpXucPDfLl24Ozj48vpO5YajJso9GSjrJteS8iP5C4wGXgOGAVV6\nX8ybN6/k84gRIxgxYkQNxbw8BhcVsGPTJqT58yvVNdXpqjijPHp9eSUuCOcx1HTm5MWZSM+AO+J3\nbukGkVaY6umBdrrAGcGB7O2ipahOw1wRrVopwdodDjCbYfx4+Phjpa5580qHd27SGbf3Qc4IIuM6\nlR+5f3H4C3BD8+bNee2119gfE8P9O3dyV3o6J+PjGTNmDI899hjPnj4NwMuDX+Zdzbt8P9CXwYOP\nK4HDVq8mtEkMOzDhvNwsTjffDMlJJekEC8PCSeIOuANcNhuapDMIwLkKIS/vP34cRwWnGckuQaYT\nrxwJR0apR53GT4PGqObnbWxs376d7du3X3U7NVHuB4HuQBiQCdyPMvVSlt7A58BYIJuLUFa51yVa\noHdubpXRAOscWYJWaRQYvua//x3C11/DlJMn+csyFx3vDKHJsGD0+hvPGqdWEAToVWynWlCgmEAO\nGFC/Ml0GkuQmUU4E9rFvHyRkZpDlcJAn5VHTIAMC8EFyMqvKBLi5dVYBLXfZmaoXOKg9qFzLLhF4\nayDdVqoRJxsbFQe+86sYpNaEmih3G/AMsBlllXAZEAXMR1H8G4B/Al7AquJzEoC7r0ii6wRZDqGw\nsBVGIxRq8sHsQic1x2i8ukBaKg0fU55iaGM2K+b3v/8OfwIpp0+zik+AvbzwAqQ5HDgkiSC3i2bB\nnTBVEZDMbC7vwj6nqYXTViuS1gNZGwSAn2zDujiYdveFElFsoZG9IZvUz1Pr+E5VGjI1tXPfWLyV\n5Y0yn2+tHXHqluzsbPLz04iNfRBJKh8QxmgU8PW1gjD68lYZVG4oXC4TMTF30clqxdUulcMnipDp\nSXzCW+wuepHXRvpjcbv5u+zA7Y7Fav2ZgoJ1nDk5g+wsI6E0I5F9REbC+8lJpNrtTBqbTWK7npwo\no9zz81uBIBMb+2AlGZq7zXh5dSEiQvlJxhgyCPX3I7gWTe9kWSbvtzxlyqcMgijgf4u/Ot3TCGh0\nHqr5tnweWv0Qdredpb//m2Z5gexZ+QUAzuTFzPkhBT+v76BP5QSarVu3JjDQH6czHb2+/Ag6PT2L\nnJxofHfsgoJDlc6tORLI4PGvWKbu8ySyJUxzOtEWyIiPtbiKdlVqm6i0KDLMGSw9spQkczBxeXEc\nTT/Dubxs0s3pVZ7To8cGJMnK3sxMzDl78XUmIiDw6ekcvo/3xiK7sLglPCRIabOBrU1P0iOoFw/c\nfY7jKd0orLLVysTFjQb5fQYMqBx8Kjf3dxIT372KO68ee5KdYxOOETC6vDlgfmQ+3X7sRsAtDTAC\nm0o5Gp1yz7ZkE50ejU7UMcqzGxnZOXhPnQ5A/lw/Wk1+AX23ttCzsnmh3W7nxImdxMSMYuDA8lYq\nGo0GT88uiGIN7JAtFgAEpwON7CrZB9DgwK+7TFpoB1Zoe/PNN8qc+8MhITTpUXPnKA8PD8LDwxHL\nOGg5HA7Gjx9f4zZULs6krpNYHrcck93E1vitZHvdQnpRBvH58ZzOTmXLuS3MYlal8wIDlZfUvKIE\nTPkFhGblIAoiewcqqf/WOx1sd0uc0L9K+4IpuIw/kWY10+EicsiAQ5JIsFlJNtlZvu8kgWfPIsvK\n9/eCB7Wvry+tWpXmBJZlO3a78gCSPLNxCgJ2u5KJSqOpIvnJ5SKDrqmOHj/3KFd89NajyJL6atsY\naHTKHcBT50m+kE9L3xbkebvo+fQMAPb9ax8dHnwaoUPtJEeuklWrlEwbBgNBzgk86AqFJl+U1osi\ngkcXZD89Zg8jxpZQaNIgN9Ndlodg1OYoCK1c7lMfi8SNHQkKDpUPInY3dxMcHMxbhrf45rZvuOdM\nLINaFHKXti1vFW6qWbuhoYqDk7s3HZ+fpxT16YNvy5aIkozB3QRP0R8wX7QJs9tNssPBqoxMDmw+\nwuHTr3GH243nsM+QZZkHH3wQSZJITEzEbFba0eubYrWe49AhZXHZ9YiLQg+R84dEQMbtLqQriZfb\nSyrXGY1SudcrhYXw+OOwZAl/jE/mz81WMu/9oNwhtyfewm+/XZ3znKeHJx5BtTACu8ERLQX49dFx\nenJM+Qq9jqSiJIriikhZnIJPhBshV4fNZES0ipgzzPy67VfSZB1SgMTGnCIkWeKX07/QwrcF4A83\n3QQvvACzd0F0scN2Rgb8+GO5dRtB0EDOUsYSzpfFFTt3duY8t7BeHsUoAtB0tMA/Ahh++0/kp6ej\nXy0jIPBF5hfIyGQXZbOn6R48OnrQZ08fBg0qXSyNuTuG0MmhBN8djCzL7NihZs+8lnz88cd8++23\nHDt2jIceeoglS0pD1v3xxx88++yzpKSk0L9/f7799ttyb2B1yQ2p3HdkWLj7X+Xn3KUXJZp/0Jx8\nq5Vw+fFq2ygoOESWcJbg3nYGTig/SvLzy+XOO6mz2N8qNaRFC4TkRHrJk8uXm0xw//1Y7r8fw2QD\nKR+n8IDTiZetDdHulvg5d9D1cFekDRITAp388997OW86hEty8c+9/ySrKIsnxm9ibXY2XukZjqEw\nGwAAHeRJREFUtETm/uPHAUiw2aiYq8vffzhC69kc0G5F5nMA3n57LS4PiXvuX4xWuoeClU3BksCj\n94YRaIvHV9rAChH6H+uPw+6gXft2nN9xnqiBURQeLj9z7zLVb2jZ+iJw927y6jCsboBWS25VyRoq\nEBYWxuuvv87mzZuxlvEozs7O5r777mP58uXcfvvtzJ07lwceeIDIyMg6k7ksN6Ryz7S7GdfxLt65\n5Z2SsmbNm/Hdxu9Yt64pOcnBREeXhs6pKtNKVNQA2t0+CNnupkPH8tNAghDM0KFtq8z7XBF3oRvz\n0fKv7RUtFFSukH794NSpyuX/+Q8Uey8bWhgYuHMgd8XE8OTOnYxKTyckPoS+Y/oysu9I/rgrmr/2\nf4YpgYH4TvVlbMFYFh9YjEG/mZEWCzFnTiEicF8Zj9FeO3ZQ1mVKELQIxk7YNdElac+/XVCAIEB0\n1mkcspPpQwWeWeBgqCGIVk4nzgxlPn2XKxuHy44VE/sMeYjheg5POY63tsxPVwBjm9qLG+OUJN6O\nj+dml6vEiesCwyxFGB0OGkL63zyXC7mOHCEBhBo6Et1THKf50KFDJF8IMgSsWbOG3r17c/vttwMw\nZ84cPvjgA06fPk2n4ki2dUmjUu7uIjeWnywMODyAde51eO8UaZ3lT8aKDKW+0F3jtjx1noR4l47e\nR988mtnTZ5OV9RB2ewtOnygNAjRixAiKKqXPlDn0wQ9IKVbuK7qyJLiGMAOyW+bE4ycqlWsDGtW/\n5rrHYDDw17/+lUORh8g5k8MXGe8DILgF7hQfY+chJVemUWvkvuyqM2gLaWkl4eT6DBqEIIDTU2Jx\n0ZN8+MEHCMJopTIoCGHLFkRJYmjbtgBkOZ2IXdoTI0l8VjxadQul5ojaPvCmoKOJFsUj5SrIdbn4\nb2YmQwWRrl5e5eryXOmcs9pQX0orU3EQePz4cXqWMezQ6/V06tSJY8eOqcq9IqYdJvJey6NXWC/W\nutfidUAkrMiXHGcOAIG3BaIP1V9R21u2bAFg0SKIi4NFix4uV3/TTVcne1V4hnvSL6pf7TesUj17\n9yqBp86dgxkzlHAAhw5Bi6rNVUVRZNGiRTjdTpYcWYLDrfhJCDaBLmO6ENskFoDXt73OW+7O5c51\nuB3YXVZkXHh5eYHdSlxRIYIAf8Y+RvpYH958bjZ/eafYmmrECISiItDr0dvt2O12vDw9eWXmTKKi\novjt8FF0Oa/So0cUAEajkZPnfsE0cAVnY7vzAf6s2beYpmEFbF7YjBERCaSc2Yrgp0MQNDRr9iRa\n7aUzSnmIIj4aDc+GhZUrXyrGX25P3zBUNJgoKioiJKT89K+3t3fJwnhd06iUOzLoI/T8Z9x/EGYL\nZLzk4s/4RCbPuCah4/n0U0jKgbaJwBOQnU2DeD1VuUzuvBOsVkWxG43Qrh0GDw+mPvwwfzMayXzn\nHTadPcsX2qNMc7kwlPnR6jQ6pvWdVrLvtrjZI+5h+gDFHPefe/4JKFEoLMfNuDdpmZ07G5hN+7z2\nWJwWeCWQgAUSbp2bl3r2ZGAZ0Z55Bjw9S0LHM2kSyLKeiIiPSE/Px2AwIAY2gcKp3PPA+7hcLt5+\n+226d+/OtOeNpCV50uZLgaIRuegFM5066YiT8jHlGgjx1JKZ+QPe3r3x8xvF6tVKaJuKdK79cPOA\nMht2vooUPn37wn33VS5vbFQcuXt7e1NU4ZXfbDZfM4u3xqHcs7KU0VVSGIYznfkoK4NJDoeSvLTj\nlU2JXC6vvaa4khsPg7Y49phOB53bXpPLq9QmYWHK92nnTsWUccYMvnG5yHIqwb9mBgQwpFUrxoWH\nk+VxhptDq7BJvQRJBUk43SJOrZOgjiN5vXswyfiS9mcO5zQr4W0r21pFsmXRZt48Mp/vHQW8nNkb\n60tpbCqet5ElGWGNzP33AwisXPksLVrAgAGfs8W1GV26gVdffRW73c7bb78NQGAg3DpSgCfBW9uV\n1P2hRHieZErHW3hkyzHaN3VQ2FUHrmMktx7F5MmUpPW7wLFjMPxuoLx5ezm25uWx73zldahBvr7c\nFhR00fPefBMefRTKhpyPi4PFi68P5V5x5N6tW7dyGc7sdjunTp2iW7drE++ncSj3xESIjIQHPsCV\nL7KplxfEOmH48Iu+Rtc2d92lbCwBdsJ2IDi4ymCEKo0QH60Wn+JFSm+NhqZ6PS2MRvIFsVymr7Lk\nbMwhf28+sksmfkE8AIvTF1OU9QeCez2CBv5YPZzI3wZgR0NI1m5c1lW8RQyubCd3f3w3I92tcBQ1\nZeHSB1jrHMh/A58H4I3e+fxDLmLSJOVaJ04o8WqqRaOBf/wDDlnB5eTIrl3I7SM4HxONTk5DCkzn\nzIF/sC8khltuGcL775dfiF22bDAJBU0v0ji0NBjINxoxVVBkJy0WjpjNl1TuANOnl//J7tgBc+fW\n4L4aMG63G6fTicvlwu12Y7fb0Wq13HPPPbz88sts2rSJMWPG8NZbbxEREXFN5tuhsSh3UIYlQ4fi\njjrDr7294cdC6NOnht94FZXLRzSKWE5b2Ntsb5X1jnQHAWMCkN0yRTHK63cHOoArCRGRe+4y8OJL\nAUAAUYWFLPzqBO4tdsbNC8X8VgHBE4Ox2E+y4U4LfZotRNwgoF0xUbn2ltfg53eqvO4lEQR45RXY\nkI1UlEzfzZsRpvyd/7UZSie/0wxNSKNJUDI+PpH07p1OVlappZfFEktIyAQSCi6ubYN0Oh4NDSGw\nTfkJyfXZ2XyVlnb58l4HLFiwgDfffLNk//vvv2fevHnMnTuXVatWMX36dJKTk+nfvz8//PDDNZOr\n8Sj3a4hvURqcs1RdmZlZZbFbllmcnIxVqmzGeMZykbZUGjQe7TwYlD4I2Vm1u70gCuia6Dg5+SSu\ngjKDDFmLaIBWk4LoV7xebjG50YeZcAbY6flsMPs+OEfArQGkWM5jLSjEejoep9OPwsJ4AOwORVHO\nnSuzdq1AdjaU6E6vIGxW8PZW5uYdDjh5sup70Gq1CFotTzzxBPcNNcKyXrBlC8FzvmTKnBQCniw1\nQAhxLybZO59fhFRkq+KvdyHNsE4HTz55pT15aURJIn1pJpKzQpAyjUDTB5ui8ag6SFmAVltjc8Ur\nIUBbM/U4b968i4Yzv+WWWzhx4kSVdXWNqtwrILoczFvSih0po0muIofimZAQ8saO5R6+Ja1DFsdx\nsfHMGYokieUZGTxfxTTRxOBg+qthAxol+ibVW191WdalfMGI5zAmgmen6sNg6L160z9vKclp/hQW\nDufUqVcByMlLAQEOHrQwdaoXw4Ypa8Br1sBHB01s/NBBn3Z67HaZ0KZOrNbzzP773wkKVEbUrVJb\n0fVM15J54Di5iOhCp6Klg4KIdxbB/fksz5S5f5uW8M8K0d9pwl9n453lyWhd4JBE4uMVOZctU2ZB\n64Igq5UzM84QfJ/iKyDLcM5mxbjZzB+BFmz9q3YYqYmD0Y3Mdafc161bR05ODhkZP+Bylc+xKElu\nTp/+6yXPF2QJSdAwZ85DvOp6Drej/KhNGYh9jdXpSW68Ft8OSk5LgKWdO3Nf04vPV6rcQOTkwHvv\nlab/CwpC45Ywu+3sTdqLw+UgOi2atLDh/F0ziKf8muPp25J+/RTzxua5rwHvADJty8TBO3IEPM+4\neDD5AwzJijlm0NsPk/fRLxxsLTGlVzBdfDrQ5FgrPMwebFi2gYeP+fGV/3lWnALRLwhNpwjk3Rvo\n1V7myZd+YOCONsgYIG8VklFiJafJbxPG8p+XM654Lfn336lTDM0NdP5KMSE9b7Xy4MGDLInVcMxS\nRHbBZWa5UgEaqHJPMCXw4/EfS/ZDTiYz1pzButhVBOSXjqZFVzb+znTMZltJ2cSJE3nggTswmbbh\n43MzglCaVm/atDsJC3uC0MJuxOU7CQ0tF9BRwaakmfImH29DDx59fANnzlSWURD0dJ+ci+28lY4t\na5pHR+VKEASB999/n5UrV5aUOZ3OywrEdk2ZO1cxC2nevHTF3csLq04mT7bw0paXmGmZyZJdS0gN\nk8lt/n98fmgdutSJ5FkVSwqry4oMnPCfyedHD7K54DQCEHPAiTHbRdGRdXgblXSNWh3kiw70njv4\nNn87g6RQ+h09QsfsVHb8LwLNz/CPj2HiCNjfaT/2pPbIsmIGaTDMJlcP/s+LSOMcmAu/4v/ui+dc\nxgGOJvbiQvyxOXPAbB6FB9Mq3W51dN6/n1NWK3wPLc8CZ0vrhhWG4nY0Jcfp5P2kJIyiyJiAAIL1\netp76BnTujV+nf34+or/GTcuDU65S06JTVGb+OnIT4xsOxIAj1wLdqcei8lCAAHMHjybGcwgJOMl\nWgnxnLCWXdxxM316PCeLOvNHfksEsXS+rgh4ae96TmafpFfQQBwOJd9yOWygvRDXR9Bhtfqjv8ib\nuSCo2devBfPnzycmJqZS+YsvvlgP0tSAUaMgKAgeewx6FNsUmkx4rVtH16bd2ft/ezn40UFe+ecr\nyBqBApeL/a6p7LD7sbvJbgBO33YKQYZkIZOM3EI8NDKPRjwGxhiCCo/xw7leDDMrDjKyDBGm3zCH\nvkEPvzMI4ho6dgS/NOjXV+bHZU6SovPhZgcuk4Ob9rYh3WFg2KQQEhJLH5Bu9wBsTxzHef8kJi+Y\nyZEja0rqPvnkCFOnflTl7R4vKmLS8eM4ZRnDjh3l6np6e5PrcpExaBB92unZtw/CwmTEHTsY4OND\nbr4DD1nGJcsk2+38JzWVXhERtfnfuGFpcMr9+KTjdNzckfma+Xhoi+fa3G4SrRPp94k3IQ+F0Klv\nJ2YwA0F2st//LRZEPFGmBS39+0exc9+/ycvcyYPdKmeyGdNuDOFeA/lJBF/fCpVX5uCqUoeEh4cT\nfp1FYeuzrw+SRSLBauWvx4/zSkInTm8Sue3L20j7Ko25P8/jF35lxJ/LmeSZy84zL/Oy1xyWJf+H\nyKNBSEdfZLtQOmVol4/wyqseHJ+QQewwM21d3+GSWhAcv5DWQUPR/O979v58AinnS6SxTyHZtMju\nbaSnBxEQAAYDaDRGvHK9cUgtSUoS8fIqXUvIzTUpH5KT4MdIiC4NoexlszFZpyO1c2dWh4UhF68i\nJ9ps3HL06EX7YHRAABmFGkwGIyFuPe936MD/LmKwoHL5NDjlLhVJJC9MJrJNJJ+N+0wpPHwYps1U\n/l4G3YO781jPxypXvPcezpWP8nO/bA6uqCLP5GcOpjj/AbruV3AHKirVo/HQKJvVRZGfgNZHsbDR\nBYkE3hmIJd4MewTcZglnqpPg3GB+3fwrJ8+exkNzlh9W/YBcrNy1ohbP1/QsfqSAJ2MNbLU7+Dz7\nd262jWaJ/Btnxh3nJbRo/LWsiJP521OB2Ckg/7cVvPTtl/j6QetWMKrr3+nvdkNMDP6SBGUsUTzN\nJoTcHCUQW1Ai5CaV1GlDQ/EKDETIykK/eXNJ0nLDRfwDVK4NNVHutwELAQ2wFHivQr0B+A7oChQA\nD6MkyG64REbiuOMetuXEMsrTwoENE8pV27Q+LAspIGLdiPqRT+WGxru7Nx0/bA+fy3h196L1U574\nt+5HkaMI8Vs73gnn6N1iRsnx7+x+B088EcKa0d+3A73brYZMDzir5V9dfJn+9pdMm/QvPLqcRYNA\nUTN/svMLcLb9gyTPAE4dB6+8I3wb+QGr9mnosuUNTiDjHqkEMhM18GF7I2cMReR/sxCLhwONpniR\n02bDEhpKd50/GYUvYD9RBPYUAFwOGwFyFlZZrjKyqkrdUp1yNwCfAUOADCAS2AJElzlmOpAGPADc\nDXwElNeWdYTN5SbdlEB0WpnwvKEy0enRpBSmlE7rVIG7QzjppnxOmbz5NelR7r67tE4PpOoiebBb\nMA8Wr+Rs376dEXUYXrQuacyyw/Uhv9ir1xWfLwgCj0Y8CoD8ex5HxC081e+pkvovo74kyZoElhxW\nds+nkzAdn9BgAjybktR+HDr/NoQPn0/ftjOIsVqZ5DeVFUsXI0Z50c4YhFcGpMaeJk+Mg6mPEWtq\nT5/v/sfGjYeZNu00/v5/49SpfvRacASPeD/kMBNioJW/PNWWZmIW5zOeQAxbzkOeszg8OBc2/LdE\ntk9lKArSYp7oy5/ZLmwnfsMd2g09dkTJhgYNakb6uqE65X4TcBxIKd7/EbiT8sr9DuDl4s/rgS8B\ngVr6jx3LPMaWuO+hXQZEvl9S7pJcLIo6zRn7vzj652oAZAQ0dwrM+e4vjI3KZ3DLoWSdm4rFIxNN\n2ZFD8wPYvJvQrst5opp25dTUo6yukOSyyOTg8UehZbF3dmNWMI1Zdrg+5B91Fcq9Op6/6XlmMQuX\n5CLbmo9WlmlqB4Nb4O0DP5Kafi9/++M7WgYm8Ir0CnPemIOY50SU7uDsyTV46j3xaiJzdE02T972\nIYSC6z6Zv8f2Ruqv5dhmG7QYTL5hPOEaOBdawIH968k+2o9/DfuUz880JSTy/3BqNfzwj0UAeBWm\n8+vcVcweaGSiuAjDrN9Jes4OmsGc3i2yXpLQJIsIspv9o/6G86e7q7lLlculOuXeAkgqs58MjLjE\nMRKQAzRFGelfNR/vmk5k8i46j5bgxOyScq3dyW+znXhoNOiEk1j1eoJWrkTurGUrsHUAIIp8JEwn\nk2CaRboJyFSypMiGFhzbLWEKbM9mrwGMLGzJQyPLX/f11q1pYTDUxi2oqNQpj/d8nEW+i7B6h/C3\nm++iv68v2c5sUg+kEvvXWIb9IPLXm2bQs0chtnk22jna0cyrJVm5f+GL/Uq47CJ9BDfxPlO/Dqdg\nfAgHY3ZzKNzN092nsvrQasy3pHPr7U/TY74dPzZxxO3G/vshZkdLpBQu42yHrhT16UOfAT3p2n0K\nt+1+k6W/RZES0ZEPvWZjOLWC/tPvpJ8QiUNwIwkyC6dMJrzdUYb2WYQreCNHv07j5fbtcZz1Yqbd\nQtFkkWTHzXi7/1XPPXxpLpZmz+l08tBDD3H48GESEhLYtm0bw+vKE6wKqlPu9f6+5HKbubtZbx4/\nlErCHU+XlK/XvMG362Zg8tTSswCOxHrxgPZ/yN9/S3j46wiCspjTsnsBn56dw4TRwxnatknJ+S3y\nYMwsEwNuT+er3oGoaz83Jna7ndTU8ovqlloKF5GZmUlqaiqFhYVkp6Vhyc1FlGVSy8TZzXA4ylwX\nLojitis/vvyTh8hZeYLUGMVm11TB1LAsrrw8TiYmovHyoigjn4K8TOxHjPjaNFjP6MnTBWIxxuLs\n5oGmW2fE//njf0aJI+MPCB4f4HN+AZ6fuRDMe3j/9AdEE4VG1uCUsvh+0xRey36BI/7HsIo2MgPj\n8W7bFJ3zHF6+IegFgfzmmSRrP+KbYf5YtX8QcGAztu5z2B9zN1/0G8i4rlY8dA4KtG62tvXAW7yZ\ngfs0jDk6mGDtF7QIOEmcrz/rxz1Mt5+SyZz5IZlrPqzyfncH7saVV3expbQBWobkXnmaPYBhw4bx\nwgsvMGnSpAbnlzEU2FBmfxbwWoVj/uCC4yaIQFbx34qcRfm+qpu6qZu6XfZWkW1sq1RWm1xu+3Pm\nzJEnT55cZV2LFi3kHTt2XPL8S9x7GbevmlPdyP0g0B0IAzKB+1EcOMvyK/AocAhlITUSZXqmIh2q\nKFNRUVGpCXJ9C1Adcu1YBNXa8L465W4DnkHJyigCy4AoYD6KMv8Z+Li4PAYoRDGFVFFRUbmhaGjT\nLjWxc99YvJXljTKf7SgjehUVFZUblloaudcadbGMGA/8iWIueeAix3yEYmIZBfSuAxmulHguLfsI\nIL+4PhqYc60EqyH+wErgKHACyqXnvEBD7XuoXv4RNNz+D6dUrmgUOZ+v4riG2v81kX8EDbf/651a\nGrmfBFYBFeNFT0ZZz7zQ91Oqa6guwg/IKF+Ci0XVmgi0ArqhfLmXAHVnBHx5VCc7wA7grmsizeXz\nJbAGWIHy4PauUN+Q+x6qlx8abv+folRZiyi+IT9VOKYh939N5IeG2//1xsXS7Gk0Gux2e8mI3m63\nY7PZMBqNl2quM4o/0UNQLhimjPK7qGrAUCV1ZQB4qUfYHShz9KA8gbQotvINheoevw1rYq2UIBRF\ncSEjr4QSDqIsDbnvayI/NNz+L8to4BzlfUSgYfd/WS4mPzSO/r+mLFiwAE9PT9577z2+//57PDw8\nSpKWh4eH4+npSWpqKmPHjsXLy4vExMRLNadFGbVXDOEicJl9X1cj99+K2/4PyoJrWapyjGpR/Le+\nqU52GWWqIAbFeuhFlCmEhkBHlNe2/6HE+YkC/gqYyxzTkPu+JvI35P4vy4PA8irKG3L/l+Vi8jeo\n/tcGaNkubK/T9mvCpdLsxV9IZVVzUlEMWCqmR5GBe4FRKA/e56iHGF4XUhEFA4dRRgFl2YwS1uAC\nmyrs1yfVye4NXHinGgOcv0Zy1YRBgBPoX7z/IZWDvDXkvq+J/A25/y+gR3lIBVdR15D7/wKXkr8+\n+/+ybM4bIygKXIsyHfZIhfsPoHQw/n/A7uo6rC6mZS4EZM5CWRjoX6E+GSibuqghjVyqk92MYh4K\nSgA1BxB6bUSrliSUedKDxfurqDyf25D7vibyN+T+v8DtKAODrCrqGnL/X+BS8jeG/m/suFDWnSq6\nxuYV14EyF9+zuoZqW7l7UrrK64USLvh4hWN+pfSp1AdwUxqYrD6piexNynzuW3xcQ8kukARkA52K\n90ejWJyUpaH2PdRM/obc/xd4iNJ1g4o05P6/wKXkbwz939gRUL77Fb1Sy75JjQeqSP5Zt7RFmYM7\nApwG3iwuf4rynq0fU2oO1udaCngJaiL7cyjzjTEoo5th11jG6uiJMvI9jqJIAmgcfX+B6uRv6P3v\nhfKA8ilT1pj6vzr567P/63vWpM5BmZY5BfwAeKA4i44vvv93Ucy0j6NMyXSrrsPUlW8VFZXGQLH+\nu34ptpOvNZ2sxkJUUVFRuQ5RlbuKiorKdYiq3FVUVFSuQ1TlrqKionIdoip3FRUVlavg448/pl+/\nfhiNRv7yl7+UlEdGRjJy5Ej8/f3x8/NjwoQJpKRcO8tX1VpGRUWlMVDJWmb37kBcrrw6u6BWG8CQ\nIZeKIajw008/IYpiSZq9CzlUt2zZgsPhYMyYMbjdbmbMmMHp06fZvn17le3UtrWMioqKSmOgkl34\ntm11a/t+ue1fKs2eLMtyTEyMbDAYLlpPLWebUqdlVFRUVGoBuRo7/G3bthEREXGNpKmbqJAqKioq\nNxyXStbx559/8sYbb/Dzzz9fM3nUkbuKiopKLXCxkfvZs2e54447WLx4MYMHD75m8qjKXUVFRaUW\nqGrknpCQwK233srcuXN55JGKUXzrFnVaRkVFReUquFiavfT0dEaNGsX06dOZNm1afYupoqKi0iC5\namuWy6Wm7b/xxhuyIAjltnnz5snz58+XBUGQvb29SzYfH5+LtkMtW8uoNpUqKiqNgWL9V0pDsXOv\nLWrbzl1V7ioqKo2BSsr9ekMN+auioqKiUi2qcldRUVG5DlGVu4qKisp1iKrcVVRUVK5DVOWuoqKi\nch2iKncVFRWV6xBVuauoqKhch6jKXUVFReU6RFXuKioqKlfBxdLsxcbG0qdPH/z9/fH29qZ///5s\n3bq1HiVVUVFRaXhUisUSEBBwIR5LnWwBAQE1ii2zZs0aee3atfIzzzxTLhOTyWSS4+PjZVmWZUmS\n5I8++kgODAy8ZrFl1KiQKioqjZK8vLxqsx9dDZdKvlGWe+65B4BDhw6RnJxcUu7n54efnx+gRI4U\nRZFWrVrVvqAXQVXuKioqKrXAxR40/v7+FBUV0bx582s6LaPOuauoqKjUAhcb6ZtMJsxmM0888QST\nJk2q07eNsqjKXUVFRaUWuJTSNhgMzJ8/n7i4OGJiYq6JPKpyV1FRUakFqpujlyQJSZKukTSqcldR\nUVG5KtxuNzabrVyaPZfLxbZt2zh+/DgAFouFV199lebNm9OjR496llhFRUWl4VCl6WBdUtP2q0qz\nN3/+fPnHH3+UO3bsKHt5ecn+/v7yhAkT5Li4uEterzY7TM3EpKKi0hgo1n+lBAYGkpdXd2n2AgIC\nyM1V0+ypqKio1CWVlPv1hppmT0VFRUWlWlTlrqKionIdoip3FRUVlesQVbmrqKioXIeoyl1FRUXl\nOkRV7ioqKirXIWpUSBUVlQaPVqstFATBp77lqEu0Wm2hy+WqbzFUVFRUVFRUVFRUVFRUVFRUVFRU\nVFRUVFRUVFRUVFRUVFRUGiH/D18Vf1NlifoXAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(Pttop_BJ1)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEmCAYAAAB/OxvoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFXawPHfnZZJz6SQ0HswEDoCKkgQBMRFBIQVFEUW\nK7gWVGxIsaysrqwIwtpQ4AUUGxZQFAi9BULvISGFkpCeSTL1vn9MREAgE8hMEni+n8+sM3fOvee5\nsDw5OfcUEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhKh0nwGngT3llLsRsAODPR6REEKIszRulJkL\n9CunjBaYBvwCKFcblBBCCPe5k8jXAbnllHkS+BrIuuqIhBBCVIg7ibw8dYGBwOyyz2olXFMIIYSb\ndJVwjf8CL+JK4AqX6Fpp2rSpmpSUVAnVCSHEdSUJaHa5ApXRIu8ILAaSgSHAh8Bdf4kkKQlVVav9\na9KkSVUew7USZ02IUeKUOKv7C2haXhKujBZ5k3PezwV+BH6ohOsKIYRwgzuJfBHQAwgH0oBJgL7s\nu/95KC4hhBBucieRD6/A9R660kCqi7i4uKoOwS01Ic6aECNInJVN4vQ+b475Vsv6e4QQQrhJURQo\nJ1dXRh+5EEJ4VGhoKLm55U1nqdlMJhM5OTlXdK60yIUQ1Z6iKFzr+eNS9+hOi7wyhh8KIYSoQpLI\nhRCihpNELoQQNZwkciGEqOEkkQshRA0niVyIGubee+8lKCiIoKAggoOD2bBhQ1WHVCVCQ0FRPPcK\nDXU/lpycHAYNGkRQUBCNGzdm0aJFnrvxi5BELkQNk5aWxtdff016ejrdunUjK+v63AYgNxdU1XOv\nigxbHzt2LMHBweTk5PDtt9/yxBNPsH//fs/d/AUkkQtRA/n7+xMUFIRery+/sPAos9nMt99+y9Sp\nU9HpdLRv35577rmH+fPney0GSeRCCHEVDh8+jK+vLw0aNDh7rE2bNuzbt89rMUgiF0KIq1BUVIS/\nv/95x/z9/SksLPRaDJLIhRDiKgQEBGA2m887VlRURGBgoNdikEQuhBBXITo6mpKSElJTU88e2717\nN7GxsV6LQRK5EEJcBX9/fwYPHsykSZOw2WwkJibyzTffMHLkSK/FIIlcCFEjmUyeHUduMrkfy4cf\nfkheXh5hYWEMHjyY2bNnExMT47mbv4CsRy6EqJGucOlujzCZTHz33XdVVr+0yIUQooaTRC6EEDWc\nJHIhhKjhJJELIUQNJ4lcCCFqOHcS+WfAaWDPJb4fCewu+z4B6Fg5oQkhhHCHO4l8LtDvMt8fAm4B\nWgOvAp9UQlxCCCHc5E4iXwdcbmXercAfq8NsAOpebVBCCCHcV9l95I8CSyv5mkIIIS6jMmd2xgGj\ncXWzXNTkyZP/LBwXR1xcXCVWL4S4noROCyW3tALb+FSQyWgiZ0L500dnzpzJ559/zt69exk+fDhz\n5869qnrj4+OJj4+v0DmVlcjb4Oob78dlumHOTeRCCHE1cktzUSepHru+MkVxq1zdunWZOHEiv/76\nKyUlJVdd74WN3ClTppR7TmUk8gbAt8D9wNFKuJ4QQtQYgwYNAiAhIYH09PQqicGdRL4I6AGEA2nA\nJOCPjQL/B7wGmIDZZcdsQOfKDVMIIao3VfXcbwflcSeRDy/n+zFlLyGEuG4pintdMZ4gMzuFEKIS\nVGWLXBK5EEJUAmmRCyFEDeVwOCgtLcVut+NwOLBYLDgcDq/GIDsECSFqJJPR5PYQwSu9vjtef/11\npk6devbzggULmDx5Mq+99pqnQvsLSeRCiBrJnck63jB58uQqnyMjXStCCFHDSSIXQogaThK5EELU\ncJLIhRCihpNELoQQNZwkciGEqOEkkQshRA0niVwIIWo4SeRCXOOWLFlCVFTU2Zc3ZxwK75BELsQ1\nLi0tjYEDB7Jz505eeeUVkpOTqzqkyhEaCoriuVdoqFthWK1WHnzwQerVq4e/vz+tWrXi+++/9/DN\nn08SuRDXAX9/f6KioggJCanqUCpPbi6oqudeue7tB2q322nZsiUJCQmYzWbeffdd7rvvPo4e9d6G\naZLIhRDiKvj5+TFhwgSioqIAuOOOO2jZsiXbt2/3WgyyaJYQNdGXX8Ls2bB9u6vl+PXXruMdO8Iz\nz1RtbNe506dPc+DAAWJjY71Wp7TIhaiJVqyA6GioVQvat4d+/fgJGPPmm4wZM4YxY8awefPmqo7y\numOz2bjvvvsYOXIkrVq18lq9ksiFqKn694f69SEuDu6/n6VmM1ZVpWvXrmRkZLB69eqqjvC64nQ6\nGTlyJEajkZkzZ3q1bulaEeIa0j0ggDFjxpCUlFTVoVxXVFXlH//4B1lZWSxfvhytVuvV+iWRCyHE\nVXr88cc5dOgQv/32GwaDwev1S9eKEKJmMpk8O47c5N5Wb8ePH+ejjz5i586dREVFERgYSGBgIIsW\nLfLwH8Cf3GmRfwbcCWQCrS9RZgbQC7AA/wASKyU6IYS4lJzqsdVbw4YNcTqdVRqDOy3yuUC/y3w/\nBGgAtMKVxOdWQlxCCCHc5E6LfB3Q6DLf9wfml71PLLtmPSD9qiIT4jqRl5eH1WoFID09HYfDAbgm\nmnhzCJuouSrjYWc9IO2cz+lIIhfCLbm5uURERBAaGoqqqpw5c4ZOnToBkJiYSE5ODkFBQVUcpaju\nKmvUinLBZ/VihSZPnnz2fVxcHHFxcZVUvRA1k8ViITw8nFOnTv3lO5PJdLZ1Lq4f8fHxxMfHV+ic\nykjk6UB9YEvZ50u2xs9N5EIIIf7qwkbulClTyj2nMoYfLgPuK3vfAXAAGZVwXSGEEG5wp0W+COgB\nhOPqC58E6Mu++x/wDdAT2Idr+OFDlR+mEEKIS3EnkQ93o8y4qw1ECCHElZGZnUIIUcPJWitCXEvM\nZvjuOzh8GHx9Xe/37HG9v8aErl9Prt3useubdDpyunVzq+yIESNYtWoVRUVFmEwmRo0axdSpU1GU\nCwf0eYYkciGuFQEB0LAhzJsH+/aBXu9K7GvWuDacuMbk2u2oHhzCrFRgCODEiRP5/PPPMRgMHDp0\niB49etC5c2cGDBjgsfjOJV0rQlwrjEZ47DFXK3zIELj/ftf76GjXHpTCY2JiYs5b9VCn01G3bl2v\n1S8tciFqkM8SP2PryZ38EhzFsz+NIzH5CL8vP8Rw46aqDu2698QTT/DFF19gsViYOXMmHTp08Frd\n0iIXogZJzU/F6deQxQNG4Ih7C7+QWHQN/s5ytWFVh3bd+/DDDzGbzaxZs4ZJkyaxdetWr9UtiVyI\nGkfh3Z9+JiEgiDiTiTg/B6r8U642brnlFoYNG+bV9cjlb18IISqZ3W732ogVkEQuhBBXJSsri+++\n+w6LxYKqqqxevZrFixczaNAgr8UgDzuFEDWSSaer0BDBK7m+OxRF4b333mPUqFE4nU6aNGnCnDlz\n6N69u8diu5AkciGuIcWHi1mjX0OqIxU//IifGM9RR3uyOMPeIXvh7qqOsPK4O1nH08LDw1m3bl2V\nxiCJXIhriMPsILR/KPVvqE9QUBC3TriV7be8BPZgbJm2qg5PeIj0kQtxjVE0ytmXRqdBUVS8+NxN\nVAFpkQtxDaiVpHBy+UmCNcGcsZwhdVcqwQHBqC/IjM7rgbTIhajhgn1CaHjcl8LCQg4HHybNP409\nIXso3VeKo0S2irseSCIXooYL9wsjtlYrIsIjiOseR/u27enRsweqIq3x64UkciGEqOEkkQshRA0n\nDzuFEGcVOxzYL1jyNlCr9ep0c1FxksiFqIHs1gBSPrFSfKgY4w/5NDJb2JtrpzChEOpC0hEttZwa\nPv4INpxuSpbDySr/YGpd5pqnLBbqbdqEn1Z79liJ08nH0dGMql3b8zclrpgkciFqoNKCOmStsoMC\n2EHjAFQwRBio81gdfr/LyAiK+HnDMU4WGMl1lDL5RH0ePpl4yWuWOJ3UNxpJ7tr17LFxhw9T5Kie\nI1/Wh67Hnuu5rd50Jh3dcio2e/TIkSO0bt2aoUOHMn/+fA9F9leSyIWooQJbavDDj9K7gzmW5YMu\nWUf43eGE9g1FATQaJ0F3T6benl85Yo3kdKHKjK0zGKT33mJOnmTPtROnxnns+vFKfIXPGTt2LJ07\nd/Z6V5Q87BTimqSg0+iYN2ge0aHNaRzSGK2iwV/vj4oMS/SExYsXYzKZ6NWrF6qXt9ZzJ5H3A/YA\n+4EJF/n+BmALsLeszMBKi04IIWqAgoICJk2axPTp072exKH8RO4DzMaVzNsA9wDtLyjzKvAZEAsM\nAWZWcoxCiApSVQeoDjLSZ5FX6xTFQamgsxIbaJWNmD1g4sSJjBkzhjp16lTJCJ/y+si7APuAjLLP\nXwJ3Auc+MUkDgsvehwDHKzNAIa5XdqedD7Z8gF+Q39ljG9M2unWuqjpQAYslDbvBglOrB0XlptBS\njuWVlJVRKdxaiNPmBKDUYqVJshP1RhVFK8MN3bVz505WrlxJYqIrLVZFi7y8RF4PV6L+QzoQd0GZ\nfwGbgCcBf6BXZQUnxPXMYrewJWMLMZqYs8faRLZhtXLSjbM1/OD4ib2PNOHk/iL6NO8ENh8sjj8T\ndPGhYnb23ElAhwBXfU4nz+2yUtimkKDOQZV9O9esNWvWkJKSQoMGDQAoKirC4XBw4MABEhISvBJD\neYncnR8t7wGfANOBrsACoNXFCk6ePPns+7i4OOLi4tyJUYjr1v2t72d45+HnHZuhrCj3PL3+n0zS\nNiL2zdboPvgPfrXuYvHuCwo5wNjYSIf1HQBILilhX+etqA7peqmIRx55hOHDXX9Hqqry7rvvkpKS\nwpw5c67oevHx8cRXcOej8hJ5OlD/nM/1Ob+FDtANmFT2fjNgBGoBmRde7NxELoTwHEUJIVYby81d\nb0b31QJSfAKqOqRKpzPprmiIYEWu7w5fX198fX3Pfg4ICMDX15ewsLArqvfCRu6UKVPKPae8SLfh\neohZF1diHgY8ekGZJKA38AUQg6t7JdvNmIUQ4opUdLKOt0yaNKn8QpWsvEReCjwO/IprhMt8YAcw\nBUgAfgSeBT4HXsA1z2wMUD2ngglxHbvVmYn/ovsw559ic/PNqBYV1a6SvSybsP5X1noU1YM7vzss\nL3ud69wfOYeAmyotIiFEpfONtBCtKUINy0ajdRLQ2tXV4rQ5SXouSRJ5DSdT9IW4Dhj8nShaBVvY\nGXxbhBP7VSwA5v1m9t2zr4qjE1dLErkQ1ygHsD4vH6VWLbKMCqrWil0Fu9NGgaUAALPNjE1jq9pA\nxVWTRC5EdaaCveD8Ff40DnCq2kuccPY0rE4n7x4/Tm60ie3Joxnb6ikSclS2562m3nv1AHA4HLTo\n0YId7PDUHQgvkEQuRHWxZQvk5Z39qHU4CXnnNBt+WI/G+GfibmJ2UkBHfPopkHXpyxk0Gpa3bUPi\nwte5r04jlF2PcXO39dQJ78O3Ly0DYP2G9Yz5agyJid3JL9hKE+d0EhOfQrEeAOBudCQ1WI1rbqCo\nriSRC1FddOsGPXtC2VodepuTiJV7MLU00HTnE2eLHW2joZ5uAY0fvRXecOO6eh1kZ4PqxNem4rNq\nDTRvDmFh8J93AbBaT1E7diPrlUKGtP2doJsCAfhpYwwatajSb1VULknkQlQDt31xG7857DS4fTdO\njSuRF65VyW8fgyn7KmdajnsSfjwAigaLTsHapRNM/xhatDivmKIxoCoKikaPRuNTdlRWuq4JJJEL\nUQ0cPHMQjaIh4eEEKNtqLeaNGCL8wiC7+KquXX/abBatSsFsX8KmHSon9HtwPjQaDVBrwZdgAKcT\nSkoAFUqKIcBxNgxRA0giF6IaqR1Y+2wGVVBwzbG7vKOJesKOBpKXB7/+6upmt9kMoHd9H7RuG9Nv\nDiPk+C0UNF2KLSSax0/9i/9xK0fn7aX0fkhOhteehWes0K8f3PIIzJrlwRutBOvXh2K353rs+jqd\niW7dctwqGxcXx5YtW9DpXCm1Xr16HDhwwGOxXUgSuRDVWEL2IYxFJWRu2kTXrl3/sta11XqahK/t\n/K1WHja7laysdI4d283f7/sR5as/p7Dvq+9HY00d9CGwRz1FVrsl/O8A1IpOQWfQ0rCxg2XLYO2t\n8OJLsCzFyzd6Bez2XOLiPLfAV3y8+0v5KorCrFmzGD16tMfiuRxJ5EJUUwMGDOB/y5ai5hexp/tM\n9g4dislgwJGWxgyLhaVTp7JjxxYK80egBi5CQyY9e61k2LAMvs4uhCXd/3JNH62BIG0QeeYmrs86\nHxyqBYvd4iqgwkGfPFIbWvk2C7Y5O5BXDN9mZaFTFO4IDUWvkX7zi6mKdcj/IH8jQlRT8+bN46vH\nlrCo13Tqh4XhiIkhpV49nEVFtOzZk2533klQkAadbyC2Wm0oMjuoXftBbrjhE5YaXwBAdaqcPn2K\n0+npYLeRuMNOyo4jBOx7l9cjIdinAF14NoozHwAHKisC0znW9DQLTp8mXu3KFrPCgtOnefDgQRKL\nZATLpbz44ouYTCZuvPFGfv31V6/WLYlciOosIADatYPgYLj3XhgyBHQ6ej/3HKMffZTISA1GPz90\nzZqhAgfMZn7PySHf7ppE5HA4KCoyE2QygUZLy1axREc3pEWLQRzOAlX1Q7X6YA0eg86nEQCNrIHo\npsbiPy2WJ0s/pM5GFf9psWhP+DJpMjzyCFitVfYnUi29++67pKWlkZ2dzfjx4xkyZAiHDh3yWv2S\nyIWo4XSKglYBp6qyPCeHt1NTaWI0/vmYVAFff3/QaIiMiKV27Rs5emQGGmcQWqJwFgRi9+uDorh6\nWmvVgilToE8f1xD0Jk1c74ODoUsX+PJLyHHvGeB1o2PHjhiNRjQaDffeey+33XYbP/74o9fqlz5y\nIbzAZrOxfv16HA7XCs9169YlJiamnLPcY9BoGB4ZyW5F4dn69Xm4XTsA1rL2bBlFAY3ByU8/wTYF\n7HZoy3/Ze3j+X7ZTN+hhZNmmRD+sh9aNYWQTmLkd7rgJ5vgiyqGqqlf7zCWRC+EFGzZsYPDgwXTs\n2JGioiJKS0vZuXOn1+pXFIi8K4chCjTSwI7tYDwwFaezMRa9hUPZh7DpAlGdNnJL89iasRWArFJZ\nUKs8+fn5bN++ne7du6PVavn2229ZuXIl06ZN81oMksiF8AKn00n79u35/fff2bNnDyNGjKjqkADQ\nOIwElAYwJ2EOvoYgHrVOYH9WFuOWfY7ZZsZaepoXmlR1lBen05kqNETwSq7vDpvNxgsvvMDhw4dR\nVZUWLVqwZMkSWrZs6bHYLiSJXIhrgDEzgyiHA6ZNg88/d+2aXvIajp79aGoHqxMcDii2glkBmw1s\nWh3FVgMvL5vNU8MVtBo9eqODW+q34N/DnyDxZCJDFnat6lu7JHcn63haeHg4CQkJVRqDJHIhrgHO\nMymoWljUwsae9qUUFsC9W2BQnVLyGsHOUj9anIGdmyBBgchaUIqTDZZ47Cd288BjCl2jGhKS/ww7\nNqSx84M5fNlvBPnWMFZ8XJ/O91b1HYrLkUQuxDWgxFGEQ1Fpd8sQ7rz3TjZvAWZrGP/mFPoP68+C\n/7yPceMzhLQ9Q8ChIt54oweffHSChV876Hejgxyrhg1H7Lym8SGj2EST3d+h3tALR6SO3avD+bwU\nuL+q71Jcigw/FOKaoRATEUOvJr1oF9QLRdXSo1EPNCka6gaFExBxAP+8/gQEtCUr7HmWJ7fF4t+S\npi1eoN9QMzkhIRT6+VMUWp+gBiZGPQih4adp2/tMVd+YKIckciGuIU6nDYejGCgGn1IczmJ8fFRw\nlqA6DRgsTTEYIrkrOYjk8PbkG/z5rVZbVBTy7XZURSX0ZFBV34aoIEnkQlwrjBaOHBnHhg3h+PmF\no//mLrbvrcfXXztwHrwFqzn8bFEV0HyzFkO6H0/OMaPFQR3lDHWHfEif2GkcuecUhepchtez07nJ\nfwFnld2WKJ8kciGuFVonBkMkt95aTHFxMba/raBzmxwGDNChbXuC3d99dvHz7DpsgX9HUQyo2XUw\n5zXAmGckYvFG7l7hpFODD3lmSQfYuxceeIAnzO94975EudxJ5P2APcB+YMIlygwDEoHdwMLKCU0I\nUVFOp5PMzEzy8jIBlaysy2zqWSYgLxDl0244TwZh+b8h7PxiFJbMhaSrk5gapMOBga9vmwWNG0Ov\nXrSxbff8jYgKKW/Uig8wG+gGnAY2AStwJe0/tAXGl5UxA6GVH6YQ17abEm8i0dkTuu86by8JS7qF\nyPsjyz1fW7YZRVZWFrGxsVitsMgxj5tvuZkbbrjh0idqFFaOXElDpSHao1o0Fi2qv0pqIyebviti\n5ygFJwprC5qQa03hBLVRVdizB0JCwGi82jsXlaG8RN4F2AdklH3+EriT8xP5Q8BMXEkcoHqM0hei\nBmmc3pgAkoh8e8Rf9ljza+kHS8BsNfN/Sf8Hfna+2/8lhw0JpJc4yK+zlLTSCDQaDZGRkWRmnuTn\nn0E7cC3JycnoAnSsy8u7aL0Ou53fNL/R2tCaQk0hxUoxe9P38o9Fj2JxWDhz0obToWX16hMU9LXz\n5ZdWBtlcCzFOnQpjx3rjT0eUp7yulXpA2jmf08uOnasF0A5IALYDd1VadEJcR4zKSYJvCf7LS29y\n7dl2JOcIXyR9AYpKXkkumeZMbE5w6vPRKlp0mopNCwmtVx+nw05mYib7E/aTn59PkbmIkJAQtq3a\nxptBb9Lf3A0DOn405PDTeBuPbK9FuDqCwYNUbFW8DEtoaCiKonjsFRpasc6FxYsX07JlSwIDA2nc\nuDHr1q3z0J3/VXl/8+4s36UBGuFqvdcHNgLruUjLfPLkyWffx8XFERcX516UQggAavvWJtts5qGO\njzGwZ082v/4+qccfoEN3H5Zqfq/QtaJuuAHzqQO0H9eePsY+zHtzHnWK6tAiqilBga4lDoMLTaCB\nLoe70HDJj7x/OpPI19qXc2XvyM3N9egKgxduq3c5P/zwA6+88grff/89rVu3JisrC3vZmvAVFR8f\nT3x8fIXOKS+Rp+NKzn+oz/ktdMo+rwccQAquh6LRwOYLL3ZuIhdCuE9VHVitp3GqVjSo2KwnKCk5\nhnttraunC9JR7Kei+jpQvVRnTTJ58mRef/11WrduDUBERMQVX+vCRu6UKVPKPae8rpVtQCxQF9ee\n3MOA5ReU+Rn4o9ZwIAZIciNeIUQ5ShwOdhYWUlqawpHkKZSUJKPHQlbKc+za1RuNxpfzno4Krysq\nKmLXrl2kpKQQHR1NrVq1GDNmDCUlJV6LobxEXgo8DvwK7AK+BXYAU4ABZWW+A7JxPRRdD7wIlD/m\nSQhRro9OnuT23btRUfk/zVhOKg2wYaTZDYvp2vUYJtNtFBdv5JeUdaSV5p53rqpR6bJ9B623bePB\ngwfJtFn5OTuHH7Ozcagq7rbmVWD9sZnc7rcKa8h6+NtPNGv2EWFhH3Hq1DxU9fqeLPRHF8/SpUvZ\nvHkzR44c4fDhw0ycONFrMbgzjnw5rlZ5S+BfZccmAefuYzQeaAXcAMyvzACFuJ7ZnE4ejIxEAaY2\naUIzX198tVr8dK5e0bvuugubLY3f0zZi0vsRE/Pn9j2qAn1NJhbGxPBaw4aE6vTcEhxE9+BgDnfu\njOJGHlcUhTPbh7AtczNNDMco9kmBFocIDUvA1zeBw4cfx2I54ZF7rykCAgIAGDduHKGhoQQHB/P0\n00+zbNkyr8Ugqx8KUYONHj2a//53NO+2+QnnkW2Utlhy3ve1fXxoHRBAnt3OCUXBT6cjRKOjia97\n+7VpgJYHnmTYi10JWrCAD0+egP/cyNZ/xNEqVqFOHe8lq+rKZDJRr96Fg/m8SxK5ENcZm81GUVER\nTvuVjx/cmQjpGRATA++/D1brn9/17w8dO1ZCoDXIQw89xKxZsxgwYAAajYYZM2bwt7/9zWv1SyIX\n4irt27ePpUuXnv3cp08fOnXq5NE68zfls/DN46Qch85JsP+4nsgoyE6Ht9+Gkydd/Z8XCg8M5+f/\n+5mo2rUpsdjxCxgOZF6yHruqkm8p5NCZQzg1Tgps+dRFxRp0iBIlHFV17Tb0RyLfvBlyc72TyE0m\nU4WGCF7J9d01ceJEzpw5Q9OmTQEYOnQor7/+uqdC+wtJ5EJcpSVLlrBy5Uq6d+9OQkICJ06c8Hgi\nz1yUSUFaI+rFGDmTDsENnYSHJWEPhvvLNoDQXmQjiB439KCwsBBUlZ5jP+H4ulHA3RetI6QkBAWF\n1SmbmL94HMX1nmVV5kpi6MW+m29Howmj1NfGitt38nBDHSOjonjvPUhP99Rdny8np/pMItfpdMya\nNYtZs2ZVSf2y+qEQlaBXr1689dZb3HWX9yY274isTaPXm/B7wya0GFVCo6anCAyEwYNdr6ttrNYy\n1+LR6AjubtGHQ+MOEVDkzz3170FBoU/hN4ToVUw6HTcFB7PPbC7/gsJjJJELUYMVqDZSHtnNyGaB\nPHxbL1JLLfTZtYs+u3ZhV1WP/QM36fToFQW9ohCp13uoFuEu6VoRopravx82fR9Agd2O2RzM779p\nydHrUdU/F9XKwUppXTMPny4hKnU/+sY6nqvvmoyt1+QzPLL8lRMrQi3733E/vcjffVKgvZU+M17B\nUWiE0FAMMbMA2WHI2ySRC1FNzZ4N2zf5E9y8FKvVh+PHNRSGaQgIAGvMCmJCThGgahmkPUU7Yx4B\nQVs5o9XSuWyxp7VAkM6V9AO1Wk5arYw/msR3a44BYG/blmbrK9b/UtCqFbUVhYTmt7Hf/yAjfYtI\niovDbA2m7b/+hX/dk0gi9z5J5EJUQw6Hg+zsPBp3zqRB/yROr86kT59jNN9yknWmQpz647QIyCQg\nVaVRaABK9lEcejt16z5z0eu1Cwzkybp18Wnkw/91rweqSuJtXXi0TUKF4vrR15do4JM7byXZL5u7\nDfP5onNnVH0dRlTRgz4hiVyIamn16tV8/fVRjKYz7F21gPwclZkz/8d3PlmstykYf+qLxgm6u0tY\n0PMmnt+8gvBht0HdwZe8pqKARlHQazSgquidjgrFVH/jRkKHDQPAqVFRNVpUoNBuZ3dJwdXcrrhK\n8rBTiGpXNwD3AAAgAElEQVRCRSFs0yaU+Hhu374dmymUwr//nWd+/ZXISIVp/34DjaIBH19o0IBv\n6zxJ6gOvkq2L4sTLM11DVTwoYv9+RuNaoqvNYV+Cji8nSKulQ2CgR+sV5ZNELkQ1kmO34+zRg59b\nt6aB0cj7zZrxUoMGVR2WqOYkkQtRjShwdocaOGdzA4sPagLY7M3BqWIvuLJNC9zR6XAqSc8l4Sh0\nYF/WxWP1iMojfeRCeJGqqmw/sZ0iaxG/Jf1GTlYOVocVx2X6qy2pFsgKQ/1SweqIA/sxdGE6cp1G\n4CqWkPUxwp7dLHr0N/YTz7wSCyWOT0kJvJfbtWayMKDtsY7IpsDyXPDgbjxXIjTUtRyAp5hM4M7k\n0YCAgPOWCigpKeGJJ55gxowZngvuApLIhfCiTHMmD//4MD7FPvx747+x5Fkw28zUDaoLnALg4JyD\n6KbqmHZGS/DUDSS8o6LqHORNyabl2x+DRUfz95qT+5Ivf+55XkGKAitXwuMGHhnbg9rF9Sj8aC2H\nb+vJji/t6I++i8b5DIabl5Kk/4bkrFIKCwwcOPAgMcwlO3sZqqliD0srW66Hf7a4OzO2qKjo7Huz\n2UxUVBTDyh4Ke4skciG8yKk6CTYGUzukNr/ev4LkjAxufrMTd0YPxPrbbtTCI0xfuIjAJoEs6f8L\n/gFG/Pwg83+ZvLH+bX7BwFW1ws/hF+7Hnv1w+IUfsFq3YrcmMiH5TiI6bKRv30ze3aun88DD2GzZ\nMGQIfhoNjRo9D2hQVQdc5xtKXMzXX39NZGQk3bp182q90kcuRBWZnJLCDVu3kmWzMftEBlNHjiRK\npxIVGEXfZn3ht7d4vGkCCW8lEOmnsmrkcgy2WpVWf4sWkJ0Nqcd8+eWnANrEajmd4cvx+F4MbTkU\nAIMhEn//lvifNqJVfPH1bQSAokgb8GK++OILHnjgAa/XK4lciCpS6HDwasOG1NLr+We9erz52ad8\n27KlV2MIDoawMAgJAZ3O9d5g8GoI14zjx4+zdu1aHnzwQa/XLT9WhahmInKtNF25mJ22JRhf1MNk\nMOapaG/uSUSDIsC93X2Ed82fP5/u3bvTsGFDr9ctLXIhqpH9B+5HZ86mINDKzWGv8Pr9I9g8z052\nlD8vfzGX4f/8FKsG/nX8OIcHHuRTNbmqQxZl5s2bVyWtcZBELkS1YrFmoNMFozPWodi3BbViptGx\nTwqlujBM/kH45YSgQSHW35+gtGC6KmHUWdLcI7FoS7QkPZ/kemUMoCTdScbsDI/UVdNt3LiREydO\nMHTo0CqpX7pWhKhmfOpmkjv+J95WFuDj48+KFRDsOEGHlNFENVN50arhxDfhlKyuzZ2DYfmRyo/B\nFmzj2GPHaF6r7IeEvgiNArpg3R9r2QKgKBo65T5HHbvCrn+mExn5D/yd/uzaBYqi54YbPsdgCK/8\nAHGN8/bgTm9UYKc35s2bx5AhQ/D39/dcQJchiVwIL3KanYTlhuG0OvE/bsdQaEd1qNhz7fzxjFEb\nUogmL4B/f/wiVmsvRo+GPDWOrSemkzy/Nfn5IzEaYexYaNv20nVpfDRsi92GonFlO9sZG02mNXEv\nUA2cHHSSBj3KlgdYuBofrZZa99aCj/8sFhv7AyuTt7M2P5+Rv2dw4JZRJNvq07s3HDr0KFbrSY8l\n8mq00xtz5syp0vrdSeT9gHcALfAFMO0S5YYAS4BOwI5KiU6Ia0zmy5k8sfgJZjhm0HV0FoXOHOy5\ndvLW5BHGibPllFIDJ0/WxWiMZvx4mDhDT+/+DfkqIZrQUB0PPgi33HL5ujof7Iyj8PxJOz4NfCr1\nfgID25Fp9GNXYRah+/0padGdLGsLQkNBp5PFtLylvD5yH2A2rmTeBrgHaH+RcoHAU8DmSo1OiGpq\n4cKF9O3bl759+zJ//nw0Gtc/paCgIGbPno2vry++vr489dRT552nWlWWd1+OX7QfK1fW5vD39dCH\n6+l6tCsRyoZKjdEQYcC3ie95L43u6h6LHTx4EBWVgnw7VpuNbdu2cfrIkWo3ff96U16LvAuwD/jj\nCceXwJ1A4gXlXgfeBp7Hte6PENe0DRs20KxZs7ObLXfs2BGABx544OwDr/mL5vPpl5/y+c7P2X90\nPyeLTpKcl0xEkZOM7GzYuROysqC4GGbOBKeT6jz+4OY2bfhs7mdMYxq6bb40pRHTv5pOqsOB8u9R\nVR3eda28RF4PSDvnczoQd0GZDkBdYBmuRC4/msV1oWXLlvTt2/cvx319XeO8kwqS2HN6D/Ep8Zw8\ndZK8kjxySnLok21iZ36+a7GQM2fAboeDB+HVV3G1hy5No4G0NBg//s+HccnJruOe9taTT/Jm23as\n0a5htNqcoj2BdGvclbyVeeSNVvnd/3kMy84Qo5pZMckPXT8Ha/PzuMVoJ1gnj+M8qbw/3fKSsgZ4\nDzh38OQlW+STJ08++z4uLo64uLhyLi9EzRZiDOHzuz9nVdAq3oh/g5uCbmJPQjElzo30/CKUQpsW\nm8OHtGdj0fioqAmXX7/kP/+BAQPgnnugVSvXsfHjISbGCzezdy9YrKDA4tt2s7vxAk48spLuj84k\ntPUgmmTpyQ5RCTplI+CbLHS9bbyXcpx/KE0ZU6eOFwK8NsTHxxMfH1+hc8pL5OlA/XM+1+f8Fnog\n0Ar4o9Yo4AdgABd54HluIhfiemQvsONwaHEGZ1N8zxZsRSWo2xSKTh9EG2ahVuQIbJdZ0bBpU1dL\n/Kabyn/YWaluvRU++ABUBdR/QUkxFBbCvfeSbzIRWjeJ6d/PYu6gH/hxZ2388o6gyTNiMgfx7S5I\nLuucDQmB557z7LDBmu7CRu6UKVPKPae8RL4NiMXVdZIJDAMePef7fCDinM+rgfHIqBUhLkmnt4Nf\nCVvufJjA7Gx47f8oKroPjUFDUdFu9I6lOJ3VbGXB9993/depgm4NBAbh8A8isyQQu18wlkJf7A4Y\nmjCBto6mmPO6QmE69bMSiDy0h3Y5zTnQehgTJsDTT4NeX7W3c60pL5GXAo8Dv+LqRpmPK0lPARKA\nHz0anRDXoGKNlePFMOfrzjhyLPirPtzx8x3k+eehKiofldyO3W4nLCwS8xUuN+5pYWFZnCm2E50/\njsIChSPpevoUj+X5G05Rr1UQ+u990YYHEBQcQT1LCYPzl8Irw5Bfyj3DnScQy8te55p0ibI9ry4c\nIa59dsWJXoEHB/xK6pKv2cwnLB2wjyW/u/45RmrfR6tNweGo2m3W0vLT2Jx+/ojiBoGuCUIjB60g\nI9GI828j2K7XYzSZ2J1Xh+cioVm2iSFKHWJMIeDbEKwO2LWrKm7huiGPkoWoIr4+JgyKHwAJ60wk\nrDNw552g12lAgZ49YdOmqomtbWRbViSt4Olfnj57LKckh9YRrXmSJwnz0fNjp/EELphJm4gIGvfp\ng7Ltn4y6BRrE7mDPwj0ejzF0Wii5pZ7b681kNJEzwb3po8ePH+fhhx9m06ZNGAwG7rnnHj744AMM\nXloTWBK5ENVEly7w0kuw9zkoNsCDD0LihTM2vGRIyyEMaTnkvGNLDy7lsx2fVU1AF5Fbmos6yXOj\nnZUp7j+Rfeyxx6hbty7Z2dnk5uZy++238/777/P88897LL5zSSIXohpovPAAUXaF3YegEC36BlUd\nUcWkbd2KkpZGfHwSjf13EegIJDc3D4vGwvWQZo4ePcpTTz2FwWAgMjKSfv36ceSIB1Yzu4TqO41M\niGuIU1U5bbVywmKhsGxyzN6yJ5kWHwuZ3euS0rYOdR6rQ+3eNnx8C6sy3App2acP1qIiMjMz2blz\nJ3v27MHhcJCVlUl6enpVh+cVd9xxBwsXLqSkpISMjAyWL1/OnXfe6bX6r/0flUJUsW3bYOMuGwey\nLBzU6Sly6tFoYeCpaSi+h1mtt1CrywQCiqEgDEps29HkVO0O9eVRFIVjtg/Q3ZfE0JtWMLCLk09e\ndnL33U66NL6PA7tSCQgIqOowvWby5Mn07t2boKAgHA4Ho0aNYuDAgV6rX1rkQniQrdifuDhY8LEO\nMvzYkR6JxRqBLU/DcwMXM/7VRCICNPikb0Yp3slv+4+xIcfE8sBRfGhLIrVfEi8mJWGrZotSRUd/\nRG3tQCL2mMj2u4PTfv0wGOpQXHwYqy3rbLnSEj3pGXDyJKxY4VpOZuPGKgzcA1RVpW/fvgwdOpTi\n4mLOnDlDfn4+EyZM8FoM0iIXwoNUVSEmBp57w86oV4p4LiSL5eYoek98iNudB/jY+QLZpaU85t8c\ns8NJh0Z64kJCAAhIA10JhOggRKcjxs+viu/mT0FBNxKkc8LuH8gJ+Bt5dju+vnX54oun2BF5ht7W\nYxQWhnIwqQH2ww7idkXyy7On6O2Ef/WEBrMhslcQfs2qzz1dqdOnT7N9+3ZWrVqFXq8nNDSU0aNH\n8/zzzzNt2qVW/a5cksiF8AJLSQnO4mJSNamougD0h1dwuyWfQ1//xJJjNizGv4MdTtWBxWXnmM3Q\nMApenAaf6XQEVvOFp6ZNg59++hhD3m1oj4KPTzH3tf2c1p0C8DGo/L3RNHa31qLRQMZBB9ZDD9Di\nvYutil2zhIeHEx4ezuzZsxk/fjyFhYXMnTuXli1bei2G6v3/DCGuEb8tW4bt6FEW+S4ituUYrDYw\nF5k5dGg9PXo/QePGrhVtx48//7yoqKqJ97JUSHkjBdJskHEbdT/IJdTpxFg/jVtvXU9JaleSNJCS\nEoM+1olOKYQglaA+Yew4pcFggOb9FmLb3ImLb2/gHpPRVKEhgldyfXfodDq++eYbxo8fz5QpU9Dp\ndPTs2dOruwZJIhfCCxwOB9qwMCa0msDy4hyMBggODqZjpwV0e6Ajx465FpJq166qIy2HAk3fbYot\n1wZWQNWhWFS0Tjj20jH81/zZl5+aGsOOpj2JUhTqz3NSf3RfPvkkgIAA+HuvtVcdiruTdbyhe/fu\nbN26tcrql0QuhHCfAvXHly2IuiUL9q/gq+fGkGe302JhcdXGdh2TRC7EVcqyWnklORn7OSNLFEBT\nvUcQimuIJHIhrlJSSQm/5+byasOGZ4/95+BajmybgV21ktcvhN1pxTh87Twf8TxxqRNQ1OtnHdeN\nBgONfFR+OHMG5+1FWI1Q6HRgtliIrergrhEyjlyISlBLr2d07dpnXxGKhQBjKCalMbG/p3CXZiia\nknCmnJmCRtVSO/2vW8Rdi1oWFKAqCkV6PVsLClDb5WJrnUup08mmwoLLnnvspWOsN61nvWm9l6Kt\nuaRFLsRl7Ny5k0OHDgGu2Yz9+vXD4O9PicNBod1OltVKrt1+0XMVFGqfKUWbW4Re3Y/GqeJ7IhmC\n6qCoWm/eRpVpU1jIk3o924qMvNGkCbOGBeAfABFfuH4jmZORcdHzuoeEoKSV0uTtJkQMi4BQb0Zd\n80giF+Iynn32WZxOJ5GRkWzcuBFFUfhf8+asO30avZ8f/9m2DYA+pr8OVVMcDoy1LRQVZVIUtgdT\nipP8wXNh1ctoNN5Z3rQ6i/b1Jb6o6C/H95rN7DabGQdo/DXoTddPN9SVkkQuxAWsViulpaUA2Gw2\npk6dSs+ePRk2bBiqqlLsdPK38HBua9qUseVtnKlAQFAHAqIeIEdZRsimd4E8/P1bef5GqrlY/wDu\nbdHiL8c/zMg4u6CYcI8kciEucOutt7Jnzx60Wi1arZawsLAKX8Mv20k4dnz1Zl7s2o4jWans8ynE\n0fYRGoY0Ijh4C/YsM8eSIHk+5OVB+2o+ydFP78fyI8uJeMe1TW+HVBtvnTTz0Y6PGdbmoSqO7vom\niVyICxQVFbFlyxZiY698TEWbBcU4gmxYNHZqnzpJYp4Rh6UYCiKx6UJRdJ3IyI4mxb8Vsf7QuTP0\n61eJN+EBvZv05sT4E6hlwyx127Zj2PA82cXZ55Xz0Rootefyaein6HJ1HNikMLh0Ord9cRv2p49j\nPnVzVYR/TZNELsRVUlUnycmv4XD8OQojqPNu1LRisGox/3Ij+wbX4tDOZTQcMJff39nL3fHdCNbp\n+N8gGDwYBg2qwhtwk6IohPuF/3nA14RV89cUUi8wEmdUbYbnDqdJ0yaMuz2Mw0u0/LKpKVt3KRDx\nO5ruJtiwAQZ+BfPnQ1BQxQMKDYVcz231hskEOe7NHt21axePP/44e/fuJTIyknfeeYe7777bc7Fd\nQIYfCnGVnM5S0tKm4evb7OzLUVALVA1KKVhKYe9e1xKuixe7/vv22zBlChw4UNXR/yk1NZWxY8cy\nduxYpk+ffsXXycz8ErvtJLa8RKw5q8judABblD+a4UOZaRzFB21DUYNCoFlT2LoVMjOvrKLcXFBV\nz73c/CFhs9kYMGAAw4cPp6CggLlz53L//fd7dYcgaZELcQWS9u9n1+rVfPnll6iqk4ICByet08lO\nWoPOEIgmshXtbl5LqVUhV6vHrtOAomBVXNM9nU7X69574aabqvhmgFatWvHGG29gt9vJyclh+vTp\nPPPMMxW+Tv2oieRnplOs6NFofNFoAtEF18NmLKakfWPWhkZTWH8W92X6kbIlCt/T/gxuC8fKmpT/\n/S9QzbuYLrR7925yc3N58sknAejWrRu33HIL8+fPZ+rUqV6JQRK5uG5YLBYGDhyIuWxEhMlkYunS\npShKxVfQyzl9mpbNmvHyyy/jcJSyc3d/Fqe3JOe/wXSKe4isdr1RldaY0w7w4H8fw7J3F+rCBJbF\nHqJfmsKUVxSMFRhKrigK//znPwkMDOTgwYNXFPPlGI1GHn30UcDVMv/ggw9YtWoVAKGhobRzczWv\n0KA78I0qoUBzmDBdVyJ8mlLb/2FSnN8CsHo1dP43NGgAMXdA41zY8C2oTV2/oZw6Be6tOVh9qBfZ\n9MPpdLJ3716vxeBuIu8HvANogS+AC1dLfx4YBahADvAgkFw5IQpROcxmMxs2bGDZsmUA9OjRA6fT\niVZ7ZZNzwmqFsc93HzZHCcfCVQL8dehumkt26H7SQhoRfvwYpowTvD/gfia0rc+BwkIWt2rJyS0n\nMVawznnz5pGamgrAiBEj6NSp0xXF7I7Q0FA6duzIG2+8gcPhYMeOHRQWur+HqM6kw3LCQp8DfdBq\ntWx+Zwuq4gfBTnx8XGU0GtDrXf8NCAACOftdTdOmTRuCg4OZPn06Tz31FGvXrmXt2rX06NHDazG4\nk8h9gNlAN+A0sAlYASSeU2YzMAOwAI8B7wE14PGNuN7o9Xq6d+8OcNWt2mx7Nq+vfZ1BN9xFRrFK\njiULIo7S+97e/JhclzBDLRzaVIzGLrz81jhGvfLKFdfVpUsXunTpclXxuisgIIDly5cDUFxcTHh4\neDlnnM+vmR/3fa/hxLsfoa1bF8PgwbzheJlfnRP4uyPEEyFXKYPBwNKlSxk7diyvv/46HTp0YOjQ\nodgvMePXE9xJ5F2AfcAfc2m/BO7k/ES+7pz3G4DRlRKdENVcs9BmzOj3HvHrPuWXvIGkrZnAzG/g\n2BtrCVR+I9WikuQsIPvYsaoO1avMTidPt2rFf958E+usWTyNE5UHeDsC1CEtyMstwtlhIgkNT8Dp\nQZDnQ5curha6NtVOetAUoHlV34bbOnbsyObNm89+vu222xg8eLDX6ndn1Eo9IO2cz+llxy7lUWDp\n1QQlRE2jtTsZ8dJCyM+Dbt2gpIRQvZ0zZpV/WXby+ezZ6GNiqjpMj1J8FLa13samhpv4cIiNgV/0\nY3299WxsspFla27k2R3z2L17N4qi4fg3D2Ha+i7R88OJNk0lOnoOBw7MISlpDk6NL/729Kq+nQrZ\nv38/FosFu93OzJkzSU5OZtSoUV6r350WeUW2774P6ABctHNo8uTJZ9/HxcURFxdXgUsLUX1pSp0c\n7dqMTqk55N7xCo0PKsR2bcZDExUKJvjRbNuX3JyYCFc40q4m6LyvM44i16ic0QkJ/N4mljCDgcQe\niSiO89OIvSgEQ15rgo4bwdAagppRUAB2Ozg0we5VaDK5tlXylIusn3Mpc+fO5dNPP8XhcNCtWzdW\nrlxJQEDAFVUbHx9PfHx8hc5xJ5GnA/XP+Vyf81vof+gNvALcCtgudqFzE7kQ1YGqgtX612OXsmnT\nJrKTkym+YLGnNq+A7uBaalmTOD75CHGRUQTozRT5+XIqshXLLrHK37ViRW4uRY4/d9JIDndgaGjE\naDCg0V/+F3+bDYbfA4mJoNXCE80goQia7IKelxuK6OZkHW945513eOeddyrlWhc2cqdMmVLuOe50\nrWwDYoG6gB4YBiy/oEx7YA4wADjjVrRCVAOvvgq+vq6RE3+89u+H7dv/WrZ///6kp6dz5rff0On1\nNA5qzM2/3Ez6eyfJOjGU1W1fIFfxo53tn3wzrh6bB4dTWMePue1H4KMoTG7UyOv35w2+uZsZHRXF\nDX5+Z18fRkcTrndv1cLSUli2DG680TWmPiICatWCjJrVu1Kl3GmRlwKPA7/iSvzzgR3AFFxJ/ifg\n34A/8HXZOccB781PFeIK5efDjBkwduyfxwID4SKrqzJq1ChGjRrFzTt2EPj223Q62RGfPUasdazY\nHOEoVj3f+jbkbsBPo6Ge0YdgjZ7AzVG80cQ18uPMNdjO0VmzGFfvco/NyqfXQ9Om4Ofn+vMPkVV+\nK8TdceTL+WsrfNI572+vnHCEqBp333E3e9bvAaC0yMHrz7zKlJc2YtPaWLlyJR06dHAV/P57SE+H\nFSsAH3L7n8JcbySON8DsU5u2ecuYPx+6N8on0JLJmaxb8WAvrhCAzOwUAoCbNt/E05qn0QfqGWEe\nySTbQJrYnuaM3xmO3HyEY5pj2DV2Pq/zb3ZpzaBR+dvNnfGP/YotYXfSf+nPZNwynqU/tObZZ2Fd\nygH0Yf703N6Upys+012ICpFELgSgV/X4v+LPjS/cSE6gHyX/6kTnPk1JT0snI73sQeV4uGtoFreH\npaPRKIRsTsCs8aWkYQYfNnkI2nUlIakuu9rBKrMfA8LDqBNop/YNVXtvnpZXmscLv71w3jFfnS8T\ne0xEd5HVEQFOnTrFId0hogoLWbZsGTbbY+zdu4QmTW4EoEC1E+RrI/5oMUVb8jx+DzWdJHIhLkZR\n8Iv2Izo6mmiiAdg0aQOxrbQ8YZ/DyHa1CTkeSJ7hUwqSm+IoCab4oBnV4SRvSyEdd0G/HoGAB5dZ\nrQb0Wj1v9XqLUnvpecenrpnKEzc+wftvvc/7Se9D/1KcjML5QltARVVPc+TIFjoU5XDqu8V0szSj\nx4o9BPpkEtSqiHb78wl05rHgRAnx+yWRl0cSubiuHTmykJISDdh2003tVv4JKqhoQNGioIDTQdtd\nWnosWEZGz87834qGPGE8Bho/6rcN58g1nsiV7Bz+mVbn/IPx8bSOtxG89R9kJO7hSZ/7uCm6MZ8U\nfsXJn3UonRXijG3xUQ0o/QN4NKOUdkxHLX0RgzoPfeFp4o5sIKCxgXvefBZDhAFF5opfliRycd0a\nN24cy5f/Qn4+7Cz+ClPOEOYdPowlwMrn9t/YuGUdDlUly5xNX8dK2gcNJmyemX8rUwj9To85tx/+\njfOpbd+Jn+MU9cbVR7tBS/MZNWdq+VVp1Ag6dXItsn4um409dfTcdM/dkFdE89t9MHduReqHfvTs\ndiPYfqdu39vI+/QEGU+2xtrwdYa07sZi8xqeizXw+e2xhNarT8SP+yFChq+4QxK5uG69//772O3Q\nsiW8uOMnUhx2evn5YbBZ8fk1B3NiI0p0p2g7ZAOxbEb3/BHMmlxs/grZGs3/t3fn4VFU6eLHv9VL\nOvsG2SEBkbAlwQAZGURANgcUERQRQcGfjncYBR0ZdQZliehVrnodhdFRR0FcGAWVn4KyKRHCooIR\nCEGSEMhCFsiedKf3un9UCNkTQpLuxvN5nnpIV1dXvd2Bl9OnzjkvbubNBKndOXf0VirnTyZ+yNBm\nr1N9tBq1l7LaYfWxZsY1uqqQkKZJvNYrL4cw//ZpsGsfmhtHYJs4HMt7NrR+WuymHD499wHeIR7s\nSD2JLmsFhqmh2Dc/QGZECmfP9qY4FSIyIOmdbn5PLkokcsEpJSYm8u6779Y9/sc//nFZixAVFMB7\n7zWcpWkwQL3Jh00EqFQ80qsXb+qLeDr7TeJ3e5DvqWfr1EGc3juWYa89wFC3Jxjz4Ss8OWgCof8u\nYVteHnJpPHH3+BHfTOPRf5w/JdtKKP/uUj9vj2mXX8z5ahHsFYznVxuIG6fGYtAzPqgnHj3Hkpw+\nBAmJmn6nKSvrjdlWgNaviqysAy2eKzA5mbIuXGEwQKOhdHTb3W1r165l/fr1pKamMmfOHNatW1f3\n3LfffsvDDz/MuXPnSEhIYP369URGRnZ6rCKRC04pIyODxx9/nJkzZ5KYmEh2dna7X6tP03PoYxOH\nN0DtirVUB3mT/HPT6fjNkSQw3GEm9MVKrnvKh3t93EiJHU6wXxgL5m3njLaMB7/JZ3aqAQ8fSD8F\n06KaP1fvJb3pvaR380/+lkgSSBKqJ5/CTS4h9sgizrrdj9umGfwiD+bu1HhkcrDrbIwdO4ri4Lch\ntoJZ/f8KKKXxGiuzWpG7cL0mqZ3rnURERLBs2TJ27NhBTU1N3f7i4mLuvPNOPv74Y6ZMmcLy5cuZ\nPXs2Bw8e7PRYRSIXnFbPnj2JjIzE9zIL85646wTeJjUzTWpii8CUbaLH9B7IEwL54QeZXbt21R2b\nkxMNVCIjg2zHZqtpcj4v4zmkPE98PSUen+vO/yBx+xA3rj9vg50mnt8EfqOg+OqbtNl5VCoYMABm\nzsTtZX/me7zNdXn5qLfPQmXVgNaNn6amARAZ+QSRSSGwezds2FB7AuedVjWjtnL24cOHycu7tK7A\n559/Tnx8PFOmTAHgmWee4dVXXyU9PZ3o6OhOjUEkcuHqY4fKhQP56pAX934Kuf+biynPBIDZbGbV\nqlXodDpk2cKxY3dx9GgaEmA2Z7J/fyB2uxGNJggoBEBrrYSj/nhJahaEhfJBaRmzgoMJ9ysjv+Qq\n6h4A85IAABZGSURBVPPuYpU2G6kGAy98W4qhUqJ8filRixKJTu9D76X/5O8b81x6pabGJd9OnDjB\n0KGX7pu4ubkRHR1NamqqSOSCcKU2bdpESEgIRmMec+fuZvi4p3nxrxtw9y1he9VELNqv+cHcgx8e\nyKWXZxW+Gh9Hh+xyJCTmb5lP2pk0jh86jp/XPsoNRewvD6BMzgcfuNvTTJ/wLKLLtASEt31OZ9e4\n4pReryckJKTBPm9vb6qbW8jnColELlwVLly4wLp165BlmdziXPxOTqC91QYLrSdRuRm5ceD7BPt4\n8YmvTN9e+fS6FiID7fT1C+aj7IHYa+yUbC0httqCLbQM/XE9doO9a9+Yi9py9xYKqwt5bfNrxEbF\nMj5mPA9VPsQYXST/jo0F4IjHEWRA71eCVJ4M5nOoZBvl5cm4GTLwkO1O3KHSVOMWube3d12h74uq\nq6vx8en8hoFI5IJDWSwWTCal20OlUuHp6dmh8yQnJ/POO+8wc+ZMMk2ZZO/+mdiEyysbm/zTAj76\n4wuE1Xjy9qJX2G/9f3g/1hPVh7vpWRyATXeE0m9KiTFbkL3L0WeYcQtzw/0a9w7FfDUb2WskAF/4\nfcHwsOHcPvB2/qJtuuiMd0k053v9xPmsv0H1WWSphhWfzCN+fz7x2VHs2Po/3R16hzVukQ8ZMoSN\nGzfWPTaZTJw6dYohQ4Z0+rXbsx65IHSZiRMnEhQURGhoKD4+Pmx/Yzvl+8oxnzejP6W/rHHXMTEx\nrF69mpkBHauV6Oun3LD08IB/vaUsrRoWCqmp4OYGGj81/f/Zn42rPdGs70vw3cH0nNETXaiLln93\nAm6fzSPsjccJS9nEwOrlqHK9WX+wjIPZNtIKzvLCVy+Q+FnbhRUcyWazYTQasVqt2Gw2TCYTNpuN\nGTNmkJKSwvbt27Hb7Tz33HPExcV1ev84iBa54GBVVVXs37+fYcOGMW7IONKeTiMkJoTqU9VcOHuB\nI6uPwMNtn6cxo8lIQUEBX3+dguakBst5C8fi1uLmbuT/H72DwCoTQ79J4QVfGY7DByrwq8jBI9QX\nampQ+14cFC7j4dGpb1moFboglKr3czBX9IADFYw0jeSF6u2MPCIRes8D9N5SzRzf2WRmZtKfLU1e\nH6DRtHuIYEcEaNqXHletWsWzzz5b9/jDDz9k5cqVLF++nM2bN/PII4+Ql5dHQkIC/2lhAtWVEolc\n6LDCQvjww6al0aZMgZiYDpxQBt9RvsRviydwXiBRk6OwL5DZuxd8feFitbSoKFi0qPlT2O1mZGQK\nCgowyhmsWfM6CWcS0NjVxE7fzddqiZ9LA/G1GMlNSOBXz0B8fFXYP93NIVsUj8bM5MLP23jj6d0s\ntj7B/Z/48uXes8gWP86Xwe9mV3NK3YcnfD2Znl/GHbd24H0KAET8KQKs52DHDrgzlAKVii81Gib8\nHSqjtZjmTELjFYzpwoVmX9+eyTrdYeXKlS2WsZwwYQInT57s8hhEIhc6LCkJ/v1vmDbt0r4ffoCS\nkuYncHSEXVa6Onx8IDRUmZ25ZAls23bpGF1uJglpT1NKEQeCR1Hlez0BvTWMf2ILOve+uGdK9D8U\ngNEUhWTNZ/Cb92J3q6Jg0EHyro/Hm1uwm+IxFBVy168PsjPwEPcsuIeey1Yz/P5X2VZezmPDS/B+\nU+bOu+2Yg90Y4aPmy5lgba2mpNC2+Hjll/n66xAZCaNGwVkLlrJcjNP/jFf8f3H6yy/h/fcdHalT\nE4lcaJdz5+DBB5Uq5xcVFsKwYVC/5uyLL0J5J686qhugxzOyksC5BQQCfxmrzNDsKesYbg8k8Jcc\nstYaSQoPI+/Jn9Ecz8ZnUyW3XLMOP70N91gJabCOiioZjc3GHXs/JIv/wp5ZzvagS/8LSR49Mdnt\nqP3U9JzWk9AV32K6w5fiUiuPxkRxcEM+T87wxaOP0teyVdxhqpOXl0dhoTLuXqVSERcXh6YdXROF\nQ/vx4z8WAnDMpKa4WkfRYBl/NzewixFB7SUS+VXqlMHAoowM7PX6PVSSxL+io7mmA52+OTlw9qzS\ncKpvwIC2X7tmDbz5ZsN9KhXUu6HfMgnSjQaqa2pIrqhAZZbR2PWc1x9kqzWKCR6r8dZdwKbL57xa\nwugBpm33kXNhI4OGbWtwqgnXehDgM4qyI89jHFDA+qmjiKo4jK+hiLN2O8NPRWAx2bDq9XDggEgk\nl2HWrFmUl5fj5eVFRkYGmzZtYvLkyQ2O0ag0fHT8I7a+vLVuX5G+CH93f26MvJFit96c9RtPWqWR\naJ0XuflmLJZcLHlNZ9sKDYlEfpXKrKmhwmrl+b596/Y9kZXFGaOxQ4kcwN8fJk0Ca7WViuQKZWca\nlKSBxleD3yi/Zl934gTMmgWzZyuP9+7dy8KFEnFx/w2kMHzMGJg2jaBzeeyzZVGcnc0JvR5LcTEP\n0Zs4T28mhoTwF19f0hdnUVhwEFt4NgZVNmbbSCp9azAM3oxU6I67fB5DtRrscCq84dC1pYP9eP2s\niS0FeYy2uHP7zngkCcKLbXxtl5iUJvPTjTWkZ0jEarXKFPH0dP4YFtahz+u3xGq1smHDBhISEpg6\ndSrWZhazmtp/KgFBAfzpT39qsD/IMwi1Ss05k4mlWVlUxuSjMQTgk/4ppgN7qdCbuuttuCyRyK9i\nPbVaJgYG1j0OzMlp8Hy5xcLSM2ewNLpbuaRXLwZ6ebV43uItxWQ9mYVX3KVjynaVMaZmDC2NaA0L\nU5aLBUhJySUsLIZ33/2Gp58exv0vv8yrnp6oDizCiky51YrZbsdgU1rEwVotRUVFVM+YgeXErUhv\nv4Su0Mg3100kuNjKtRlqdkSGY9hdwI8eN+FpCgBZJvjl3zEuNLQuhnleHkhzP2CLrGE08OtkD4b5\neBOelIYqxc6g5JncHBfJf2K8+E9CAjHN3LE9/ZfTqL2VJWlH26pB6tni5yQ0pFFp8NH5EOod2uzz\nETod7w8axJalp+i9KA3v5xdBeO2UzzXbmn2NoBCJ/Dcs22Tiy+JiVvTpU7fv3YICfqyqQlvohbFe\n9a6srHovtEPAxAAGbRhUt+t73ffQaPRKW6TMKqzlVqS91dzm48t+A3jpS3ixXz/yfHy4OSQYZLBU\nVvHy229yp07HftUUervbeCLXQlbaYWKKovnr4Xv54pbX8SqsJn9jPtcXWsFYxrexg/BY7YebxQ2V\npOLZ4lxWG2D1YxJ2lZ1l/7xeCWTxW6hP2NGFtD4efOD6gZhyL7UOP/80gNvm+1/emxbaxeOUhl4e\n86BXbO2exxwaj7NrTyL/A/ASoAbeB1Y3el4HbAAGA5XAPUD71xx1MklJSYzrwqUxO0tnxdlDq+WP\n4ZcWuthXUUFVicSAoRBxeyn66EulyqLmw99OQ/h5Pb0NFgY1d8L6Me7axTijkaFnbPSxmLFIuZyv\n3orXkQLGV98HL8VhKqnC8vVx+nnY+N5UQQ4/8lOcFxeoIV31Mb2eG4lp5yEe+IOMdkwNg9w3ovIx\nsXKSlid/cEe3oYIQDxWDKm6n1LgO2dCfGrXSYs76NI2S/dE8M+cZ/HR+lPR+DNUzJgYcXYJOawS/\nAiVOvR5a+QZyUcC4gAaP9ywEXecvLd0iV/m7WVJS4ugQfnPaSuQ64E1gNFAEHAR2Ain1jnkEKABm\nA7cDrwPTOz3SbuKwfywZGZCZ2XR/WBhcd12DXWa7nV3ffcf1FxfbrsddpWoyVXjSpEmkpqZSarVy\nl1qNW+3zslpNwNq1kJDQ4HibVSIoCEYmFqCSJIY2SnIaSeLnqirkgpMUFW3kp5/ymWOfxYD7bqG0\neirqDImdO19Byqvio3kVDP19BG6mSo4WGdH7a/COkfjjgJcwq6KpWVvA0fEbkYfFYHoqi+sGymg9\n7VjLISNfzU2np5Jf8QNGs4p957zR5Y+g4Fgffr/tXt4o8WKVZRXlFh/8N39PlbcWrxRfqG0033nh\nRgY+FsDOZTsBCP32EH7+3uhObMZX5wsapQWe9MILUK8YgLNylUReWlp6Ra/XqDRUW/QcnDOaKg/R\nadAebX1K1wMngNqpGHwC3ELDRD4VeLL25y+Bd1AWD77ML9quTZZlKlqoVqKWJHxaGIpltVo5fPgw\ntsceU8bt+V/6qh5qt9OvuLhBv4bZbsd/717MOTm8sm9fg3PZgKVRUSTWu8EJcPLkSbZu3cqjpaUs\n7tWLG2uvMXbSJKyVlQAYzAa+z3yf/slfEpRjYl6f3mT/2o8R5TmMLP4VVZUeP9kbu0aF/th1/Fgz\njv/dm4qnpOKpfutRbV/HWyoZ2IEkg4TM+g1QeBu8uscNrZs75oSZINuRbXY8ZBX3pWcge2rxCNMR\nZ04nVavGM0zF+X4eGD+VMJfegJx3A5bAEZiLfSmtvJ7B5yIYJG0jruZBPHSelHIN7p4Wjoz0oV+e\nD4PmD0L6bwlfj3Ae/5uVCF0lnFLeowRIkoqg8Gsb/hLcxVopzuTmfjeT8dY7BOXlE3Rx5+FljgzJ\n6bWVyHsBufUe5wHjWjnGDpQAwSgt+G4ny8pQucazDS+qrskhV5/S7HOyzcLpcxns/2Vvk+cstjJK\nasrQaiRstnKs1jMAhPycQUDaGXaGxfPS2Gm4W6xcXARfVkloNVZskp0lFVaCZRlkGbnEDLKMTTJz\nuvA025I2EeyrRe7hSV9bMbLKitrLgMrTSlyQFsvygSDJVPi7YVCpGD/kJoozPuD3X/0HD7vMTWVW\nbBIcGxCDrlDNzm9OorVJPCbLbNur4aUnLeQcGs8SjYQ9XeLHfB0+mioSx4PvqYXsWPFn5DALHgPN\njPVRYYmTmBinptLbFw+NAVOEAZU7FKSDVQWqsOMMtn3Bsqpc0IJcAra7d/D87AcoHHArFvcAQrI+\n48zxC/z4WTBkzcTfs5Ds/rcwYtdbuGf4k1ozElPabNzMf8Zv1Wxk7TUYSp8j58J4wu0xWDX/xOOh\nQUgvSoRM6Mu1YX2ZMuc+ip/LxTZmBJmz1gAw6Bc9+XPTmX00lmyjkfGfjueA/gDhEf4kBjTsCpHD\nwmitGHthYSE2mw2LxdL6X7J6Cgou9cpcYUPUadntdvLz81s9xtyo9FJJSQn5+fkYDIbLvp5WrWXw\nbY1+Uw83TeTJgclYy7qu1JsmQMPo0o6XerNYLMyZM4cjR46QnZ3Nnj17GDt2bJfF25o5KF0rF90N\n/KvRMadQEvdFvwIhNJWJ0koXm9jEJrbL3hrbw54m+zpTe8//+eefy1u2bJEXLlwoL1iwoG6/2WyW\nX3vtNTk5OVkOCwuTv//++1bP08p7b6bPtaG2WuR5QP2Cg71p2EK/eEwkcB5l7FkPoLnFEa5tZp8g\nCEJ7yI4OoCUtlXrTarUsXrwYAHXtDfh26NAS7G1NMv4JiAEiAC1wF/BNo2O+BubV/jwd5YaomBIn\nCMJvitxSf243aKtFbgQWAjtQkv4HwM9AInAY+ApYW7v/OFCFMvxQEAThN6XxaLHu1J6xPd/QtBW+\not7PJpSWuiAIwm+WI1vk3bl+2yyUoYw2YFg3Xre9/oDyrSINeMrBsbTkPZTRQMcdHUgbegN7UeI8\nxaXhqc7GHaX7MAVIB151bDitUqPE+ZWjA2nDWeAYSqw/OjaU7tXJLfIBKJ/hxa0CWNzSwd2ZyI+j\nVMNtOrbP8S5OfPoDEAfcCcQ7NKLmrUOJ0dmZgT8DscBw4EFgqEMjap4RGIPyux4M/B64yaERtexR\nlEaG0970qyWjDFGOB37n2FC6R0ul3kCp02msXeui/s/tcArlM4xH+TdkAL5o6eDunDb1azde63K1\nZ+KTM9gH9HF0EO1QxKV5BNUoLbRw4KjDImrZxTVS3VBavQ6Z/9CGXigT754HHndwLO3RLZ3FmgAN\nSVJSl56/PVor9TZgwABycnKQJImbb74ZSZI4c+YMkZGXtbbDROA0TUcMOtQenK9r5R7aHi/vLPrg\n/F0r9fVBWXvHx8FxtEQF/IJyo95ZS7ZvQmmZjcX5u1ayUAZEHENZvqOzdHxAuIug5W9b76F8w21R\nZ3et7EJJMo23aa29yAk4+9dVV+WNkoQeRUmUzsgOXIfS6h1D05nLjnYryhyNFLqppXuFRqI01CYA\n96O0JoWOc0PJn5taO6izu1YmdfL5ukt7Jj4Jl0cLfAZ8DM2UQHc+FcA2lESU5NhQGhgF3IbSteIO\n+KKsNnqfI4NqxfnaPy8Am4EEYLfjwnF5U4AjND/Jso6jqg46W8uiPROfhPaTgHdRbs4580iQHlzq\n8vFAaYg4W7fVUpSGRV+ULr/vcN4k7lm7AXih3Jg/4bhwrgpzgPYURew2M1BauTVAIc6XKKcAqSjJ\n5+8OjqUlG4F8lLH7uShfXZ3RaJQui1+4NHzKGUfbxKLE9gvKzfjljg2nTWNRVhh1Vn1Rbmj/gjKc\n89nWD78sju7C7nI07eL1Aoppx/0lZ2sZC4IgNKc21129asehd8laK4IgCIKTE4lcEATBxYlELgiC\n4OJEIhcEQXBxorKpIAguKTk5EKu1rMvOr9EEMHp02/X7Wir1dvDgQZYuXUpKSgqyLDNu3DjeeOMN\nIiIiOj/WTj+jIAhCN7Bayxg3rutGsiQltW8ASUREBMuWLWPHjh3U1NTU7a+qqmLJkiVMnjwZm83G\no48+yty5c0lKSur0WEUiFwRBuAItlXqbPHlyg+MWL17MiBEjuiQG0UcuCILQCdoa575nzx7i4uK6\n5NqiRS4IgtAJWisscezYMVasWMFXX3XN4pWiRS4IgtAJWmqRZ2ZmMnXqVNasWcMNN9zQJdcWiVwQ\nBKETNNciz87OZtKkSSxfvpy5c+d22bVF14ogCMIVsNlsWCyWBqXeNBoNhYWFjB8/nkceeYSHHnqo\nS2MQi2YJguAKmiya5SzjyFeuXNmg1BvAihUrkCSJlStX4uXlVbdfkiQqKyubPc+VLJolErkgCK5A\nrH7YCtFHLgiC4OJEIhcEQXBxIpELgiC4OJHIBUEQXJxI5IIgCC5OJHJBEAQXJxK5IAiCixOJXBAE\nwcWJRC4IguDiRCIXBMElBQYGIklSl22BgYHtimPt2rWMGDECd3d37r///rr9aWlpDBs2DH9/f7y9\nvUlISOC7777rks9CTNEXBMEVNJmiL0lSm8UcrkR7z//FF1+gUqnqSr1drNlZUVFBeXk5UVFRyLLM\n2rVrWblyJSUlJS1ejw7mZLH6oSAIwhVoqdSbn58ffn5+gLJCokqlIjIysktiEIlcEAShE7TUevf3\n90ev1xMeHt5lXSuij1wQBKETtFTqrby8nOrqaubPn8+sWbO6pDtIJHJBEIRO0FqC1ul0JCYmkpWV\nxfHjxzv92iKRC4IgdILWii8D2O127HZ7l1xbJHJBEIQrYLPZMBqNDUq9Wa1W9uzZw4kTJwAwGAws\nXbqU8PBwYmNjHRyxIAiCY8iNBQQEyECXbQEBAU2u2ZwVK1bIkiQ12BITE+VPPvlE7t+/v+zl5SX7\n+/vL06dPl7Oyslo8T+11O0SMIxcEwRWIUm+tEF0rgiAILk4kckEQBBcnErkgCIKLE4lcEATBxYlE\nLgiC4OJEIhcEQXBxYtEsQRCcnkajqZIkycfRcXQljUZTZbVaHR2GIAiCIAiCIAiCIAiCIAiCIAiC\nIAiCIAiCILTT/wE3YIHbBMpNwwAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cos_LepLJ_BJ1\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEmCAYAAAB20LuSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VNXawOHfmZZJrxAghd47GFSEjyh6RUVUxAJYsKAX\nLnqtXBVQ7F5FvRZQUAQ7FlAECyoaivQSeiAJpPdMMmnTz/n+mEBmmEkhpIH7WStrJbPPnLMnmbyz\nzy7vBkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhHPeR0A+cKCe4+IAOzCx2WskCIIg1ErV\ngGOWAePqOUYN/Bf4BZDOtlKCIAhC4zUksG8CSuo55gHgW6DwrGskCIIgnJWGBPb6RAHXAe9V/6w0\nwTkFQRCERtI0wTn+BzyBM6BL1NIV0717dyU1NbUJLicIgvC3kgr0OJMnNLQ/vAuwBhjopey4y3ki\ngCpgOvDDaccpiiIa801l/vz5zJ8/v7WrcV4Qv8umJX6fTUuSJDjDscumaLF3c/l+Gc4PgNODuiAI\ngtBCGhLYvwTG4GyNZwLPANrqssXNVC9BEAShkRoS2CefwfnuamxFhDMTHx/f2lU4b4jfZdMSv8/W\n15JzzkUfuyAIwhlqrT52QRCEZhUWFkZJSX3Lac5toaGhGAyGJjmXaLELgtDmSZLE+R4/anuNjWmx\nN8UCJUEQBKENEYFdEAThPCMCuyAIwnlGBHZBEITzjAjsgiAI5xkR2AVBOCeFhYEkNd9XWFjD62Iw\nGLjhhhsICgqia9eufPnll833whtAzGMXBOGcVFICzTkDUjqDCYb/+te/CA4OxmAwcODAAS677DIG\nDx5Mv379mq+CdRDz2AVBaPO8zfGWpOYP7A05f2VlJWFhYSQnJxMbGwvA9OnTiYiI4OWXXz6D64l5\n7IIgCG3CsWPH8PX1PRXUAQYNGsShQ4darU4isAuCIJyFiooK/P393R7z9/envLy8lWokArsgCMJZ\nCQgIoLKy0u2xiooKAgMDW6lGIrALgiCclV69emEymcjIyDj12P79+xkwYECr1UkMngqC0Oa15cFT\ngMmTJ6PX61myZAkHDx7ksssuY8uWLfTt2/cMricGTwVB+JsLDW3eeeyhoQ2vy6JFiygtLSU8PJyJ\nEyfy3nvvnVFQb2qixS4IQpsn0vaKFrsgCMLfmgjsgiAI5xkR2AVBEM4zIrALgiCcZ0RgFwRBOM80\nJLB/BOQDB2opvx3YX12+CxjeNFUTBEEQGqMhgX0ZMK6O8qPAJcBAYC7wYRPUSxAEQWikhgT2TUBJ\nHeU7gJPZbv4Cos62UoIgCELjNXUf+/3A6iY+pyAIgnAGmnIHpXjgbpzdMl7Nnz+/5uD4eOLj45vw\n8oIg/J2E/TeMEnNdnQlnJ1QfiuE/hnqPe/fdd1m+fDkHDx5k8uTJLFu27Kyum5CQQEJCwlmdo6HL\nVLsAa3D2o3szCFiFsy8+pZZjREoBQRAaxWsSsGcllGeaL6Y09PzfffcdKpWKdevWYTKZGh3YmzKl\nQFO02GNxBvXbqD2oC4IgnJduuOEGAHbt2kVWVlYr18apIYH9S2AMEAFkAs8A2uqyxcDTQCjwXvVj\nNmBE01ZTEAShbWtLPRINCeyT6ym/t/pLEAThb6u6y6RNECtPBUEQmkBbarGLwC4IgtAERItdEATh\nPOFwODCbzdjtdhwOBxaLBYfD0ap1EjsoCYLQ5nmbCthW5rHPnz+f5557zuOxp59++oyu15TTHUVg\nFwShzRNb44mt8QRBEP7WRGAXBEE4z4jALgiCcJ4RgV0QBOE8IwK7IAjCeUYEdkEQhPOMCOyCIAjn\nGRHYBUEQzjMisAuCIJxnRGAXBOHcFBYGktR8X2FhDaqG1WrlzjvvJDo6Gn9/f/r378/333/fzC++\nbiKwC4JwbiopAUVpvq+ShuWhsdvt9OvXj127dlFZWcmCBQuYOnUqKSmtt6GcyBUjCEKb5zWPiiQ5\nA3DzXbTR54+Li+Oxxx7jlltuOYPLiVwxgiAIbVJ+fj5HjhxhwIABrVYH0WIXBKHNO1da7Dabjauu\nuoqePXvy3nvv1f8Et8uJtL2CIADFNhuf5uVR139Wbz8/rg4Pb7E6NYdzIbDLssyUKVOoqKhg9erV\nqNXqM7xc0wX2hmxmLQhCG7WptJR3srOZEBHhtbzQamV5Xt45H9jbOkVRuOeeeygsLOTnn38+46De\n1ERgF4Rz3EB/f97s0cNr2b6KCu44cqSFa/T3M2PGDI4ePcpvv/2GTqdr7eqIwVNBEM5RoaHNO489\nNLRB1UhPT2fJkiUkJibSoUMHAgMDCQwM5Msvv2zmX0DtGtJi/wi4BigABtZyzNvAWMAC3APsbZLa\nCYIg1MZQ/36kLaFz587Istza1XDTkBb7MmBcHeU3ArFAf5xBfVkT1EsQBEFopIYE9k1AXUuwrgY+\nrf5+L867gOizrJcgCILQSE3Rxx4NZLr8nIUI7IIgCK2mqWbFnD7H0uvkz/nz55/6Pj4+nvj4+Ca6\nvCAIwvkhISGBhISEszpHUwT2LCAG2F79c3T1Yx5cA7sgCILg6fRG77PPPnvG52iKrpifgKnV3w8D\nHEB2E5xXEARBaISGtNi/BMYAETj70p8BtNVli4GVwKXAIZzTHe9q+moKgiAIDdWQwD65AcfMOtuK\nCIIgCE1DrDwVBEE4z7RorhhLrqXOcl0H3clMZoIgCHUK27yZEru92c4fqtFgGDWqQcdOmTKFP/74\ng4qKCkJDQ5k2bRrPPfdcq8WzFg3suwbtQtJ4f6H2Uju9l/Um8tbIlqySIAjnqBK7HaUZp0xLZzDl\ncN68eSxfvhydTsfRo0cZM2YMI0aM4Nprr222+tWlRQP78F3D0XfWey1LuisJ2dS28i0IgiA0RN++\nfd1+1mg0REVFtVJtRNpeQTin2axgN0lUVXkvt5hbtj5/ZzNnzuTjjz/GYrHw7rvvMmzYsFariwjs\ngnCOkmW4o3c4Nkc4EbV05Vos/nT/2A/iWrZuf0eLFi1i0aJF/PXXX0ycOJFhw4YxYsSIVqmLmBUj\nCOcwS5XE+B2HqKrC69fgC2XkKvFv3pIuueQSbr755jafj10QvDIYDMyfPx97HTMT9Ho9r7zySpvY\nVUYQWordbker1dZ/YDMRgV1otOTkZH744Qdmz55d6zFPPvkkjz76aKsOJAlnp+DrAo7cVvf2ekEX\nBzF0w9AWqlHbUlhYyObNm7n66qvR6XQkJCSwYsUKfvjhh1arkwjswlmJjIxk5syZtZa/+OKLLVgb\noTnYimx0uKsDPd/p6bW8KqmKQzcfauFaOeeZn8mUxMacvyEkSeKNN95g2rRpyLJMt27deP/99xk9\nenSz1a0+IrALglAvSS2h0nnvq5d0rbMIp6GLh5pbREQEmzZtau1quBGjKoIgCOcZEdgFQRDOMyKw\nC4IgnGdEYBcEQTjPiMHTRhq3bx87y8trLVdJEr8OGsTQwMAWrJUgCIII7I2Wajbz86BBdPf19Vp+\n48GDFNpsjT7/o48+yrZt2+o9ZuLEiY2+hiAI5ycR2M9CqEZDeC2ry3Sqs+vl+uOPP3jwwQfp1auX\n1/Jly5aRmJgoArsgCB5EYG/DhgwZwtCh3lfzrV+/vs6l/IIg/H2JwVNBEITzjGixC4JwTtocthl7\nSfPdtWpCNYwynNnq1uTkZAYOHMhNN93Ep59+2kw1q58I7IIgnJPsJXbilfhmO3+ClHDGz/nXv/7F\niBEjWn3v5vMusB86dIikpKQ6jxk2bBhdu3ZtoRoJglCXigo4caK1a3H2VqxYQWhoKP369SMlJaVV\n69KQwD4OeA1QAx8D/z2tvE/14/44++yfBFY3YR3PyKOPPkp5eTkdOnTwWn78+HEuvPBC3n///Rau\nmSAI3rz8MixdCu3aeS8vK2vZ+jRGWVkZzzzzDH/++SdLlixp7erUG9h9gPeAUUA+sBX4Fdjrcsxc\n4CNgMdC3urzVAruiKDz99NNceeWVXssXL17Mnj17WrhWgiDUxmaDRx6B2tL6//gjjB/fsnU6U/Pm\nzePee++lU6dOrd4NA/UH9guBQ0B29c9fAdfgHtgzgeDq70OA9KasoCAIQluWmJjI+vXr2bvXGRYV\nRWnlGtUf2KNxBu6TsoD40455GWdL/gGc3TFjm6pygiAIbd2GDRtIS0sjNjYWgIqKChwOB0eOHGHX\nrl2tUqf6AntDPnreAD4E3gQuAj4D+ns78IU3X0AT4rxkfHw88fHxDa6oIAhCW3TfffcxefJkwNla\nX7BgAWlpaY0ex0tISCDhLHeGqi+wZwExLj/H4N6CB2f/+zPV328D9EB7oOD0k819eC76zvrG1VQQ\nhL+lLUaj18c1oZpGTUlsKE1owyYN+vr64uuSMyogIABfX1/Cw8Mbdd3TG73PPvvsGZ+jvprvBAYA\nUTgD9c3A/acdkwpcjnNmTF+c3THFZ1wTQRAEL4prSaZ3pouHWsozzzxT/0HNrL6UAmZgBrAO2Aes\nAvYAzwLXVh/zCPBPnIOsK4F7AUdzVFYQBEGoX0PuNX6u/nLl+pF0FLi4yWrUTPLyYNUq2LQJMjNh\n0SLPY7p2hauuavm6CYIgNKXzbuVpbX78Ed5+GyIjoaQEDh50Ly8thTffhOTk1qmfIAhCU/nbBHaA\nSy6BESNgzx7PFntyMlx9devUSxAEoSn9rQK7IAjevZKezp6KCq9l/XNNhBvsZJeUcGloaAvXTGgM\nEdgFQWBFQQFTIiPpovecjuwbYOAEpWwyGkVgP0e0ycC+JCeHh+rJjvavqChe6969hWokCOe/f4SG\nMsTL5uvZgTaMmgpKz+LceZ/lYUm3eC3rvhX8/MEytQM+UT5ncRXhpDYZ2POtVh6MiuLpLl28ln+R\nn8+GWhYtCILQ9hyffZx2k9qhDlR7lKntEJ5YRMmfPnS4zXtWVuHMtMnADqBVqfBTe74JAHzOcqNo\nQRBaXuwTsfh08myRvz8bQizmVqjR+avNBnah+dhlO4l5iciKXOsxflo/BrQf0IK1EoQzs3lzGHZ7\nSbOdX6MJZdQoQ4OOjY+PZ/v27Wg0zpAaHR3NkSNHmq1u9RGB/W/o9+O/c+u3t9IrvFetx+zJ3YPh\nPwaCfIKavgIHD0JdXWkaDcTFgbgzE+pgt5cQH998KXITEhqeV12SJBYuXMjdd9/dbPU5EyKwt6Q5\nc+C11+o+5okn4LnnmrUadtnOqNhRrJ2yttZjQv8bikNupswQgwfDRRfVXp6YCH/9BUOGNM/1BaEZ\ntIU87CeJwN6UJk+GjRud3z/xhHO564EDNeUlJbBkCUyZ4v35S5Z4Lok9H8myM3DX5oILwN58u883\nlK3URsVu73O7T/KJ9cGvp18L1Uhoy5544gkee+wxevTowQsvvFDrLm4tQQT2ppSUBB99BAMGQHY2\nXHkl+Pu7H9OxY+1dDBrx52gN6enpvPTSS8iy+5hDxb4KKg9XognSEKgN5KHuD7lte2Y32lHpVAzb\nMqylq9woZrOZK664gsrKSrfHqxwOTpjNTNDp8NNqmbNkCdEuU4l1ppYd2Dwx/wQVidUfqKVG2me2\n/SmQCxYsoH///uh0Or7++mtuvPFGdu/eTe/evVulPiKSNLX27SEqCoqKICICwsJau0ZCPfbv38/W\nrVt54IEH3B4vLi5GDpdpN7Ed999/P0tTl54aHAMo215G8oPnTnKhqqoq9u3b57aJQ6XdTnxiIjqV\nigC9nsyXXuL1xERCXV5naGYp1yn+Xs7YPAq/KaTT/Z3wifWBxT9QHtkfjrfY5Rtl+PDhp76/9dZb\n+eKLL1izZs3fO7ArisJxk4nyUoWyHIVd5eXYFYUPcnJOHbPuZwm/be3RONSkmILIsei5O6TmHDkd\nDZRcnUFyeTmzU1N5JTHR7Rq5nUB9gT8j6qhHyRWZ3JVUWccRcH/HjlwUHFznMUIbl5LivKs62d2j\nKHSWZabPmFFzTGgo6Q/vwlHuoNv0bsxwLTuHaTQahg2rucMw2u0EWCx01etZ3qcPD334IfN79CDe\nZXxjinpj81VIUZz7tCmArDi76YDQS4Px7+8Pv2ZjChjl3HzzHKIoSqv2ubeJwG6029lkNBJkguPl\nKrItFhzAjvLyU8d8F1HE9GG+jPAJQWW0YausYlSnmsj+XFIF7Uu1dNfrual9e+I6d3a7xmdHLVh2\np5J3NI/SolKO3nfUvQ5GuLuwgI7pHQgZFOC1nl8XFrLBaBSB/VxXVgZ9+8LOnc6f166FDz+E77+v\nOUarbZ26/d1cfTX8cikQBXd+DNN+B+UjGHQrSGnOY+be0Zo1rJfRaGT37t2MHj0atVrNqlWrWL9+\nPf/9739brU5tIrArCqgcCkO+O86AvZVUdeiAHZiQd/jUMR+P6cell5i5ZSho80xYSozc3bfTqfKF\nr0K4wwdZq2VwYKBHTostliq6/GwnfZgWraQl8AL3pdOmfIj+Ip9LjmgYfmVHr/VMqqpquhfdirRL\ntEzYMIGD39Y+UNu/nddta88fklQzpqFWu/8stByDAabeBodL4ZGxcFsH6L8Dvj4A/au7fz4u8vpU\njSb0jKYknimNpmF5cWw2G7Nnz+bYsWMoikLv3r355ptv6NevX7PVrT4t+k5+KzMLi+J5yXyDnQBZ\nxYas7hwq9+dYih4FiSpT11PHBP9fBsGVEnB2S44DLwjEP8efTvd1cnu8MhnSNxznkrM6+7lB86uG\nvP55RN4U6bU8/9N8emfU3TeYacxkY9pGSswlrE5a7VH+27e/kbIrhZKSEmbMmIGf32kzR269lUmT\nJjFp0qRGvw7h762hi4eaW0REBLt27Wrtarhp0cDuQMHupd9Jg4TPMR0zXoqk410deT4tDaui8HzX\nnqeO+b+lG/HTD27J6p6TZLtM0u1J2Mtrny6oSlORfnM67Sa281petqPMuRFiHRZsWcDa3WsxVBr4\nKPEjj/LN325GF6lDr9czbtw4wlwHkb/6ivWBgaxbt04EdkFoBi0a2B+JiUHf2TMtaLri4JPM5lsa\n/Hcim2UKvyuk/7e1d6VkX59NgU/BWV3HKOkZ3esm9oau59UJX3qUT115K6WRR1AdVHHdddcRFRVV\nUzh5MuUjRrBjx46zqoPw99BtuPeskELtzqlOxWJZJtdiodRup8rhINdS8we3advA/tkZGc5FSr6+\nLDKZaK/TOftvXb3+Olx2Wb2ncigK241Gig3ebzdTTSZCJe/9i5JGImJ8RO3nPuZA2dX4EXuDzcYn\nPlcSYjuAqaqKCa6LsKol3/8A0Qkv49wSVxDgwIEDpG9Nd3/QYGBbRjoRhTZ2/76Xyh7d+YfNwW+Z\nmVT66gDY5Sj3cjahLudMYO9ZWMhMkwl278bkcGBRFIbt3n2q3NgbBptjObt26FmqrHSmDbj0Ul4/\ndow7IiO52HUGzYsvwrFjdQZ2WVE4bkgh32rm6ROp9AzwXJyhltQkFRcTWUv2y+ZmUxT0WJmmS+ev\ngAC2X3ihxzGBn3+Koqr97SXZJHRmHTaDzbPQ7gtGBY2sIKmab3BMaFmPP/Y4UjuJUNeJDcXFHDCn\ncWmpP8d+/pk8tQ9DbOMwFViwBjgD+yDgt9ap8jnrnAnsS1esgHHjYMgQPs3L49eSEj7t2/dU+R13\nwOWXw+etWEcAunWDoUNJVakoj4lxX6AUEcFfR16g6LdZXp/qE6sQ2E4m7MklqPJDGfvTjyz6131u\nx2zpqWfSLRJXhczkSHnbb8lotVri4+PRnjZ9sOKR55AsEj9+8SMP+D3AhVqXD4eyJ5GvqaTL85nE\nPh57Vtf/6uBX7MpxH9iKSs5nUnk2b/36OADB+W1w+qrdDmvXkupw8LWP95WXso8vCvXf/TWlFStW\ncO+997o/qIBsklEFOFdUD+g5gPWfr3c/xK7gMDt4eebLbDywkb1H9joLJAlJ+oI1Kgv6gAr2rdjH\nv0xfEPRIEH6BIlVDY50zgR2ApUuhUyfnis6QEPd5xwfHw9BOtT5VkWUURSFhQwIZ5Rk8//zzbuXF\nxWGolYGYLc3bn6c4SrCFTKdftJd8MYqCpWAttvuPIW06hvbWqQR94DIwuXcv/3j8MawOz66Ptmrr\n1q2UlJw2ftK/P5si57C7y24qoirwGenDqFmjasovuIATw97CUXn23WuLdi2ib0RfuofWLJEP9bWi\nVWlo79+e7dnbKUsrw4c2tmz94EGYNo01jz7Kyt69uSIz0+MQJekYcBnTO9Xyvn/hBUi9GXJzYfzj\nYLVCRQWMH19zzJw5Z1St/Px8br/9dl5zSWZXebSSw5MPE7cnjr8e+Is7PrmDQ5MOuT3PXmLHYrSQ\n8mAKn5V9xtSnptKjRw/Ys4fdHa5maHo5F14dQsjoED6Y/gFDbhjCax/UXEOqpdtR8K4hgX0c8Bqg\nBj4GvM26vxl4svqYg0AtWa7OwuOPO9/sZWXO/Cv+/s7vTzqRBgeKa326xWJBVhQcDgcOhwOr1epW\nbrNZkRSF4l15lCR4nwYYlm1G10OCs2tEEuHflX4dR3sty1dnUVyc5ZxXrdM5P8BO8rJtWW0yjBm1\nlhVU1t1hlWYyY+54PcMSj6CSPPPa2BUFdR253F117NiRjh091wWk+8SSEZiBLkzXoPM01uWhJxgd\ndAAtLncM3e2kLChjJAsYGmniO10IGTTPjKuSkhLeffddHI7aP6QCAgJ49NFH3YOXokDXrjBtGqPM\nZh7zH0vyv93TF8ipHXgVCL8wmW0ko4/VM+QPl4yYP/wAgfdAcDD8859QXg5btzq/B1i0CPbtg/5n\ntmZBp9MREFCziE/yl/BT+REQEICPSkEVrNB/p/t7NXFMCjEhMl3ulVCm27niiiuIi4uD11/ntdhr\nGV5azIQLI+lwcwcSZiWcUX0ET/UFdh/gPWAUkI9zYe+vwF6XYwYDj1YfUwk0T3KUqVNrvs/Lc2ZK\ndM2S+O0WwOrxtNONvWwsB3MOerTYk5Phgdc2ceUOB2nz07w+t39WJZZ+VfBDt0a8gJZjcVi47pOB\n+Gp8az0mvvvEWsuMDjsqaxEr+8QRrPfeTfFKwryzrmdLCNWYIfQu4nrPrnlw/36Y9wj8/jur9jyF\nnh+a7fqJiYksXbqUadOm1XrMnDlzuO+++wgKqj33vemEiaCLgugyv8upx+SeN4M0hUG/DMJR4SBx\ndKLnEwP8wc/P2Uo3GJwrak+22H/6qZGvqnYVfRbjUBdz6JD7+8v2sIlb1IUoEbNRwtt+F+K5rr7A\nfiFwCMiu/vkr4BrcA/tdwLs4gzpArasG3noLLCGej5caJJpk73NFcX45HM4vV3L9s0B+HaViylSZ\ncWOGei1PeOcAsb80PNPd2uJijptMp34eXVmJLVTPtipIys7m+ogIOtTSf3o2VDhYMFhNkK/3eeoO\nRyV6fT2zVWQbfxz5DH+tZ/KnxY9fSWradHyV41QW/YVL/iPAebMhP+g5rbXVqALQ6VzuwlThUKEF\nXSQOqfn7cbt27cr8+fNrLX/jjTcadB5NiAa/HjX1lSVnLiW/Hn51rltoSYrKjkoOZMQI992Dtly/\nhYXhT/HsvEko0uxanu1kG7maXFMhmza935xVPa/VF9ijAdfOvSwg/rRjegMO4N+ABDwL3ptADrv3\nNNvBvlYuZDukXwB78+iQk4NNUaDUZV/08HCIraMPxEcPHy8B5Tf4/XdndHHV6QHgOn5O+ZnM4kwe\n/uVht+KS7AgU7Rgs9qbpY78jMpLNRiOJFTX5vPvZbCiShlw7fJKdjUqSuK+2/tFaSBUVvBptZ8+m\nz+lhh30b9riVK1Y/VMymzO8Wxl7wntdzlJZu5MSJuXVep2NAR1INe72WHdk5jSvnvkecXwxffeBM\nI+/q4YdBVurPtbI1cysbizYipUs8bnz81OObcy18v/cjclMkBm0fxIMXPljvuc6YzQY//EDU0ROk\nH7VAfr6z68JVYSHoRXbOJqe2U1y8lry8wzCskOHtvyHYtwKjXzDkBeMILsJovpD0wNtdnnS/x2nC\nwsI8x2+aUGhoKIZapht7s2LFCp577jkyMzOJiIjgk08+YfRo712uza2+wN6Qyc4qoAvO1n0MsAXY\njJeWe9XhW9D4Ovtm43v3Jv5kSsstW0iiPXy0H1bv4Fqr1XlhXXX/q8Xi/EdMriNF6rBhMHs5fJ4L\njzzizIXuovSOb+A3CPYJpkRXQmyw+4eEb1kImKGoIge73futomyqAIsDUlOJzcpC6+8PvjXdHYos\nsyUxkVKtllDg2tOe39loZIfJyPUBMmZtI2ZidOyIEtGOITHH2HbCj/zAIGKWuowzKAqOowcpQoXF\np44dihqgU2AnHhrv/YPhCw18OvMRkpK2s/YLPFrsIV7uyk5nliSMF1xG98owOvbqy+CbarraPrd9\nSc+UUQTbizCn/gUdvYwX+Ps7P+wbq7AQ/vMfekSYOVFohtIMZyIwVz+uhRvbdgKqhrjt8zL2f7cf\no9WIo8LB/qv2OwsOjca2IZB5gQ5+f0iGPi1QGXs0ksWPsrJdlJSkQY8yegRuwd/PTKWPL3KJL+mV\nkFGVzboTm+o8VUlJSbNmUDyTAdsffviBOXPm8P333zNw4EAKCwuxN3KzmISEBLfUyo1RX2DPwhms\nT4rBvQVP9c+bcbba04DDQC9g2+knmxvRFX1gdY+N0QgnVx6mpkJob3j2IbirIx+cSilQnSsmLQ1l\nzGiqKp1JwTSWQkLsZVRW1vxR7fZOyLL3rIyuRsaMJEgdxMMXu7fYkyPg5a2bKct7ga1bH/B4nrZU\nQfrtCZTjUXDBtSzT6+lgsTi7fqrZHA4mv/IKA8eO9Xrtfx06xIZcCyPuK4Ye9VbVU1QU9g1/YN/g\ngyPuOsrLKwl7zyX4Kgp2lR+KjwoZH1JTU7HZPOeJl5Wlk5VVRXDwcbp27doqMw4q1WrkiI74m/cT\nqtUR6+vS5VNYhPpYMvlRnZjz0KegP60lLctQVeXsM24sRYE772TDpdkcXLcCdsa5t9glye1vey67\nYLeZDku74if5odqhIurB6lXA735PZdeu+G0MIPJEwwbDF2xZQFF2EV+89sWpxzoVdGK2YTbjXxvP\nLXojNmpmvptGAAAgAElEQVS/W5PkMCRDJ2Ji59Kj1wVw10i+7PYqd+8vJW52e9qPa8+evB+4vvsY\nlt2w7NTzPuOzxr34FjJ//nyef/55Bg4cCEC7dt67QRsiPj6e+Pj4Uz8/++yzZ3yO+gL7TmAAEAUU\n4Jz9cvo90Y/AdcByIALoC6R6Pdt/XwEvKQX46CN4ue43lsWaw8GDNyBJaiLsdi5zODh0qKZ/2mB4\nGqOx8b/MkwLaz2L06Ic8CzIz+Uv1MbaOvjB9NmOHDOGnpCR6mmv63NNLS/FZuZIff/zR+8n/+U82\nfL0ERa77tVZWHkDrKCSmYgVpae7dIQ7ZQUPW7OSm59J3Yl+6dfMc6JVlEzZbIVlZvUlOTqZLly4e\nx3TaYCbl0RSv577LDCWrg5ydcGdBnZ9Bb72Wi0NDmRXj0n5Yt47tus7sD/bjtS9n8eLYF92fWFXl\nnPL6N7MtaxurX6tJuKYoMgqv8dprErJFJs2UhulVE0N7VI8RGQYgOxTUdnCYHciSjKSVCL+q+k5n\nTR6aAe0pqZ6ZaLSUkV2WzcrDK9nvu//UdWwlCgWVPdiWlUpuRS639b+N12bWTEW0HLWQsTqDwzMP\ns/iD4ShKYa2vId2azpGQI4xePhrpNwmudOCQepFz8D/c88Mu1qevBy3oVM07W6opVVRUsG/fPtLS\n0ujVqxelpaVMmDCBd955B1/f2icwNKf6ArsZmAGsw9nl8imwB2c/+i5gDfAdzhkxh3BOd3wCqP0v\n20hms8KSJReiUvmQXFVFttVKvMs9f1KSH506HUdRZGTZhiyf3lfuDKYWSzZWayFlZe6LVioqGjiI\n6ecHTz4J27fD/fc7fz4pORlWrWrMyzslOHg0ERFHkViEpDhQFPfbOUVx8MEJFc4/h3dam4P+//2Y\nXn5+HBzqORBcPj2elNDPueWWPI9pnwBlNwZh8LdzcXvvvxNfpYrcJXs5fNc9VFQUsW2b++1HScli\nkM0MD/SebrUhdHY7lWhZpLqcV7zdlq5Zg7R+PbzwAlKF576kGlnGV1G48Up/BkdY3KfGVlScUWvc\nbnT+DcxZZrcdlCwFFmSrjDnLjE9HHyT1md/5JP87mU8qPmF/j/3ud052O5Q9R/9haajvC4COvnyU\n+BFhqjC6V29b53wFBRQUSCiywoH2B8hflM9zw6o3Qy8eiiKDyg45X+Vw+M9Mys0yYWHO9NMvVtrY\nH2glsqdMZqbCVffswWrIIrs8G8lQUxfFGobVYcFgMhBXFod5tZmMfTXdYw6TA3umnYyxGSgTbCiS\ng8JC9/8DWQ7Bbi+jyP4XetmHjfdsck53vPBC4rqvJEou5oHrZ9Hhtg7MfGcm/j1absems3WyS2j1\n6tVs27YNtVrNtddey7x581iwYEGr1Kkh89h/rv5y9cxpPz9a/dVszCYFtVpNXNwIHEYj5qoqRrjM\nj/7tNxU7d/6Fr+96Dh5MwM/PPfCVRs8ArqOoeA1GYwHHjv3TrTwjIwZ4FElV9ywJfb6Ggm8LGJbs\nwJRioMCnJqiYck30NPWs49n10+tj6Nr1Wazqb8kInErXru499VaHlZVfvMZ1dZxDVkkUxPWHtGKY\nMMG9cPly1LsOwxW1P9/a24ekTgHE9I7xWr7laQPXOI4QHDwSP7+jDBq00q08KKgjSOsI1nhJF9BA\nIWYz8WTSQT7KC5e94F5YVQWRkeg//piu8fG8MsJzX6xRTz5J0MGDOA7I+LzzJqgW1RTKMphMzv1n\nT034qt2uobvAAXsu2YNGqvmXka0yjlIH22KcvY6+vTxbZ0eqjlBWXMbh2w7T7zPP/Nzm42aW+Szj\noy0fEei6TuHAAXhoLiuvfBffHCtUv9XvuecerrnmGuf1X3+TN6pb7ABL+y1ly5YtDFg6wHnwiLtR\nW+/ElgLXJFyDwVyKHQtms/Nu51GHDaVMYvaOOUzNvIjb/ODlvM5c/c3VxK2Pc55DUUjdn0v5hTqu\nVgKo2t4O4wVG+kyq2auuqjyIlI+C6PG/HugOmzArNjovvtntdX5atYKjt2Twn9xEtI34AGzLTs7p\nnzVr1qkspg899BBz585t04G9yX1fWMj3RTWtudE5OXS3hvFtTi4pR0rZV1nJeC8DY2PHxnPLLXei\nz8vDVlLCdJeUAsuXpwIXExCQy6BBjzBmjPvg6bdLvwEgqtM/KeEgF1yw2K08zFFISNJOum05DHnu\nZQAYDFSEGTHLdgpWFDDCYKcquJgCl3wtVYYqZuS2/hZqskoib/RQ+HWfMymZqy1bmuw6anUwKpUe\nP78epz0OzglSZ0eSnPcl6tPHACTp1BZqvj1i6TbUcwGUv8rBc7dcz2ZlC8/NmU58f5d+yj174N57\n4c47YXvdebSLiorYadyJolKwLLdgV7vcQR0B6V2JIQlD8Cn1fndj2GbA93VfKnZ73lWcVCFVkKnJ\nxO6oObevfJSuFFCsKUO2KWQYMxo/UKiAw+Hgtcj1zDWOp7yqeibJzJkYBw1ieHg/Ou0tpm9BAcWr\nK2h/S3tiBld/qB8+Qujml1nWbzzSDivBjv1UZYH/7zX93/x8CFWvrwm+KJg+BWEE6azsesB9Om3a\nwjR6/dGbBx64mvna07rWznGhoaFER0e3djXctEpg/6G4GJUk8X/VCbJ6+PmhU6no4+dHdEgw8SEh\nbt0sDXFN/jdEmzfwuS4Zli2DDRvcyi8+noOD2mc4+G1aR1g7FcFZOVBq8jxAUTD0kNg7O5vJQydw\nw/btTBjYk54uXTFJO5IouriIsjLv6Wj11gK3cPdpfj67a8n3YmzkiHpDyYpCpsXCdfv342M0nnq8\nY24uUXv2UBihZv9Ti4nSeQasidZ/Y7PpaYrg3VhmJZx5CwKgwsKGBRs8yquOTSYy1w7xWwjzbfyU\nxZUrV7KmbC2yLDNr1otILitxu5iimJgdz//uO8AVV3ifknnsmJ7CMhXFVbDYS3shKt05DXjkksuI\nDI5Fq3b+S/bNruLlkkx2ZSYSVhrK1m3rKK2qIC8PTpxwPvfkvK6TP1dVqVmzZg0jR450PnD4MMeU\nK3jcXEmpUsqbhvtRaTwTxxV2kCgYbMX3YBE2VQW5i3M5HuhskavLjhLgqOBX0xWoKyXUsgmlSzkL\nr3n71PPvWNcdRQGzGXLL8zDbTQx6f5DbNZZWLiVFSWHxzvdbdS/Q5nLXXXexcOFCrr32WlQqFW+/\n/TbjXVM3tLBWyxUzKjiYaSe7UkJCSNLIXBIS7HX5eUNMy1pIQngfZ3PR1xcC3GfIxBiOklHP7E0z\nPuybfANXjZ/sWSjLWN+eUWdGEbvdiKI4SE72nuQr1pgGwE/fHya66ze0t1jw1gs9+MorCddquf5s\npvPVISszn48/zcJiNHLRli2EHjt2qmzgoUMUAvntYtgR3YtJkV1Ru4zWSlUWbrCvIls/h4iIaOrd\nkaMWKtmBn6ygMlc6VxG75kJpwIeaWe5I5yw1h8b9SR+952yoyNwkBuU9ziblVQwZnSh06eXQlECA\nHYoKZH6vCEKt+LM1v4JL19a0MifceCMjtlgpt9r5l+MZHpCmMGrU76hcMlaGF5ShK1xPXl4ZW7dC\nqJdVdrurjBRiwShZWWw77lF+j1KJQwGL3U7M7xvwUzsbO9Fle9GV341/YTw+ZjMqcyHl5Yd56qma\nYZ1j1ftAj55cRfnIPMyVI4ift7Cmfl1/5KByJdO+L+bFgau49vg4jPF5/PvnfwNwU8ZmUrXHMffu\njmI3k116CAWFExfHoO/sHBmv2G5kaLoPmf4BqBwqcgnHuqmCTX/VvIapMqQkQ3wIvPSujAYfMma5\nzy9P/N8Weof1ZWzn7nzKF3hTaXews6yMghAZvWxlp+u4iBehoaHNOqMr1NsftBbz5s2jqKjo1PjH\nTTfd5LG6vSW1aGDPMy5Ck6WlT2U+QbKeLEf1XO6gbVh7RuFc1No4siLzpr4LOQGHeaNzDl/1d/+D\nx2sDONsktyorGI0bSUiYxWIge4d7D23OkQACpU8ZPryWDSTa/ROfPt8hqYNRGY14S0ywYcMGRgQE\nEK7VEttMI+pbt+1nu7oUHA6k0lL3f47ycgyBgewyKeyfeD9TR03C1zU9cGkphuevR6drj0rX8FW4\np/MvNTK21E7e+l+Qf/kdx/s1LUBKS7F1UeEjF6PDyz+3RgMqCbO/g/t+/pFuufler5EuPc5u88Vc\nddXVbp/zg+zwZjlceqGDXkv86WWtoKwql4OpNWMFj2dmYrV1xIYGdVgRKiO8/Xa22+Bp+Q4zG7c7\nmDTJyGOPOZAkz3fYyKXF+O6SCdJITBzvOeCt+tqOSqPg7wdr1kDwyUlje4G7YeRIqEgHpb0Pifkw\n+00z8eOcU4aT+8UAVUz7Ip/fDCUY14WTXBR36tx9fHfjUA2jryoXaXokHV/Nol1sLMGhzr93kM9u\nYqq0qBVQFAkfaxmSSiYvPRffKudtgKlUYYheJiRaQmdXM/butygvN/Dww98BzjHoQ5k5xGiv48+O\nOtLSLdjsetq3d3+dn5jgSB7wa+2LY1YWFbHwUAamQQ5UViNH61q3Ame0eKi5aTQaFi5cyMKFC+s/\nuAW0aGA32ZPRmDQEOUrQWnWYTM6Rb7PvYSrG76UdD9dzhtrJioxDkQnVh9K/XX8GxA5wK/fVfNeA\nTDJ1C0gFn5teZFDUMuJ272ZFv350dwm+fj4pFJBW5zluMFiIsFiJNnsPih9HR5NX25MtFmzXX8fq\njTa+Vd5lqKKw89tv3Q7pi3N7vAKLg+MmE8NO24txdkEBx01m4q5xkJwtMWWKiq5dawKS/68qcvdL\nKPUk+crLg+k3QHGxM1eVq/x8sFzjmdXB7aX4+rKxvYR9RAC5wZGYR3Y+VXax8hf5vznQVaZgTNzK\ngH+f/mwdPSN/5lJpN5/MVfHcvV5WC0sSaDdgDY459T47ZQ9wLxzbDrdu1dAlKJB+YXr+/X81d4tX\nP7SDA9EjwQz+zz4FDznYvftiNJqaD0E5qTs221TS0p5l8+bXCQyM43RjKnP4WZ1L0E2LmdvlE4/y\nLzW1/rVPSTObWRzfA9N6DS+kp/O/g9WbkD//LHCQbwvhwehoZs6Jcn/iiD/YZH0KFXkgOW9kLxt8\nKYMvqk54drkO47JlaCfaUax2euZWkSrLTMt6kfjSADAY2BFzI3YJrvwHBGqgMDkbH58pDB3qHNC2\nWsF8w2hSu77N0IShrDsyBL3eRoHLonHeeost/+nOSm067XKOM6XASsV9D1MWGIL/kaMsSJ9GtvoR\ncso7cbs6loI/tQRNDGGBy8q382u4tfm1aGDvGv4m+s56Xk5KYlRwMD2ru10Mux4lyWPizZkx97Fy\nwzWJ/Lq5koF+WfxfkPsiiePXplBxZB0GvM/0aIiooiKeyc7hnewcyux2Lt9/EJVLa1dvsLNYX0eO\nlBkzSP+xN8av+5Om8jJd0e6gi92OVZ/j/fllZfhs2szbGvAZOIwCq9U9BStw6JmXccgKhkobMvBh\nb/fJ5tEhIRh9Q7CHDCFQsxGNJhSttmZOuFrtDAKyHEKevR3znwWtS4zXm+EOIDk5EXPgK6jVGQQE\nXOB2jeLiN0CxEujj4LO1nvORx44D+6EqdCoFXdAILr/8ambNcum+uuACTgwbxx7rJoI7f0Hsw55d\nY+2OdYQ141BUkrMFfxbCfcOJCe7IXUPvcnn0boL0QUiUI2ntgJqRIzPcWuxl6jIKtevp0uVZBgwY\n5XHehx7qzVffBeEwWZhwHLSeW8PyfGj9dVeAW3ZksDPHznO9e3NN9cYm8sWXoMFGktzIsDdjBkyf\n7sz46O9PVv9YHLt3OteVxMfDihUw9S3wVeCdd5yd6CoHmo+/Qv/lGgCkUWORCzSoQjqg18diU9SA\ne1da2ns/Y3I8zOeq+/C16ciTX+e54/9HmKYL/auG0sOair8ml8TjCpvXJHG50QxlLh/G9az7EDy1\nbB/7xIngU8pTJhOBanVNyoDwE3DV2aUBq7zEQmRUESqVDxpNIFrtaQNmGpmAa7+G1LpnZR5KPMR3\ntu88C2SZmFWrOPDWW0RHR9Nz+3Z+GjjQbfD0q837QapjCv/gwZikIwQv13HhFZd4ln/3HTsfPYKu\nrEutp5A1GtYFSdw4ciRl5eXEPf10TaGiYH/m5VO7zaiAYaen+tXp0Np1fPfpeArzD/LEE9Px8+t1\nqnhU4XeU9/mTQr8gNGjQ690Du48COqxE2Yt4O24gr+8rYc2lI90u8f3aTbwWNYbuge/gr3jeJ0Vs\nvhop1AdF6kS3KKNH+UkxwTH4Rg2lV+8JHmXfvBWHomTxwXvfs2aR53NVKljQgHaeXVFhUjTYFMV9\nwNrfH7NGg9KAXao0mkBCQz03vOi6+1v+12MVUuZfxA+zE93nTrfybdshO+Mf9Z6/qeQH5bPurXWs\nX1yzCYYCzLDZ+N+DnTBnnXYXecstkBoOL8+F++5z/lIXLYXbb4dXXnNOyZxV/yzn3DxAq2NPmIVL\nxvaENTKVV0qoO6oI/6yQgm4+9Ek3EdGpnP4j08GnDFl2GV/a17hxnL+zlg3sc+ZAB4mv0tMZ7O/P\n+JOrB+UdkLYC81EzZTu89KnmWDDJfZDKal+UA5B2LBq9PoD27W8mNtZ9uuOhHRvQdDlcTwUlUpKS\n+WT3Ic8iRSEZuOqtt5g7dy627GwyAgJQu3TF5OdkoZeLSTx6lA6dOqH32nqXIBC0YV6WXQcoSJKd\nklLnLnv79jkbSSdpSmCAo+4EPnY0gIS5QosiSx6r7v3MYLFIGI3OzZ1mzADXRZ8Rm2F1loRKlYl9\n8vN8qNO5hUdJUdDyCN2QiG2nQ6dSEX3a67wt+20+qBrI6PIKLvS2cUkFqCPU+Pn6obLXHnz1Gj3d\nw3rQu7dni/2No6VI3dOYcMOTzJzwq3thZiYzZ8jODuDycnjqKffyPGf3x+7ycjYow9lWVYm95Fdi\nt26tOWbFCm5c6YPapMIqfYhzrd6ZmZj1Fkdj/cnVWtEFW/GPdB/k7Zb/GyaTM3/6P9pbyTj+IDp1\ndWOnqhhuziCkcA06eSDteiUg6eseTKyNbJXAN4y90w8wLDgdtUuCNgVQVA4e9GuP/tr95O6SMRgM\n5FX/jsrsdvwUhUq7Hb+TAxU+Ps6RYpc0w6Wl8N57sHvLJExV3+Ca6aKfBbQ6CAlNYMKYCNb/WcbC\nf1/vXKC08QPWDhpGcGEAfSL6MLT/RfwVvJ7DR9N54ok/AIjOTWrU6/47a9nAPnw4dNaTGhZGx+Dg\n6gUigKESdakOwzoDhnVeBkQsFsy2eQR+HgTTazu5QqWxH3v2ZDBvHrz9tnvp9RWBdKmvfhLMeWUu\n46MHepbJMm+r1Tzz4YcsXLgQk9XKOElyH3iU1ITZQimIq0A3YQL6+z0z0r2ubY+pjshstTlT6GRr\n4Y03nLmuTgqxwecmIKT2u9OZLOIm/PjmqSuwmj+lx2k5aV4sA11AJCMDU9knmbnYN5Fefi6/c91R\ntkYGcesNN7ByxAgS4uLcB0+BKb30vDo8DR64xLna9tVX3cq//ikald0CiXuhyPvqU4e2/uyP9VPo\n0PEIQ4ac9vDOXwgq74+ChLW4PxsKT/slqPvBxLvIL3UQQjnz/dfwW1hH1rhm4pMk0ns8zQvDRiOf\nxbD7D/0uY9+xXAZPqKLrbe4fMBnrzFDdF32jjz/GzzSojdWjjtZQKArBJy8UdagGfakalZ/n3c06\n5R8wrJYNZo4e5ZeIkeyS3kFae4KxU49SZutAsbnm91FpCKa9Lg/ZmkOHLAOBZgcf3HEHa6u7nLpZ\nYrjUrPDhe+8RN3Qow067hE6yYZGcefr274eCzJ7Y7Wr212QkYEx7KDmDFOwBo7cSKwcSH+987wQd\nLQPP4QmhDm1mazx9jA+Ddwz3XpiWxtGe8ylz1J6+Va22ERi6l5iYcMaP98w4qF9awtn21P0TuHLb\nNqZMmULWddfxyYQJdHFpsVcVVpE/Lp8nJz6JqXgXQwu8jR7eyx8b1KR4znyj5x7Q2CQc9nVY5AOk\np8e79emGyzKyXAZa+PEnsHeo+WwEQIEx+AEWuty8kbQ/Tbx32n5X5W8PY/CO3xluPsDNUqFzg+3T\nZt9I99+Pv78/Uvv2REdHewR2STKg1Wqx4310dG23B6nssBvmXenWqjtl+XIcDegXz7da2VFQwJdG\nz1lGGqVHnXcu8b1zYWc41r238OgBz3GVXLOWQVuyiLxN5uiRYnJTYdWrNcvg27cbTGhJBaCQZnNu\nq/jm1jdRu8wD9zvkh789kFUFmyjf6kuAj3uLvFcHGwVBSeR3LmVnpYkbX3XPb/No5mB62ntgc9jR\n2Xxo33cSHfpWd9EdPQrPPc8voy/CYiinpL0PjkDPd/AV/A4f7PJMUw1w++0EKDJqjQPtyifxv6WI\n8JBevBC//NQhP495ge771tDrsiEciAxiqaaE/wwdSnx1Eqv8AliQMZT/u7QXZYWe3YyS5JxhHBnp\nbLHPWfoyWUkWtxY742DLTs/q1UqSSTocyk8/VU+AyM8Hdtf5FMFdmwnslZWHOXr0Pu+F5eWUPLUf\nddUPZGdn4l9WRp+qKrKzO5w6xNzdgU9RNu3ahdN5iIVXOu3F4bIQ4p5whVjgg9wc8ouKsCUl8VEf\nzzyly3/ZwyY51+NxSZZ5SZIol8Pw9fVFGxlJt1693PrY03RpZClZ9G/XH4NsYEIvz77hKkVFdmIf\nzF7WQAXkQi/fcCZPmsqRAwd56623GDSoZqGHVFRE8CUj0dxexuUlkGyCBNfduxV4uHpihMXsnJVy\neuqaY1V3keobwzXXZMDuV+Cbb6BXL/eDcnKcXRitrNLhIEKnY0U/z6X40yQbKkBTSz/6E4N/4Y9d\nk4mLeJnFNz5DyFj3BW//+0piX7AfxQFmlpZl4GM38GJ5zYrIi4ZlMCOhEDWgX2kCRWbIW1/VzOlX\nFEyWnuQETGVz/F1sK7ehq3IfKA548TFK/H1RcqKYn/UiEwfe5lYeFr0fdWkZDJB5qbSUksp5lJuq\nx5rsdri7nH/s+poI5SLWlqeg2GrZK2DYMO+B3d8fRz0DjxIKq7pczROr3mVfwsXYt24j7R49h0c4\n39e5ueCz7wDXBf2KzcfM8STZ66XOiAK5y3JJ/y0dci4lXClFVWjBnFKK/ftSxvXyoVfI/+F3ch65\nycs/i1CnNhHYg4IuokuXZ6G2NrW1iFLrRmzBGRw4oKZUXYVOZeFAYc3enZG5EifSnP0WRTYbRrud\n910Cls1mwwoMsYaRZPNnbZ6BzS69BOoTQHtYn/ELf5k9b20lReElRSFu1lsE7gdLAdw6GXxdDpVl\n+I8MK98dhqJksXWNZ9/wgpAEpt6i55p7vLzOryDlOMRe4If6sJqQkBDCXRcpyTKKpELSSPjqQWvz\nbLGfdPnl8MUO+Oor90u8/Ta8/z5ccQXsbo5GkN0OhQaoqHSmLzjLGQ2+KhUDAjwXIEnVfRhr291J\nvssCKwDatYO4OCZ+JFERHYb/YH/Cx7kv9vLbC1qVmUo/FVF+MpERZbw0tmbTEs0IsJU4BzSqfEFC\n4tJhE9GcvHtxOCib8xk/d7qVT157hyl//oH6tP1hrbKaS55eypGgIGaEhdEz1n3mTJBkwEfyRVOq\npmivAz+1mUB/Z4IuTFWQmUWExY46TEGySaRVVHDvD/fil1rdmHjAQerb0P3t7iBJxAbH8uedf57p\nr/iUSjpgldUklStgcL6ZcrMi2Hm0D+07bsRWaSLILwRfyxmEjXHjnLNuKo1QlYJ2+ZtIGgvGkrkU\n+wTANSZUFn/89kWiyzERWL6Fa9eX4OOzxm0xmMeMV6FOLRrY7XY7ZWVlWCsqMKlUlLl0IAcEOJMG\n+fv7oz59JoI1jbIFCfwVPIvN/zeejD55FMSWcMGvNbli3vhxOXuj/LD5wY6dYPJXc3RVzWYWsYXO\nboP9v+vJRkeZEZ6oyTxKfBYwQsWa6R8yKsZLZjlZRn5dw223y+wrhLwQeOwxiHFpvRQUgOp2mPOk\ns9H7opeUGKvjYHDz7JvcpGRFRnGYqbJVocjufw9FbcGhOLwvDT9wAHbmQqkdNq52NvlON3Wqcy55\nPTRFDqJXVbL5H5s962fthza7iK6Vh+nnf9rfy2p15vsHSnt38HiuKwu+BAQMIjw8lvj4NTUFkkT6\niy/h2JfMB5e2g3U5MHu2+9TKsbOomrKNf48L5OcZt/LFje4rKsddBrmB65DI5crAAC4f7n5HuoEs\n/CpMfBDdj8rEHfjqVegCq99QlcCxKirDHKzS27j/dxs/lqi4+4CGy4uq1z9Xj/EvjR9Hld3OzevO\nriN6cMcRIK0jxRSCpcLZ15+e1Zvfdk8ienARJkMpjuRl3B7reQdVq99/h7g4OOwP7aIIuOdedC/O\nJfjyPoT3jQS1ip+0WmILemMd4U/JdQHcc8V3fHbnCVC5jMO0wp4B57IWDezdhnajqKIIBfhCknDt\nMZckCY1Gw7Rp03j/fe97HfbsCY+sgk/z4NcS+NQlQWN2oPNvX1ICx49D2VDYuLGm/BarM6fwPffA\n9kxIaAebXeJF3gJYXt3gKqi5Eaghg1YJJiYGTgSBQQcXDIeeLskg007AAZxLvvV670vM6+Tnh5Ka\nivLEXLAfwDEyHofa5U+kyCg6P67cfSXlnSuwOKykGFxypjdhDo7VR1dj2f8MMVs8Bw77jx/Kph0T\nOb7Py0CBLDs3UI4OgDff9N7HDtDvN++Pu1BZFexDkond4rnGQRrcB429jDFFq5kZ5Z5dEqMRjh1j\nPRd4PK+5lKaX8skn7oE1Lw+qdh3AJmWwPiadzGUaunatCVB/DbqRoVYH0vC/0HUy08k8keDu1au9\n0tPhgw/IvHAEjlINaaEh2AP90fSMQtfHuX+rkpPEJL5mQfARjGaDl1TVZ6ZbaDcCdAHMGjHr1EYP\nv6pgzeoSeoX3otCWhdrPQnn5XjIz/wfmbBhTSNghHXa7gZSMtwjW2VEA08nVaTodhIWhaDTI/gFo\n+gMz2RAAACAASURBVA1HFxBLx0GP0znOuaArJSWF9j6l6PUafEMG812OBpWq/sH1sDDn/3tzCQ1t\n2F4uAQEBbpMoTCYTM2fO5O3TZ3C0oBYN7AMHDeTaSdeyoXt3hgUGMrF6gMZigbi4wcya9T579vzO\nunXuz9PnQSSQU5HFixtfZK/SjhQlhBddcj7fgZ3gfmVQqmHQmN1UBmUx6cma1qL2+UpnR89XK/Cp\nymZJSorb1mrhxzPg/9u77/go6vSB45/Zlt4DCQRCDb0IgnQpIl04FFQOC+LZKJbjwLNSxMrPjnp3\nFlTUOxULKiIgVQTpAqGXEEggvWf7zvz+mEB2s7vpne/79crL7M7s7Jc1eTLznef7PI89xcSJoPNY\nyVUisNVWnrDOYr35HMMc35B7/jhnnLI7cnNz0U+UUdd/VsKECZhGRJGxPxer9AeXhj5FeKTrAiOH\nzofH3sviLzc9htknkjGfjSneqCj0Qc1QCfOr2roAm8OGoe+HZN44ze3m6dCALOJidpB4NBFHvoOc\nrU7LDE/YaWFXKDjjAPeFmBUbg6UFtnPXo+vnpUKPJMGqqaVep+eH5zA7dTZ+37reID6uwIGUZsgZ\nXThyROL4Vkosg09lwdcmtRdYOcSviucD3QcuTUuyssB86iI+2kusOSSx/89QXnyxuKxzt5GJ6K85\nhqOVgSzZl8DASOTORTd6T5vhsA/GURC49ygnejrIiW9OyK3PEHm5bO9TOr6VbuGD0FzWrPoQhx0+\n+eST4kFlZHC9LKNUY0G5/qFGCvJzMZvPgZwO4VZAj0WW6XS2OxjexiH/nfDfi4rJfPcdaDR8Ng2O\nPfEEudV48pGdXbNNrsp7kVDg1A+gsLCQ6Ohobr311lJeUfNqNbBbrYHk5sZiDowjXwkhLU2dIN64\nMwNZUVi560eMF88w50vXOYyY/Gz+BTiwY7QZsUpW9XuHsXgnLaS3TCc1sRBTwi+kavx5N7t4KsbQ\nuYBZwG/2PM7JhYT75HLY4vT6GAljsJ3V32YypI2nqRiFe6auxl85hcmukOfw5UxeNsGa4p8sU14O\nYdM3wskllfuAJAkMvuhaShgkf1o83Z22HhplXPpoG6PbjeKYqYD4h4sXm6Ao3P6o+seuXZinSjSo\nTSasFnWKxGpV2xKWnAf3MKftLFXyRfaX8fnah8ysTL7621fFG2WZLiESf5ndgX9G/pPNN3tYPVRO\nsiOYgj1/o/Xj7vXWJSkHjWSA7aU3Cy4MzsFf48/o9q7rGka1he05Oj40+bBw0gx+YyOfOXVf2x01\nk9+z3gFFIafjEziYQ/ft65GcsmJaH5GYqNdi06pnynPmzHH5hR4xAk6OX0eI36/cdCSVM5kj6d37\nf1e2//gjdP38ML1ebcbJPfPJGvkVeYlFv5LmfBiVijn6bTr1LaBT1AUWGyUSdyZyxKbOwUQr19CL\nbL5892uWfvAKjjtg06ZNxf+IvDyuURQUh4P7H7ofeKHUz0qrDcJmS+fgwbFoNOq/8/DhEXRXHqYg\n51esRvVsPDT0euLi3oDCP+G7IxSSj6QJgdPHkWfdDzYFaUzRCYfJxGqNBov8FUqehM4/xvsAGoFV\nq1YRFRXF4MHuK5FrU60G9kMXj3H0tw8w68P5o8DAF+lqALX6nYFuMoN6neOMJpOpN7nWNwlJK0T7\nHcT5RDGr5Si+T0/n97w8nm9XvJIvg9doXdiamGYtGDXgfr5r04Y1vYuzbje+/AwyK9F37AHZgWwe\nOJw7o6Nc3idPZ+Fc4jmGtHFtdO3skimCFHMqZx39KUw8QaCj+Gw1uFDDzCivLy0X2TcX28CfsW3L\nIC1tFcnJu1y2K7KMPPQSmlQ7/haZ/P1O2SuKQmRZ/0v/8x9I9oPly9VCL7NnF68ABjXgf/hhaQ2a\nuKT1Z+DG0Zj3GFn31DqG/OIUXI8cYfY9Rp6S4Uiah4VeNcCUUCJrIkMH+erPlqRAX9++3NHjDrfX\nBaWns+LoUa6J1bHbZ6PLGXsYRdf427czZrrEGkUhOmsDGm3xBxORF0rMhT7M/7AfGzKySXoniWNr\njl3ZPukYpFp0/PDXsv8NPmvnEHdTHMHXFE1dHTgA784k+9Wf2Pf6bpoN/S9S/k/Er4hH+ko9lezP\ndO7jLIZXDZjisnmyG9x6q1Pd9z4ydkXBkP8St4+NJCGz9NZmERHjCAkZTLduTzJwoPr/tLBQyxEK\nGRySisl0kc+T/BkQeJLPDn1G2MlEBpiz0SsaCq2FIEHs47EUflBI4pnEog85CJ/hw/ljfxhNowy0\n89Cq8TKtWUGTJ+Nv9r/Staqh+eSTT7jrrrpvgF6rgT2maR5d+iaga59CsFZH06KAcjjtEOvNsPb9\ngzgcMsv+dK3WF6ooDJRHEH3sBEx4ihEOB/0cDpeAVOCvI99Hi7dKLTq0WIH+ffojXfBjy40TeGSg\n61J42689aEE83hqE3z1XITx8Id9H/so5vwj+Nf49l3THHevSsdhbc2h5IpmWNL7d49bPm5ip/8eZ\ngm14a8DumJsPFl/kLQEYjScoKHDN0LGcN8M/PsPv1RjiHPDndtcKeBMW2zBKZiSbeyADwG6naR8N\nsc+ZMd0js+/5PNJjnX4M8my0NfyN94HZNu8NEXx0PrQJa4Ofzo/OTZymnoKMBGWVL1VSkhwoitrG\n0OEoLN5gcCBrTaC3Q6mFktWuRQdHlFhynt8CLE1AAY0DDOGV758p5eeztNMDrJWWsmHiMpd1Bf2v\nlfmPnIB8qjWJjj/4IlfH1gPFU3PWQj/+np7Cj1NKqYZWhrARYSx9MoNnQxSCjgYxfv744g5KGh1T\nlWzeC8ymf2xPBkTsJSrK6a/IgYOYFIWMC8OI7BfAfw+spnuoHgKKk8pD8pPAqfm0JGnRav3Q6dSr\nNq0WZMmMJOnQa33o0qQ7iZcS+eX0L8ReyKKbJZ8wgjHbzSgo9GnVh53anfhf/r0oSnRX56C9z23Y\nonX0fCUX7bI8PrV+ys63dnrdt75KTExk27ZtrFixouyda1itBvbY4OaMbtuXzPbNaOfnx8Bgdark\n0yM/szd7Gy+/v5xffvmFz5yviYukrEwhe302rHya1SkprM/OZqVTB6XZb4wn/+wlr4Ed1GzATUeP\ncDr7PHkmEwu/cb3pFhNmJI33uHWoh+WtskwLfQq7L8QAv3o8/rufBjB9agi+I/+DT4ZM8P1rSx4C\nu04hrtNXtIgc6PEYR6bGY0mU8PGZRevWT9Gxo+tUTMaJDLIWXoNl0GYuWMx0muaUaaEoLJu6i2Z/\n+ZwAm/eSp36+eRgTfSHVH+WJp1EMTpfHhflsGWmg2x33M2ifkRw5G5PW9fRdsYeSvTEXm3/lW98B\nTOj3Dj98eRi9XsvvvzvVvFlkRtHcRKhkR3f4FuB/Xo/R+ZPO9O/f3/XJ99+H3bvZ+NFfKQiT8O9U\nervD0igKFOQ8A8gcODASna7os5BlbrtDQ7OoBDKzMznwgsQFEsgO/vrKa2Ut2I8/i1ajQ1vaJVC5\nObDZcrBa1bv7cqhCkJIOQdkE+tmxyTDmu+Lplk82XyK+dROit/Uj48Tf+Kuk0MR/JwTNurJPi0tw\nuPPdbu/kiUbSMK37NM4GnOXNm9+EP/+ElTMoTMonQvInFA2vGyYy0LIV1hb97CsKeFjYVFLyExFs\nfdSfTr4G/rmyM6anSlyFNYCkmJUrVzJkyBBatWpV9s5evJWUBEBbX9/ikiuVUKuB3ce3JRERo9np\n34WmISHEFCVhO85kYJGr3rItKysL+yU7+7dtI+3YMT4/VnxZnJuVQlysBb05GYMli2aO8wSknyl+\nscmEX0AWoXp48cWXMBqNrgdXFPKUAl55JYjExESP7++Q/ckxXaRDp9fwT0pi5JjXXLa/9x481vY3\ndmiboeR7XgaeZbRwwXCBnNwcNpzZwGnDaZfthvMG5NOtsA/vQI6jgCZNbnEZ45ltEgz6iRYtZBRQ\nK0A6yQ/W4fCVURQtvi396LFyCB3aOd0hnPcPDg0fjIyGXrscHN/gWsESQLZ0Zv+jBym43kMqo/NY\n5VRu/sxzZsq4yDvx8U3HL/gG2refyPXXl6zu+CZHg9cita2bAlAh5JKUBL7ybNIuDsDhkHjggaeK\na64rMgEUsiLgTi6MNtFBLzMsNZHh+UWVOU0mmD8f82kdbdp2hlNVi0xmRwRWayqnTs1iz56iq5gP\nZRbTD53WxkydiXMmeO/GJ668Jvqbf3LmsQcw7vfDb/U7zN91L/deex93X1d8JfbWkzLfpJ3n85Jv\nWBETJiBtLCTS4YCVK9X7OJczQmQZoqMhuardEOq/Tz/9lCdL1iWqoNMmE9l2O8uTkxtOYC+NTbZx\nJP0IKQUpbErY5LbdkGkgAu8dhaKjorkYepGU9BSO7d9PdmAgPzsFdr01n45ddLSJ+wPLaSvTDM/S\nppfT+b3ZzNncAswmHc8//zxPPPGE6xsoCmDDx8eXWbNm8UGce9NqRVa4+O+LpOamkGnK5Ogl16Jj\nl06FYXu+gFGfjiJI5/l2/uT8yeQH5pOTmsP6s+sJU1yzW1pfaE1Y8zDsDs9ny4oEthva8/3JTMx2\nO81LpBgpz3elU9ApLGl6JK2EIdKAIcppqsLfjM5PAQ18EPoDL/26GD8/p+kQWcasaJiZakP6SmJ0\ntw6uhXnOnwcmQHgmK7ucRtJ7vllmm/V/ZGptGB0eFjDpdPD9ahibB03yoeQZOYD8MwB2+09cuFDi\nsj10J3Q6j3TL10yOPIRGrkDedZFuHGHpc/D8i+8QHuFAq5XYvXt48VRM377w7rvQNw/tucVIG5cg\n3SOhGVEUwE0akJdhGPQWD/k52G4Kx7brCPkzihtzW7KmI1tkTGdNOIylT9ekWAcQFnaCLl1mMWhQ\n8VRMB+Us78X+wfv9lvNjtx/okuA0v3uDGfnYM7xk/4pHfpnFMfLxNTT18g5V8OILyOMOkKDLUgP7\nwIHFZ+w6HfzwA8TupvTydQ3bjh07uHjxIlOnTq3Scd6Ki+Ok0ciEw4erdJx6EdijA6PRa/SsPr6a\nrLQslm5b6raPz28+vGBQLzN9NRq+SU9nS07xjcscqwXNwAFY9uzDNHkyfUaM4HOn6lAFBwvYd90+\nWjx5iOTIg/zDMJOkfk7TIbt387fPp5MdvRCLxsLnYSXOYRQwzbYTPmoe/xz5IB/tcr2pCaDYFHL/\nyCNgSgB+WX5ETHT9QxSwwQ9FgSXNnmPWX6d7/Cz2rj9IRpaZ7cG7eWjwEjqXWM1kUbJZ9/3/KO2X\nRNJomBTgxw5ZZm+JLhif37Ca319ugr9/AJTSeuSkvQXdrYdpPTOYu+9yOnPIzub4pRBaRSYTvGMo\nvQrawGnXqwpat4G0FDSG5gwd6Pnq5rMuG3j7pj8IV3ZQYCkgvdDpcv2TdzG+lIk18CckXx0FL5TI\n5njtNVAUFI0Du/15LJZHXbfrssC/EJqmMT7iCP7W3Vgs7jmski2TrsohEhI+IT8/mfj4m4s3LgZj\nxwcY8sQZFLn0ewatWj1DZOSfdOgwiQEDJqtP7t8P27ax8YXevPFOIUN+2EN+wR6Ory+aWjMaybCa\nsDqsJL2RhD5CjyG68vcC9Piw7/4/KbQ53av4272cevQx0Abw6oRv0YRpuLa5l3pMZdBoNBw5coRX\n16zBYrGwY8cOMBohIYEmU6ZyZ9q9NdqmzpOwsJpdt1SRdSiffvopt9xyCwElF8vVkXoR2JsHNme4\n/3DGdR3H+vT1fDzyY7d97lx7J9vPb2fhfxcCMKhEit6pnGNMv+Zetgef4r64OP7SrZvbMcry6jfz\n4OO2TPOdxre3liiyIsv0nf4vTuWUXvpXo5MI6h1EblIuUdNcU2SCc9Rw/OVGH456mHlSFIi2mDjT\nzULCNjPzz5zBt0SxrPYJVvoHtgEuuB/ASVhkBBqDgS5dXOvhNPP5ER+tukTek0xzAO9v78if/aZg\n332CLv7dSE35Z/EOZ8+y+s9WbP/PAkz9NnG6a0e3Ywxp+RZS2gm350vSGjVsOraJLWlbeCntJZdt\nt528jZZ94snX7uSOiSVuQlsstHPYMZtMgJb27V933b75fdi/m8SP/sq2Iee4zfcn9u1zvwoMdsi8\nomQSb2mDXmpOuP624o2/boCgiSRsWUvn8Y+jloDzTJI0SJIerdYfna4oxfa64XDdcKRntrA3IoTT\nj0WQtcWXuS8WrYRNTycp9SKdlvuw/25/XptTiYArScVz2Dt20HN2iTTb3SkEhPUgSTJzXcx16CMq\nX1GzS/futGnenEB/f5KTk5k3bx6cPAmLFyMvXEjeP8x06Fi5fsUlyYrMycyTZe5XjzrjeV1UWVfK\nE9jHAMtQF25+ArzsZb9bgK+BPpRrwXgxzU4NDzz2AL8F/kaWJYt917kXMZlknkRk/0ha9fZ+Y2Jg\ny4Hs1WylicFAYCW66oSZgokMjEMraV0zPQBkGW1BUxzmFKwZVgJzFBwZNqz+xWe9srX0G2QTJ8Kc\neIgOl+nk4Z9x4QKk5Ggo3B6J5aQ/CXd1Q5Jcb56GdTwDAWlcPKsjzybxnXNPEAWSaU4YIThS3yBK\nltm2zfV2cvcVCl01EgVJAwD3XqEXCsM4aw1GrwdHczM9WincMtlph/Wn+Vv0T4TnjKdQ8cHQK9zt\nGMZCBS4Y0UROwZbp5QarrBB+MZw7Y+7EFGhiZLuRLpsvHrjIn7u3gjaMLVvW0aeP01z9Aw/Q90Md\n/fr3I1dx4Lu0xC1zhwNiFNYwjY9y2pL5ayxrPl3jNgTFpqAooHCGG3xv4NxwpyqQl1bA6ebsNe5k\nkm/pufKlkYB/xsZiTIpmW1AQz12uo3z0KB98H0akMZwfKltwbf16GCmptZ1jY+GvJfIq77oLOnUC\n/qz0+C/T63SEx8QQEhuL3W5Xa6nr9eDvT2H3buz1OYSPoeqlmLUaLd2bdmfCFxPK3lnwqqzo5wO8\nBwxGjQI7gfWorXadBaGu/3PP7ysPCyR2TSTuH3Gc+eUMAz9zzxixB9qJCIiga8eulXqL6qCgI+1/\naex+dDdL7HbSdIdxrjaend8RfUvvl9MxMaA5ojC0l41ZXnKb35rsoHdhLqd91Q5lJdcnPXo3KEfg\n/HE9hXYdJVax05xLrJBmMjhuJqmamfQf7HqF8U67V3nz6ZE8ukNGp7uXm2++2aUhiPHMJfI1XyHv\nzYasQn68JppNzZxa0t+qAXsHbv5Gh499LAvuuo7mPq4pifv2ygxau43D8SBdcp+yArDr7cg2hTFj\nx/DDHz+webtr8aqc5BySjNlkbchiwA8DCLm/eLEZUQXE3HqU3btupSOQ888c14N/9BHs2cPvSGh2\nBrD95zW0aNGCpiU6LE9LeIBPphvY8cIt6PV6NM7tCiUJkmV+ajGV53ja47+hvOL8/DH6+3NEr6d/\nSNG/w2JhXaIDP3sVLpqHDwcK1BoWLVrALbe47+O0KrIh0Eoa9t6/1+156eEGkBZTj5T1U9UPtdTQ\n5QnKL4HxuAf254CXgPk0iMSkylGAgM4BDP5psMfWeE2mQduJTTzWvXJmPFZI6hfuZ8sAstFBaauD\nRo6EQ0eg/zgTp6xWvnOue62AbLgNrbKOez8fiZKvELLYtVaL4y4JR7iGeb1/oFsHLfZ8O4UUz8ua\nk6zI4R2RmwSw8rqJDOhzg+u84aefwuHDpMc8zMfnL5Fjt7sF9ssMkXoGx3toAQic67IB37a+TJk1\nhSmzprhtj58fz3eHHiNo3CaeetJO1KdORUFkBau8g3cMO5DmamnW7CbWrFmD4fK6BkkP6JAkiYix\n47k2PY2ePXteyf++LPnBAiRbKj5exi+oJODr9HR0koQuORlTejrHDx5U/2g8+CBNT5zknsZ7X7RB\nKiuwt8B1MjcJGFZin95ADPAzamAX/4tLIUkSjmwHmT95TndU7Ao+sT6lLxEE/D/PoYtDYtdm1zNi\nOXYj4OBOy51847uNzIGuOeDv/NiMt0zZPDpiBIPD3FPQTix4n79bb2XIeH/+2rO/+w0xhwPMZkza\nqmdmZ2dl8bynEphA1M4oLuxvT9gbL7Khbx4Oh1PWyJtvMGftTB7pnEqHN7owevR4TCZTcWB34tOs\nGU2bNiUuLo5Bg1z/yPzov81tf8Fd78Ag2oWEoJUkAsLCuJSby0MtW6rlKLZs4bm/9MAhfuvrlbIC\ne1n/uzTAa4DzCgevZ+zHTx/nyy+/5GSTJkQOH+750rGeSy3Q8euvYDwWzO/pGhKdpneT00w8eKYV\nph05KHkK/37h326vt/X9Lx0e7UiX9p5T8LbcvRu/1r6lT4tKYLopmPMmK90Wud4klhUFUvYgDW6C\nvFWDz9h+Ltt1p0DS5tA+qh19POTJ6kw/Y9C0JNxPqXKWw9kWCrvyPPfp1Pr40LxZc4xGz2UHJEmi\n3YCBZBjCGDiwRC78Z6swWIbR0/c81w7u5bIatCSTLHPebGZ/fj5hJRbKmGqyglQ1SLWFs3Qu5HZu\nxvoDkWTFqxmWa4puF9TW8IN1Otr5+aGTJEL8/TH4+jI6PFxNbT1+nNd1OqBhlgCoj3Zt20bmqlUs\nWute1bS8ygrsSYBzX7GWuJ7BBwFdgS1Fj6OBH4Cb8HADtVP7Ttx222381KULnUJCSm6u9zpxgVOZ\nBl56CbJzm/OfQD3+Tie9Gr0FWbKwZNgSkpOTeekfL7kdI3b3fq5v5SEvuwIkJH668D4OWaHl6q9d\ntilIcN3X+Bj8vLy6+kReUrBuziPbzzVt0pbpjwSsHu5g4ynPK2AfkCSmDBzA5EmebzYkLEpgR24u\nnjumlo8E2BWFUyYTWbm5XChq0HzZBAWkM2c8v7geOGZuwy+/gL67hSaRhdiCoFUrcE74Gvky8E6d\nDVGoAf2uv56IsDAW9VNPyhYvXlzhY5QV2PcA3VCnWtKAWwHnDs25QBOnx5uBeXjJikkrSGNX0i4S\nmwfgb7QTlqMGhHMZ5wjGS93uGqCVJNJsNny2bi1+UlF4r1kzvv/8T3KMNsa+/BufdO5UvOpSVhjF\nCS60j+HTFyBu13E+KTHHnmOG1m9IGHQG9Fo9AQZPOa1VvwXRNKAJY3vcx4mCAnY8/KrLNllRaLr7\nMEPajmUlX3g5QhlMZvjzGK4pN0V27YKmTQm6NojgHxQK/+8iiSXK+spnYlFkuDh7MJoAzysOm4Ye\nYHCFC9ZXjAQUyDKFViuZRiOJua7NoIeajGj2130vTRmFX0vm7tntHOwcjX+TLLThhfQKK0B/CMaP\nV78uKzgIO+t5YH/r4kXa2Gxk2xWmHjnCCaORh06eJLio5PUpk4l5LVrU8Sgbl7ICuxl4CFiHOu2y\nEjVoLwb2Aj96f6m75PxktiRuISUulmzrRZLNasZG69zWjAgcQS7uXdjLy5pmpTC+EFuWjfw/88nW\nu1bgN50prj3hq9FQOGSIayO+PXu4YPmRNok3sN0mcf1qB5d+u1Qc2BUFB/74NK8PN9okDDo/dFo7\n4X6u6YZy0fV5padRxo6DTTq1pG9Ojvv2jh1h7FgihkbwVqQvq7p2cutgtNooszMYVp8wcbxkaQZg\n/Uf+ZH/u4KmzCazSGgn1MJUyIcmGSZYJk6r2Bz9t0CBmfdqEAe3aMb2f67TU4cBd/JoJu3e7N8sG\nYPdu9XOoSQr0DQripfPnXZ83m8ke25XzvufxNZtpWrKrWAOyNTeXjhoNgVp4pEULnvXxYWZ0NJ2c\naqpcGxTEP896aNwiVEp5cq3WFn05W+hl3+GlHahXs17cPehufmrThcEhIcwsqhWTGZhJcnwyhzhU\njuF4dmHZBdK/S8ecZSbtizQS17mveNQ6nT3qNSVu/UkS7ZuvJ/jzh9F10/HsixL/GNKteD9ZpvO1\nPzEzS8PKpSuxKgrdNrgu81FQiA6M9tq6tUHo0wf2XYTrroM776zUIfRF9zBfzj1LgcPhljVzhgjM\nsoxW0vJ6+/ZcGxTkdoz8KLUYUtcqFFQCCNZp8dFoCNRqCde75ln7+/gQER7OnDlzPL947lykZs0I\nj/BeyqIi9u7dy6xZRQW4jh1jzwVfdtiCifk5gA5HfWnatCmLFi1Stx84wJbXNrKoxTRatPg/DP36\nYbFYyMrK4pJT2pU53ex6Y7me0ksSeklicEgIQVotfYOD6VvDV2wNUXx8POdMJixnzhAfEICfX+Wm\nVOvFytPqoDgUYmbFELQuiHZ/b8c1o69x22dXR8851YCat3z6NNx/P+TlqU2Z77ijuAmFonD3IQ23\n7VFTA7vu3s3qbt1o7+9aOVCn0fHWG3XXEqs+UYDHY2MZVyIw/l8UhOsusqRNG0KjQj2+NqEoCJfs\n3lSdDAYDb7zxBuE3ui+yQpJg1y6Ctm8nNNTzGCti5MiRZGdnF/eJzc0l8XQgzaVI4lqF4NPRhwUL\nFhQHdidt27blhRdeIDs7m3379rmsO4i1xTIrdxbt2rWr8hgbmvCXw8k211xvvDDfMLIeL9/y1sTE\nRO677z527tyJwWBgypQpvP322x4ztUpz++23Y5VlUiwWbvfz4/jx45UZeuMJ7FXWs6fahCIzEzZv\nBo1GXSrq7N578dWpv1QarQ8+Ot8rj+uCAm4NpS8/rt/5Hg1EerqaepKRUfz48rSRrWIliyMjI3no\noYeKnzAYSD/WhK4FbRk2rhlBo4JYsGCBx9cuWbKEJUuWMH78eGbNmuWSj19wsIBjdx3j7hfLV3rX\nEyVHz+X4YTReSXYBimq61VPZ5myUhTX3ky4tLv905oMPPkhMTAyZmZlkZ2dz44038uabbzJ//vwK\nvWd8fPyVImDx/foRERFBViVqJ9RqYLdl2sg/mE+zHAt+AYVkRagDzj9QySXV1clggClT1E7Wzzyj\nBvZbb1X/W80WnDmDr5fjhlstRFF2ISFfjYajhYVonG8AO7nz+HECRWf3yuvYEbp2VRdk9e2r5u93\n715cdUqng/Bwph45wvbcXHIyM1l/4gSP7HAtArQC8D9uIT+7xM/4eQMBRg06S92mCbbvoGD//eDM\niQAAFrhJREFUPIy//KVoWOfh6afVxayX3XQTGCSJ15KS0Jw7hz0lhTV//KHef3jqKTAaSbOBQVN3\nJzl17fTp0zzyyCMYDAaioqIYM2YMp7xkhNWGWg3s5rNmMr7LoFtAISE6C+d9ipc7R4wtex4ze0M2\ne691X24MYEmy4BPj45qjUw990LEjF0u5IRcdGERn/7IbQ8T5+/NM69YsKeomf5msKOi2buVQ377c\n7lvzv2gpVivBJaZLFLt6FmUq2Uu1Ibl8yvrbb5CQAL6+kJJSfMZe5MSePXzWuTNvhoUxvm1bJl7r\nWswradgxeDyF47imWpIZRadMHUqIA9/YuguIt9+hsKDdPo4PUevhDBsG48fvoWdP159R63GZV61W\nNhQUoI+I4JkePeDUKZgxg/tnvUR0joE1c5+iIDcXUlPBqS3l1WDs2LF88cUXDB06lKysLNauXcvS\npe5VamtLrQb2oL5BtLm/DT91CWdwSAjjmpWoBufeOOkKySDRdVVXdCGeh3xu6TlyNuXU+8A+uUnp\nAzwdaMKnEgXM6kJnf3/ucqp5f5nGrrACOGMyEV3BOUZnhfGFpH2Z5r7hTCw9FQ8ZO3WkiV6Pr0ZD\nmF5PsxI3iputdb/XA8AHH7D43SbIN93ATT3BYrHUwkjLNnr0aDZs2MCGDRu87nPvvfeq95Z69IDV\nqzH8mYU+DMLefpuClBSYORM++EDdOSgI6sm/rSYtWrSIkSNHEhwcjMPhYMaMGUyaNKnOxtMwIghq\n+l5gz0CvpUcNTSofQITK+cZLaWTZLrONbZwfMKDSxw69PhTjMSPp33qorZDQgpaKifDJ9fyveAP0\nxBNPuDeZ8UaS1OmpE7vB4FDP0i9cUKs+Op+xx8fXzGDrCUVRGD16NFOnTmXXrl3k5+dz33338fjj\nj/Pyy96K4XpmsSTjsJoIVdKKeghU7h5CvQrskiSxbds2j11IMvIzCJ8ZTovWLXjzzTfrYHRCdXI4\n1NsZ+R7KyssyXPIPQ/sPL+lwL6zmhfN3sGBWw83tFhqP1NRU9u3bx6ZNm9Dr9YSHhzNz5kzmz59f\n4cC+b9912BWFJ2x29u3TY7dXLuunXgX2CRMm4OPj45bpAXD8l+NE9Y7isZcf48W5L7ptt+eIWhUN\nRevWkJEFs2bBCQ/rvQoL1eDuofugKvGvDG6Xgt5L2z1n5xadI/9APumZ6SQkJLhsM502eXmVUBVZ\nWVk8+GBxY5IDWVm8nmfl0nvw+E9NOHfuXN0NrgZERkYSGRnJe++9x7x588jPz2fFihV06VLxlowD\nByZz0mjkb4cPc7JfP9R1oRU/a69XgT0kJIQpU9xLuAIc/OAgWZ9kIZtlDo1xX8ik2BUk3dWRBZLn\ncLAmMxPF4SC7xJ13T38U65spU+DAW3D7Ugi9vhIHeOBF9VJf90Cpu8W9FYctw4YkSUhaye3nI/re\naIKudV8cJVReTEwM77zzDmaz+cpzuy5epP0vRva2kTgU6UubuXNZptOhPeraK2BPXh49K9BaLsw3\nrEIpiRUV5lu+BVQ6nY5vvvmGefPmsXjxYnQ6HcOHD6/Trkr1KrCXpue6nhQWFqJpqqH/afciWpZk\ni8fOS41N14AAZF9fIvR6ZEmig4eVaZ917qzmXJciy27nkoebWukyOPwax9VPzCz1jD4wIZDI6yNp\nfU/rOh3P1UCj0TBjxgyX5zbEx3PTf3KY9HBHLoV7z5SaGBHBjRVYjVrexUO1YciQId5LU9SBBhPY\nBVWQTkcbPz/6Bwdjt9uZ66V4UnwpgT2k0I/Hz57lcQ/b7DbIGQptfMue5hDqB2uKlYSFCR63maxW\n9DWclKKV4KLVSq+9nlORz5pMzEZiQEgwPlH1odZS/RX7eiw2n2gy2v6d2NenVvoKXAT2q0xgIBx9\nMA4/P88T2A4H9LsGntheywO7GqWmwo4dsOx3tYSFwwHLlqnbkpNLf20Rvzg/WjzSAsXmJQBoJH5+\nwMCNYTX3q/5OXAfOG47xUUf3xuagVtk0ag7X2Ps3Jttnbues2crMs6lsmbmdbgsrVytJBParzD33\nlN3fpJJ1h4SKGDoUWieod4rT0tTADur3oKYMTp2qdhkuhdZfS6snvf/y5xYUsPlYLpKm5uaimxj0\npGo09PJQzO2yHV63CM6kDyWajo9Ap8kkNiS20scRgf0qI0nQAHucND5xcTAqTq0EuvhGdRHPu+8W\nn7GD2r6mjMAuNC4pn6SgkyJhYNWOU/2FUARBEIRKCRlcPWddjeqMXTbL2DJs5O3NI1NxbxbtKKz/\ndasFQRCqqtEEdl2YjpAhIZi3q4XGkn5LctsnqHcQ2mAtXKyDAQqCINSSRhPYtf5aun/fnaDRQbT9\ne1t6ju7pcb8d/97Bb7/95lob24nRQys3QRCE2mBONGPEjqOng8y17rMO5dVoAnt5TZw4EbmMcrK3\n3HILZSSOCIIgVLvCw4XkpUjYb7CT/H75Ul49ueoCe7NmzbyerbvYupU5p06h9dKsIq2mmxwLglC6\n8HDIrrnWeISFQTm7Fx08eJCHHnqI+Ph4oqKiWLZsGX+53L2kAiImRODbXo9PTBo91vaASvZyv+oC\ne3l93rkzGaW0P3u1XTva1EIjC0EQvMjOVlsX1pRydiCz2WzcdNNNzJ8/n7lz57J9+3bGjBnDgQMH\niPNaya5micDuxa1Nm9b1EBo2B5ycc9LrZlFZUWgsDh06RHZ2NnPnzgVg8ODBDBo0iJUrV7JkyZIK\nHWvVqg2kNksnpW2vKo1JBHah2ml0Gjqt7FRqKeVWz7QisHdgLY6q6tasWYO2RBvAvJMn2XruHBcv\nilSrq5Wnei6yLBNfiQYj0VF9aTcwh7cLSi/iV5byBvYxwDJAC3wClKwePx+YgVo4OAu4G/BclUi4\nKkTfEV3XQ6hWd955J++//77b81k5OXwdGEhYWFil6m8LDV+PHj0ICQnh9ddf55FHHmHbtm1s27aN\noUOHVvhYoaGhNI8NBmo+sPsA7wGDgVTURc7rgQNO+/wBvAVYgAeB14DJVRpZAxYeHs68efN4/fXX\nve7Tu3dv9u1r/GWGG4sVK1Z4fL7Hnj0s79yZHoEN6+pDqD4Gg4HVq1cze/ZsnnvuOXr37s3UqVOx\n2+uu/HV5Ans/4AhwOffmS2A8roH9N6fvfwdmVsvoGqgZM2a41aR2lpCQwIgRI2pvQMJV7YLFwv0n\nTnjcZi0j9Vcon2uvvZY//vjjyuMRI0Zw880319l4yhPYWwDOnSmTgGGl7P8AsLoKY7oqFBQUsHLl\nSrfnU4+lokvTkVXONCuh4dJq4cMPYfNmtRWgzQbXO3WUysmBJlXs193Z359X27XDVkr2yM1VfROB\no0eP0q5dO7RaLf/6179ISEgo9eSuppUnsFckn2g60BvwOLl0/PRxvvzyS042aULk8OFl149tpKKi\nopg0aRLr169325afmI8mQ8MNN9xAq1aVq8UsNAxz5hQHcqsVxo2DpUtd94mtfOVWAAwaDfc0a1a1\ng9RXYWHlTkms9PHLacWKFXz44Yc4HA4GDx7Mxo0bCazk9Nz+s7tRdn/PolOn8NDkrFzKE9iTgJZO\nj1viegZ/2UjgKeB6wGMCeKf2nbjtttv4qUsXOl3FtWP9/f354IMPPG47/dhpfGJ9aPlYS4/bBdRu\nIY88AgsWqI/z8qBly+JfcqsVnJop11ehocWB3WJRh399ZXrAXq3q0VXtsmXLWOZccrkKere9Dmmo\nlkXTp/Paa4upzFrI8gT2PUA3IAZIA25FnW5x1gv4FzAayKj4MAShAl55BZ59tvhxbCwcPuxaaF7c\nzBQaIP/ci0DVM8rKE9jNwEPAOtT67SuB/cBi1KD/E/AKEACsKnpNIlDx9bSCUB5arXu3kJAQ0UFE\naPBC0k9TW4EdYG3Rl7OFTt/fWOWRCIIgCNVCrDyth9L+l0ZhfKHHbeZEM1p/rcdtgiAIIAJ7vdP8\noeYEdAvwuj1kYAiB1wTCmloclCCUQmPQYD5jZleHXV73saZZkfQ1mMEiuBCBvZ7x7+CPfwf/sncU\ngV2oJ3zb+HLdqetQrN4zozW+GgxNDLU4qqubCOyCIFSJJEn4tfar62EITjR1PQBBEASheonALgiC\n0MiIqRhBEBqk8O3bya7BCophOh1ZgweXud/y5cv5+OOPiY+PZ9q0aS6VQDdu3Mjs2bNJTk6mb9++\nfPzxx8RWtU5EOYjALghCg5Rtt6MMG1Zjx5e2bCnXfjExMTzzzDOsW7cOk6m4M1hGRgZTpkzhiy++\nYOzYsTz77LPcdttt7Ny5s4ZGXExMxQiCIFTB5MmTmTRpEhERES7Pf/vtt/Tq1YuxY8cC8PTTTxMf\nH8/Jk95bRlYXEdgFQRCqQckWeUeOHKFnz55XHhsMBjp06FCplnkVJaZiBKGecDgc/Pvf//a6PTEx\nsRZHI1SUVKKEcGFhIVFRUS7PBQYGUlBQUONjEYFdEMqwPDkZX43ni9t0m8cK1RVmMBj4+9//zv79\n+73uM2TIEHr06FEt7ydUv5Jn7IGBgRQWupYGKSgoICgoyOsxbLYMslI/h5YdOXCg8jWcRWAXhFI8\n26oVF0spiH1nVBRtfH2r/D6SJPHKK69U+ThC3Sl5xt61a1f++9//XnlssVg4ceIEXbt29XoMrS6Y\n0JBrgTTatFmKl55FZRKBXRBKMb8WUtOEhs3hcGCz2bDb7TgcDiwWCzqdjsmTJ7NgwQJ++eUXRo0a\nxdKlS+nRowcdOnTweqxscz4bTv+O0r49t/ywuNJjEoFdEIQGKUynK3dKYmWPXx7PPfccS5YsufL4\ns88+Y9GiRTz77LOsWrWKOXPmkJSURN++ffnf//5X6rHsxkBy4q+BMRmc+HIGsKlSYxeBXRCEBqk8\ni4dqw6JFi1i0aJHHbTfccAPHjh0r97EiQny4ZUQrVkoZvP/MIG4bVbkxiXRHQRCEekKng6ZN1e87\ndqz8cURgFwRBaGREYBcEQWhkRGAXBEFoZERgFwRBaGREYBcEQWhkyhPYxwCHgaPA4x62+wBfFu3z\nO9Cq2kYneJWQkFDXQ2g0ttRgLvTVSHyeda+swO4DvIca3HsAU4BeJfaZA1wCugPLgLeqeYyCB+fO\nnavrITQaIhBVL/F51r2yAns/4AiQDNhRz8zHl9hnHLCy6PsfgIGAhCAIglAnylp52gK44PQ4CRhW\nyj4ykAk0BVKrYXxuZFnm4sWLXrebzeaaeNt6KT8/3+tnkZaWVsujqVuXLl1yq6R3mdForOXRCLVh\ne/h27Nk11xpPF6ZjcFblW+PZbDamTZvGvn37SExMZPPmzQwdWrmiXtVtGupUzGW3A/8qsc8J1EB+\n2XEgCnenAUV8iS/xJb4q81XSZja7PVedynv8b7/9Vvn++++Vhx56SJkxY8aV561Wq/Lmm28q27dv\nV5o1a6Zs3bq11OOU8m8/TQWVdcaeBLR0etwS1zP4y/vEAmmoUzsRQLqHY7Wv6OAEQRCKKHU9AG8m\nT54MwN69e0lKSrryvF6v5+GHHwZAq9WW93DVMo1d1hz7HqAbEAPogVuBtSX2+Rm4o+j7ScBO1CkZ\nQRCEq4ai1J+/PWWdsZuBh4B1qH8EVgL7gcXAXuBHYHnR84eBfOCvNTVYQRCE+qpko426VJ6yvWtx\nP0tf6PS9BfVMXhAE4apVn87Ya3Ll6VTUVEkH0LuU/cpaACVAOLABOIR69RTqZT8HcKDo6/vaGVqD\nIhbbVa+yPs8ZqPfbLv9Mzqy1kdWBajpjP1zKtrdQY+p+3NcTuajJwH4YmAxsK2Wf8iyAEtSprzWo\nn9HaoseeGFE/v17AX2pnaA2GWGxXvcrzeSrAfyn+mfyoNgdYWxwOB2az2aU1nsPhANQ+p5dTsJ2/\nr4RbUJNUugL3AitK27kmOygdL8c+zgugoHgB1IGaGlQDNQ64ruj7z4A/gEfqbjgNUnl+1sYBC4q+\n/wF4HzVLof5cY9cf5fk8JWpwsaIuTMcWaUtNHR5dWNVb43Xs2JHz588jSRKjR49GkiQSEhKIrXgv\nXeeFoAdQY3cL1KxE97FX9OjVrDwLoARogrrwCyAD13UDznxRb2prgJeAr2p+aA1GvVts18CV5/NU\ngJuBEcAZYC6QWF0DKM/iodpQWmu8aiz94enzrrHAvgGI9vD8k6gZM2URZ0LFvH2WT1XgGDGo6wna\noHbBPYi6gEwQP2vVrTyf5w/A56jlSO4t+r5+ROOGqeTVj9f/B1UN7DdW8fXlWQB1tSjts0wHIlHP\n1pugBm9PLj+fAKxHvWktAruqOhfbCeX7PLOdvv8QeKOmB9WIXf68dxU99nq2DrVXj93bPFt5FkAJ\nrovA7ih6XFII6mcIakAaijoHKqjEYrvqVZ7Ps4nT9zcBp2pnaI3Sz8D0ou97o2bAJXvfveZMRv0L\nbgJSKP6f3hw1w+OysUA8asrUE7U5wAbEOd1xPcXpjtei3uADtarmYdTpl+PArFoeY0Pg6WdtMWrQ\nATXT4yvUz3EH0LqWx9fQlPV5voT6M3sE2I6a0VFZlS/60kCgTq1YUePmTOCBoq/LllOc7lhaCrko\nrysIQoNQFPsar6I8+FqpFSMIgiA0MCKwC4IgNDIisAuCIDQyIrALgiA0MnW98lQQBKFStm8Px27P\nLnvHStLpwhg8OKvM/by1xtu5cydPPvkkBw4cQFEUhg0bxrvvvktMTEyNjfkyEdgFQWiQ7PZshg2r\nuUyZLVvKl6ASExPDM888w7p16zCZTFeez8/PZ968eYwaNQqHw8EjjzzC9OnT2bJlSw2NuJgI7IIg\nCFXgrTXeqFGjXPZ7+OGH6dOnT62MScyxC4IgVIOy8uw3b95Mjx49amUs4oxdEAShGpTWaOPQoUMs\nXLiQH38sT23EqhNn7IIgCNXA2xn76dOnGTduHG+//TaDBg2qlbGIwC4IglANPJ2xJyYmcuONN/Ls\ns88yffp0D6+qGWIqRhAEoQocDgc2m82lNZ5OpyMlJYURI0YwZ84c7r///lodkygCJghCQ+BWBKy+\n5LEvWrTIpTUewMKFC5EkiUWLFhEQEHDleUmSyMvL83ic6iwCJgK7IAgNgajuWAFijl0QBKGREYFd\nEAShkRGBXRAEoZERgV0QBKGREYFdEAShkRGBXRAEoZERgV0QBKGREYFdEAShkRGBXRAEoZERgV0Q\nhAYpPDwcSZJq7Cs8PLxc41i+fDl9+vTB19eXe+6558rzR48epXfv3oSGhhIYGEjfvn3ZtGlTTX0c\nLkRJAUEQGgK3kgKSJJXZ3KIqynv87777Do1Gc6U13uWep7m5ueTk5NCqVSsURWH58uUsWrSIzMxM\nr+9HNcVkUd1REAShCry1xgsJCSEkJARQK0BqNBpiY2NrZUwisAuCIFQDb2f3oaGhFBYW0rx581qb\nihFz7IIgCNXAW2u8nJwcCgoKuPvuu5k6dWqNTh9dJgK7IAhCNSgtYPv4+LB48WLOnj3L4cOHa3ws\nIrALgiBUg9KaWQPIsowsy7UyFhHYBUEQqsDhcGA2m11a49ntdjZv3syRI0cAMBqNPPnkkzRv3pzu\n3bvX8YgFQRDqB6WksLAwBaixr7CwMLf39GThwoWKJEkuX4sXL1a+/PJLJS4uTgkICFBCQ0OVSZMm\nKWfPnvV6nKL3rRYij10QhIZAtMarADEVIwiC0MiIwC4IgtDIiMAuCILQyIjALgiC0MiIwC4IgtDI\niMAuCILQyIgiYIIg1Hs6nS5fkqSguh5HTdLpdPl2u72uhyEIgiAIgiAIgiAIgiAIgiAIgiAIgiAI\ngiAI9dT/A15pEF84DoTpAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cos_WLJ_BJ1\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEnCAYAAAC9jGg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VMX6wPHv2ZZNzyaBhBBa6KFXQQGDBRXBK4INLyqK\nVxQLV1QsIAr6s3HFhnrVawEUUYqKglTpvUkLIQmQQno2PdvP+f1xQuoGkpAQiPN5nn2e7M7Z2dlN\n8u6cOe/MgCAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwhWtFbAFOALEAM9Xc9yHwDHgANDn\n0jRNEARBqIsQoHvJzz7ASaBXpWPGAj+X/NwHOHRpmiYIgiC4o7lAeTpwtOTnQuAwEFbpmJHAwpKf\nDwI6ILy+GigIgiDUzoUCe3ltgQHAtkqPhwNJ5e4nIwK7IAhCo6lpYPcBfgKeBgrclEuV7isX0yhB\nEASh7nQ1OEYPLAO+p2wsvbxk1Iusu0vuh5c8VkH79u2V+Pj4OjZTEAThbyse6FCbJ1yoxy4B/wOO\nA/OqOWYVcF/Jz30BF3C2Ssvi41EURdzq4TZr1qxGb0NTuonPU3yel/MNaF+boA4X7rFfA/wT9aLp\nwZLHXgJal/z8X9Te/HDUdEcbMLG2jRAEQRDqz4UC+zZqNg7/RD20RRAEQagHtcmKES4TUVFRjd2E\nJkV8nvVLfJ6Nr3I2S0NSSsaLBEEQhBqSJAlqGatrkhUjCILQqAIDA8nJyWnsZjQok8mE2Wyul7pE\nj10QhMueJEk09fhR3XusS49djLELgiA0MSKwC4IgNDEisAuCIDQx4uKpIAjCZeKZZ56pcH/MmDF1\nqkf02AVBEC6S2WxmzJgx+Pn50a5dOxYvXlynesLDw0tv8fHxLF++vE71iB67IAhXpMBAaMgMSJMJ\napp9OGXKFPz9/TGbzRw5coTrrruOXr16ERkZWavXLN9jlySJxMTEWj3/HNFjFwThipSTA4rScLea\nfmkUFRWxfPlyZs+ejU6no0+fPowbN46FCxde+MkNRAR2QRCEi3Dy5Ek8PT1p3bp16WM9e/bk2LFj\njdYmEdgFQRAuQmFhId7e3hUe8/b2pqDA3Z5El4YI7IIgCBfBx8eHoqKiCo8VFhbi6+vbSC0SgV0Q\nBOGidOrUCYvFUuFC5+HDh+nevXujtUkEdkEQhIvg7e3NHXfcwaxZs3A4HBw8eJBly5YxYcKERmuT\nCOyCIAgX6ZNPPiE3N5egoCDuuOMOPv30U7p27dpo7RF57IIgXJFMJpAacH1ak6k2x5pYsWJFwzWm\nlkRgFwThilRPS5c3SWIoRhAEoYkRgV0QBKGJEYFdEAShiRGBXRAEoYkRgV0QBKGJEYFdEAShiRGB\nXRAEoYkRgV0QBKGJEYFdEAThInz88cf0798fo9HIxIkTG7s5gJh5KgjCFSrw7UByrA23N57JaMI8\n/cLTW1u2bMnMmTNZs2YNFoulwdpTGyKwC4JwRcqx5qDMUhqsfum1mi1EM2bMGAD27dtHcnJyg7Wn\nNsRQjCAIQj1QlIb7kqktEdgFQRDqgdSQS03WkgjsgiAI9UD02AVBEJoY0WMXBEFoIlwuF1arFafT\nicvlwmaz4XK5GrVNIrALgiBchDlz5uDl5cXbb7/NokWL8PT05I033mjUNol0R0EQrkgmo6nGKYl1\nrb8mXn31VV599dUGa0ddiMAuCMIVqSaTh/6uxFCMIAhCEyMCuyAIQhMjArsgCEITIwK7IAhCEyMC\nuyAIQhMjArsgCEITIwK7IAhCEyMCuyAIQhMjArsgCMJFsNvtPPDAA4SHh+Pt7U23bt34+eefG7VN\nNQnsXwHpwJFqyqOAPOBgyW1GvbRMEAThfAIDQZIa7hYYWKNmOJ1OIiMj2bdvH0VFRcydO5f77ruP\nuLi4Bv4AqleTJQW+Bj4CFpznmM3AbfXSIkEQhJrIyYGGXAO9hsvwenl5MX369NL7t9xyC5GRkezf\nv58OHTo0VOvOqyY99q3AhXaMvXwWIhYEQWhE6enpREdH071790ZrQ32MsSvAYNShmg1Ar3qoUxAE\n4YrjcDi47777mDBhAt26dWu0dtTH6o77gXDACowAfgba1UO9giAIVwxZlpkwYQJGo5GPP/64UdtS\nH4G9sNzPawE7EAqkVT6w/JrFUVFRREVF1cPLC4IgNC5FUXj44YfJzMxk9erVaLXaOte1adMmNm3a\nxM6dO8nLy6tTHTUdG28LrAR6uCkLBrJKfu4H/AK0BuRKxymX02avgiBcOSRJqrpZtCQ1/MXTGtY/\nefJkDh8+zLp16/D29q7jy1V8j/PmzSMxMZH3338fankdsyY99sXAtagBPAmYBehLyv4L3Av8q+S+\nHRhP1aAuCILQJCUkJPD5559jNBoJDQ0tffzzzz/n3nvvbZQ21SSwX6hlH5XcBEEQLh2TqcYpiXWu\nvwbatGmDLF9efVmxNZ4gCFcms9garzpiSQFBEIQmRgR2QRCEJkYEdkEQhCZGBHZBEIQmRgR2QRCE\nJkYEdkEQhCZGBHZBEIQmRgR2QRCEJkYEdkEQhIs0fvx4QkND8fHxoVWrVsycObPq2jaXkJh5KgjC\nFSlw2zZynM4Gq9+k02EeMqRGx86cOZNvvvkGg8FATEwM1157LQMHDmT06NEN1r7zEYFdEIQrUo7T\nidKAS39LmzbV+NiuXbtWuK/T6WjZsmU9t6jmxFCMIAhCPXj88cfx9vamW7duzJgxg759+zZaW0Rg\nFwRBqAeffPIJRUVFbN68mVmzZrFnz55Ga4sI7IIgCPXommuu4a677mLx4sWN1gYR2AVBEOqZ0+lE\nasi14i9ABHZBEISLkJmZyYoVK7DZbCiKwp9//skPP/zAmDFjGq1NIitGEAThIkiSxHvvvceDDz6I\nLMtERETw2WefMXTo0EZrkwjsgiBckUw6Xa1SEutSf00EBwezdevWBmtHXYjALgjCFammk4f+jsQY\nuyAIQhMjArsgCEITIwK7IAhCEyMCuyAIQhMjArsgCEITIwK7IAhCEyMCuyAIQhMjArsgCEITIwK7\nIAhCPYmNjcVoNDJhwoRGbYeYeSoIwhVpW+A2nDkNtzWezqRjiLl2s1unTJnCwIEDG3VlRxCBXRCE\nK5Qzx0mUEtVg9W+SNtXq+B9++AGTyURkZCRxcXEN06gaEkMxgiAIFyk/P59Zs2Yxb948FEVp7OaI\nwC4IgnCxZs6cyaRJkwgLC2v0YRgQQzGCIAgX5dChQ2zYsIGDBw8CXBY9dhHYBUEQLsLmzZs5c+YM\nrVu3BqCwsBCXy0V0dDT79u1rlDaJwC4IgnAR/vWvf3HvvfcCam997ty5nDlzhs8++6zR2iQCuyAI\nwkXw9PTE09Oz9L6Pjw+enp4EBQU1WptEYBcE4YqkM+lqnZJY2/rrYtasWXV+zdjiYqDm2/JVRwR2\nQRCuSLWdPHQlGHnkCHZZJkCn48GLqEekOwqCIFwmYq+6ij969sR+kZk1IrALgiA0MSKwC4IgNDEi\nsAuCIDQxIrALgiA0MSKwC4IgNDEisAuCIDQxIo9dEIRLwmwGq7X6cr0emjW7dO1pymoS2L8CbgUy\ngB7VHPMhcD1gAx4GDtZL6wRBaBKsVggNheDg6o/JyIATJ6BDh0vXrvoSFRXF7t270ZXMGA0PDyc6\nOrrR2lOTwP418BGwoJrysUBroBvQp+T43vXSOkEQmgSXS+2Rp6RUf0z37ufv0Ve2bVsgTmfOxTeu\nGjqdiSFDzDU6VpIk5s+fz0MPPdRg7amNmgT2rUDb85SPBBaW/HywpM5wIPmiWiYIgnAeTmcOUVEN\nt/b5pk212zDjcliH/Zz6uHgaDiSVu59c8pggCMLfxgsvvIDJZGLAgAGsWbOmUdtSX1kxlb/aLp+v\nLkEQhAY2d+5ckpKSyM7OZtq0aYwdO5aYmJhGa099ZMUkA62A3SX3qx2GefXVV0t/joqKIioqqh5e\nXhAEoXH169ev9Od77rmH77//npUrV9K5c+da17VnyxYyly/nj8RE8vLy6tSe+gjsq4B/AkuBvoAL\nOOvuwPKBXRAEoalSFKXOY+4Dhw2jWVAQN2/fTmJiIrt3777wkyqpyVDMYmAH0Bl1LP0h4NGSG8Ay\n1EB+DPgSmFjrVgiCIFyh8vLy2LhxIw6HA1mWWbp0KRs2bODWW29ttDbVpMd+bw2OeeJiGyIIgnAl\ncjgcPP/885w8eRJFUejcuTM//fQTkZGRjdYmMfNUEIQrkk5nqnVKYm3rr4ng4GD27dtXL695/N7j\n5DmdPJRnIy0rjVwpt071iMAuCMIVqaaTh64kQbcFYbXaOJxcSIfjXhQtLapTPSKwC4IgXCZC7g3B\nXFTEvmNp9Db4qCkpdSBWdxQEQWhiRGAXBEFoYsRQjCAIwmVi15nVJNqs6HITSMg9Qb63GeowR0kE\ndkEQhMtEVtxteAJzJIXfchWM18uwvPb1iKEYQRCEy8SoGxx0GJzLi/476NjqDbR1zOYUgV0QBKGJ\nEYFdEAShiRFj7IIg1MmOHTsuuO74hAkT6HAl7nVXBz/88AOzZ88mKSmJ4OBgFixYwNChQ2tVx+bN\nUOBz8bNpRWAXhL+p/fv3s23btvMec+eddxIWFua2bMGCBSQnJzNgwAC35b/99hvNmzdvsMAeGBhI\nTk7DbY1nMpkwm2s2u/XXX3/l5Zdf5ueff6ZHjx5kZmbidDpr/ZrPPw/JaUb8fqr1Uyto0oF9//79\n5/3F+Pj4MHjw4EvYIqE2XC6YPBny86s/Rq+Hjz4CU82W9RDK+fjjj0lKSqJbt25uy9evX4+3tzeT\nJk2qto5Ro0YxefJkt2UZGRn10s7q5OTkNOh2dJJU857zq6++ypw5c+jRowcAzZo1q9NrLl0KA+sh\nJDXpwD506FAGDRqEVqt1W75x40YKCgrw8vK6xC0TasJqhQUL1Ft1nn0Wzp4Vgb2u7rvvPiZOdL/S\n9vkCulCmsLCQv/76izNnztCpUydyc3O57bbb+Oijj/D09GyUNjXpwC7LMqtWrcJoNLot9/HxQZbl\nS9wqoTZ0Orj77urL58y5dG0RBHfOnTn88ssv7Nq1C61Wy+jRo5k5cyZz585tlDY16cAuCMKlE1dc\nzDdpaaX3d+fnE5+VReqpU9iLJRxKGxanZ3JvSEgjtrL++fj4APDEE08QGBgIwNSpU5kxY0ajBXaR\n7igIQr1Yl5PD2pwcjBoNRo0GLaCXpNL7CvB2YmLp8f/5z38IDg4uvZ04EczQocEVHvvhhx8a7f3U\nlMlkIjw8vLGbUYHosQuCUG/6+foyo21bAFL9/IgMCmJK27YUFcG7UsULnYmJifz73//m0UfVXTaH\nDIEvvoDt278kOjqaffv28cEHH7Bp06ZL/C5qb+LEicyfP5/Ro0ej0Wj48MMPGTVqVKO1RwR2QRAa\njY+PD8HBwYB6PcVkgkWLFjFmzBjOnj1LQEAAvXv3buRWXtjMmTPJysqiffv2gJomOqcRLwCJwC4I\nwmXn7rvvpri4mLCwMCZPnsxjjz1W5RiTyVSrlMTaMtUi1Uqn0zF//nzmz5/fYO2pjb9VYN+Yk8Nv\n2dml9+2Kwgvx8Ri8vUsfG+Dr2+Qu7ghCU1TTyUN/R5dVYLel2kj5JOW8kw70wXpaTW1Vp/p/zMgg\ny+Hgan9/ACSgpYcHHh4eAMRbLHyWkiICuyBcjBMnYNUqOHQIUlPBZgObDpyPQWYmvPce9O/f2K1s\n0i5pYHcWOLEl2dyW5TqcJK3Nwr4kg/TbfbC4XFWO8ZQ0BE8zs2O8B6OCgvCuZuLR+dxgMjG5ZUsA\nXpEkngwPL01X2pyby9HTp2tdpyAI5SxeDGvXgsUCubmQnAwOAygKOBywZQts3Agl49FC/bukgf3U\n9FNkrchCZ6r6sil2G0UumWPX63hnZDY+Wi2acuNndlnGJGn5dh5MjYvDX6vl5qCgS9l8QRBq6uab\nISMDIiNhyhQoAr5SICwMJk2Czz5r7BY2aZc0sCsOhbaz2xL2SNVFhSZERzPCZOL/QkP5ZOtWzgwa\nRIBeX1q+Kjub+YnJaMiht48PDbdCRMOzZ9lJeC0BxVX9u9B6a4l4KwKprivtC4Lwt3VZjbH/XVhi\nLGT/nk2rZ6u/VhA/LZ7WL7VGb9JXe4wgXEouRaG43BCpQ5axulwUlKxiaK3n5Tl0Oh3/+c9/WLRo\nUb3W+3cgAnsjMbQw0PLxltWWn35ZjPULl5cnY2P5KjUVvUadsG5NT0d7+jQzd+4sPeb5VnVLbHDn\n5Zdf5p577gGgb9++9Vbv34EI7IIg1EiBy8UXnTszITQUgMnffUfvDh2YXMvNJGrKz8+PPn36NEjd\nTd0lD+wOu7rMamXFxWAGzrpAcZ5/XDn1D3/+9DeQ4+u+vFkzuPHGi2/rle7IkSOkpqZWW24wGBg2\nbBgajVgySBCakkse2L/5Bj6YCZWXKc55DDYegZmrwT6uFQxx/3wFiH47jIAomWSPquVOp5pCW1hY\n3y2vmbVmM9+lp5/3mCEZOvpdgraMGzeO4OBgvMtNwCpv27ZtHDp0iE6dOl2C1ly+XIriNr22PK9K\nWVpC3RS4XKzTaqFNGxKtVhzFxawrmWhU6PLjrwJLI7ew9nx8fCrMgLVYLDz++ON8+OGHjdamS99j\nd8BXX8Htt1d8fEI0jJgEZ7o7eP2oi/z8fDTlsmKKi4tLt5ryaW9j+uc2bgmqGNlzHA4yClys7ANJ\nVvWxJKuVc6uxF17gn7c+rDGbsckyt1STinnaYuEPcwb9aPiLorIs880339CxY0e35V26dDnvevTO\nfCeObMd5X8MjzAONx5Xd4380JoaF6enoqwncdkVheuvWzGnX7hK3rA42bIBbblFzxqvTty/s3l2r\navfuhd1zQznr4cH2kn1ptmyB48fVeUgAgwfDAw9UX4cEdNN4Ej2vGF3uSHLTv0HnaSR2UzQA9qTe\nbHvqBNZkG/ZM+wXbFBgIDbgzHiYT1GRya2G5XmRRURGhoaHcddddDdewGrjsxtjffPMt7A4j3VdX\nXEDH2a8fzltu5Xm5L468PKDq5hld9uxBi4RtrsTVB8GmKAw/dAjJo+wLYPwlmFU6wM+PB0rGISvb\nX1DAERp2y7D6cvzu4xQcLEDr6X4imDPPSdijYUS8GXGJW1a/ClwuFnTtyt3Nm7stfz8piTNWa4O2\nIS8vj9deew2Ho/ovUqPRyBtvvIHBYKi+IrMZRo+G6pa7PXOmTuOUGzZA4Vk9bUY76K1O3Ob4cQgP\nh969ISZGPRs/f2CX+DGsM/t27qRTx40cjAygTfNmjBupdjw+PO7B4QEgH5axJbufyFheTs75v78u\nVl1O0JYuXUpISAhDhlQz5HABq958BWvXB8lPT+foH6vB/Z/kBV12gd1ut2G4cwKJC6a6zWOXpptR\nZPc9b6ssE91zMB1H6EgqAqMkETdoULU7KDW2xx57jNjYWLdluYW5hNwTwpJlS0pnxl5qsk0m8vtI\nTNe5Xwwp6b2kGv0DChd2+vRplixZwgsvvFDtMTNmzGDq1Km0bFl9NhUAGo26Gaw71T1eA4FdrYwm\nk2771c00NmXm0llOZ/j+GDxTPNkRE0zMI0k0t5owdcirvnkeCs3zfsZLY8LXcZrmh4oA0FmfZn9f\nFy2/cKjfJBOuvP2Iv/32W+6///46P/+XW4djOVKA08eH/a1a0rWO/16XXWD/O/nll1947733Spct\nLe/orqP834H/w2w2N1pgFy6tZs2a8eSTT1Zb/tZbb13C1rjnszgP/YhAjM1l9EfBI0TBt7OClxa0\nMQqO1EKy03zPG9gxGOBf/4JffgGjEfz81Mc15c4Mf/wRxvZq2DdTzxISEtiyZQtff/11nev4b8/h\nDHxUJuC6fdxdUMzh85ycnc8lDexZWVkcPnyad+6aila7skKZ/dlnWXLgABpN/7qdA12hhg0bRlhY\n1Zm4Rr0Ro0fdzjQUReGM1YpDUThlsSAXF1c5Rvc3+ozrTWIi/O9/5z+mc2cYP/6SNCc+Pp6jR49W\nfHDvXkhJUYMmMHz4cPzOBc56Erx3Hn6HfsDbZiPg2CrCtn9GsP0aPAqfwS/9a+xyADzRXV1SwB2N\nBqZPV9sZEQFPP60+/h2gS1DPKrr3gM8/r9d2N7SFCxcydOhQ2rRp09hNubSB3Waz4eXtxcIvF3Lb\nbRUv2j0cF8f1jzxC6oIwXj9RfYqecGGnrVa67NkDNhuTY2IwWKpmGpyxWmkpNvKunU2b4Oef4Y47\n3JdnZqq7a1+iwP7KK69w4sSJituypaSo+cRffcX+/ft56623+Oc//1m/L2yzwXffwa+/qgPskyfD\nn1A0HWKvbYcjy4HjqjbkrN1LWhpER6vpzADZ6dnMSJuBJkxDTF4MnjpPVr6tdvI0GfOImPo+hRYH\nHs9Mg3vKTUq6AjoiCxYs4KWXXrqoOjZs2IDNOpjCbduIycyAC4y6VeeSD8VISHh4eFRJd9TqdBgM\nBrRaMTp0seyyTITRiMtoZFXv3m6zYvrs20duA7djWlwc6y+QtvBYWFjpaptXhF69YNYs92XR0erY\ncANQZAXFppCzMQdjsHomZz1r5V/X/4txw8cBIOklTNkbkJb+CD/9xIQJE867BHZ9atFCDd6PLmiG\n4lQw7IK0NPDwgKVL1WMGD4aMFRk87XqaZs2b8b7jfcIMYdzVTM0giTHbcNqn0FwzmXe+6Y5h1SVp\ner3YsWMHKSkp3HnnnRdVz4IFCygq6ol92TLWnYxm2JUS2C+WBokn0zPRP53DCY/MCmVPpMmkBccS\nLLfDXdZMo3A4YMcOKN87LgbyALsdtm9XT9979qxxlYqikJr6OS5X1SEWgFS7B05nBBKN2yPfU1DA\n1PBw+vq6n0m2JCODw0VFl7hVVyZLnAWH2UHqV6nIRvX3ajlpIScnh7NH1Bl/edvy6DNLS2NckenS\nBY4ehcS5qdjT7HSY24EpU8oWdzzn4IuwT9rHnENzWPL0EtpFtOPqp68GwLUV7vzpGN9+YiaqvxOv\nTmUDzAsXXup3VDsLFixg7Nix1c4Zqalvv/2WgYNlAubNI3zSw1DH7tcVFdgVrcTiLkfINA8naoAH\n/pUuKp44mY51ZQFtlCIuJrC7FIUxR4+SX5I3745eo2FR166EnC/1DGDbNvXU/dy+jS1aQMc7IKkY\nrAXw7rsQF1ezhNkSDkc2sbFP07Jl1e3CAOwOHxzOAHRy42esLEpL47n4eLdleW++ifPgQZbp9W7X\n1tdotMjyaqBDA7fy8qfICpJWInJRZGlWTMD4AFqPak3P8WqnYG/vvQ2a/tfQhg4FbVYWxs/grigr\n/oPL0pTdpVGaTA07QlOLnfH47DJbhviyCewjcibTIvskIf00LOrp4theLZKiqFNJAaMCkdK/2G20\ncMjbh0cGpdNClw+tWkFJ/vH6rXH8e5eEK9bFF198gcvl4quvvkJfKcUrLCyMW2+9tdq22GSZNWYz\na87Ti54UE0OqzXbhwO5yQb9+sH69er+gAH48Dt31cDoIFiyAq66qwSdUkVbrQ4cO89yWOYuK0GSu\nrnWdDSHFbuf7yEj6usns6XP2LEydygNXX81Dbi4g33HHOBQljfz86nststwNh8MO+Ndns2tFkRUS\n30lETiiEzNEw080CbloInxqOPqBxVuv8+muIP+rEeswLMubCHYXs3e8g9bCVYysLkSS4/zoLrXro\nCRgW0ChtLKWFo/84esHDxM541btsAnuAM57sVl+QvLwP78WkcPC9Zvh/9BEsWgTNm7NlrB3/5och\nFvCzwocfwq5d6pjn8uWl9WRnZ+FytmTPnj0oisLevXvR6creZnFxMevXryf9AtP+tZJE1Hm+sn3q\nsHtTbShArtPJi/Hx+FS6+GmQcxjlcjE1NpZ327cvXW2vUT30kDrkVN60aeDjQ8CsWQSfOQPz58P1\n15cWawFd8+YEt2lDhJtVAY1GI4riIDp6Ilqt+8BttX5HcvIS+vR5pR7fTO04c50kvJZA60c8QXKC\noWo3MvXzVAJHBOJ/dfVfQIl5iRjmuO8otMpshVN28sGuD3hn7Du1buPLL8Ot7YvhuBWDIwRiLbjy\nXdhdDix2C6sT/WiZmM0gcyqD4gfVuv76pAvQcU3qNRUfvPyvnV5WLpvADuDSNsdub0l2sYzBIxSP\nYi+45wmYOROOTSMwL4aOd/mizdmF5vXRZEe3hzVrIFu9ytJGyQBC0Gg0fPHFFyxcuJBPP/20wgSl\n9PR0etZiPLuxyCgUyy66+/gQWGmMWutyoM2U+F9aGi+1aUPzC501XAr798Nbb6mDredkZ4Mskzdn\nBrY33sZ+4jDWQWWfvUuR0cgu7K7qp4/7Kfn0/jACD637GcPvZb9Cj49jYcR09UpdIzhdbCFfL9Nv\nbDGMuA4Ckqsc8/aPLrpcYJzEITtYcfcKbmxfdWZo8YliOnzSgazirPPWkfankZykPvB2IkXHisi2\nZ5OYkoirMIy7tEm0v9tOxKoJcOQMEycaGTbMl4kTmzFmDISOCIV3Gz8jzdVrB7uOr7zwgU1QfPvN\nLHQA1ygsk68ms9OFz1zcuawC+/m4vPpjzN3DoEExRNrS0GXrOKvPgd5JcPZjXK5CnpWTgE8atB1b\ntqjpubkBsG49xFWaBHvSGwLOM8NeltVsscJC9brq0WMQ4oJD+8uOOfc9pEHivpAQWlcaprDbDWyK\n9kWf6sMxL4m0Smf3e9Ig36GnOEXNRNC5+S2b31Jft161a1cxsB88SH5hNiO3P8PXKSfZ/+cmFhX/\nX1kbCmSUvATe3PYWz7f9wm2VoUoauq1/wevue6m71hYyZEs8Ob8mQbD79Xm0Plr8BtRvLnd5OU4n\nkgQng4PVs5Ry65Ofs7hoHbPmzCIluOrSphZLAGfPNGdobm/yP4rlkKnqF0AzrY2xcii+pwMoOFgA\ngCPHgeWMpfR+83ua49yZicNuBLMD2SbjLHLiMDtABu8uHoSEluS59++vLi/w558wfz594sYTeuA4\nnlH7OPJVOvTrh9l8hOTkvRw58itpaWNpYzVwPOpt9q5X8P3VwJEjRzCbzdjtZV/MRX+mclOBCxb3\ngdhYNVVeE+kPAAAgAElEQVRm8eLSco9jdkIVmfuW38e+uH34FPiwZ/me0nKHPBHH/fPYfDwbSdtw\nv7PLVUT0UK4eJhPw437635xf53qumMAu+41gWUE3ChYu5VDaJH4c703PlO2w4kuY+CtFRdEc3Xtz\njes7txNModNZOo5vcblwKcp5Fwv7xz/Uizy5E2DNBgio1IHa0hEM+UBn988/dgwSEiE+HvLs8Mor\ncLVFnYh3zuHDsNoAsg5+/11dhriyFSumkru6G5OCtVQeFCoMhNwnmmHUGPj1V3UOSGWdNxdit6ey\nc+fdnD3rWaXcZgNdxpNs+64N+bvcv5fu0RDppm3nKAq4XDLXtbmRu7oOZNyAQcx+YFJpebdFvdH6\ntyHDlVB9JYAS6Av//Kd6VlDpgvYxKYRoa2t8Z58Bz3Rwk5WQuyWXoYVDq13zpibM1hy2JW6jRU48\n2/9aUKEsIduDPkpzMrNP0qWoyO20famokI3HNpI9rGqPuyD6ZQKTerGraC4HfvAGTcV/S5sVMrUm\nxivvkf9ZLjErYtTnnSkgNTqVmJ/U+0VHixj0sQUPw054+xl8U3wJGRFC+wnt0S6EjqOy8f7nVPVC\nfqU5DKNYSQushHz3FzkJRpRr78bLy4a/f2datBiBr28HcvIsLP4zDp88D9qciSXTnIlLcrHv6L7S\nesIObCOUFMyfDcEae4Ki0wmYTyWVlisZ7RjmZSTGM4i2AW1p3qw5N3co+7/dGKtBAhyHWjF7yMel\nj8/klgv9ipoEyaDBJYFLf3FjT5c8sCvAzNOnmXugYn7zU7LMrN1fEm+7FqU9hL0jgdYBsgRvvInL\n1B9n6GhaRmyCtElu69bjQBOSSLMib4qKcgCFoqITuFzqKbok6VAUXxyKgu/WrciyTPtdu5C81OXq\nXIqCXVGI2LWL1tWc1iuKer0zKhbmvgu9K2Xy9f6vOvR/Z0nubo90uD0G5pSkt57Wg7Gjemkg+DQs\n/1WPT1cL+xPKlhUo0sP24m+QLZm89HgbtGgoMgQgo46ly7KCRvMCSocfMfjdha6w0lCMD1j9c7Ei\nsyhuHoHWwCrvw8O/Bw5ZZvHmG2hrqJp7q9HkcafuJFaL+yWQU1Ph0CLoEgTL18KyOHhpLMSUS0Y6\nNTWfia3+S3v7Pjb0cpLv2EHq/8oWpyosTKdl0XEyqumYKYp6M5th5dQjTPgsiszQSsNoBZ/jrYmj\nt2Eh7D+kppBWuv6xxWsLF7tJ7oGUA2w4tYHrC2D9qfUVygqLQxnIdWxOmYr+9kKIn17l+d50waM5\npH5XdajjueegvSEJ44IQrk76o0r50qWw+r08Hty5nH1TfuG1l38GIHB8IBGjIug/vj8AO9vsRDnf\nWZgsQ9euZWcUEyfCsGEwcSJzxsBdIwoZN92XoCNe4HczRuNmfH17Exx8G97ekK/Lwsup57pwiTNt\nT5BeWEhuy1zMPcquYk4LySBmoA2dLhrz/FxSWxdybHTZH5DLeQD9aS+Gtp6HFCwRERbBfT3vKy1/\nPn4zGhluX5/FiS1lZ3dC7VzywC6jkG6z8WmlbmTWYQmTZGeEvJDmRdfz2VseMHu22vt5/kX+MOcy\nM2Y/ZoP7Vev0+iAseNHskTe4z+bBsWM6FMXB8V/64aFX/6stIQptpxpRcl1E/fUXuy0W0u67D5+4\nODCZ+O5oLk8dPM3A79VdW9z1EQoL1RnR1enfH+wtYXTJ9c7mhyEkF86t4nlKB1tTAYtFDUKHDqmz\nGcut6ucNSOO0aD282PjrL4Q/9JC6Wl/79gDY7dnceecadu49zpngwCr56rIhHEf+28gWG8ezjnND\n2xuqtNOokSjSQG7nrXz+4n+qlDscZnYMOsnDk8B0nfv3eiBEIWPNGkxdxmBKjmVMx3FkBpRF9s99\npxCxJ5eEHv150FysBpVbRpaWvz5/Cn7aDHROKrz/c5wOBQ1OrJKLrcFWrKPuYe21Ff/Zc2ZZUCQJ\n54qVaNu1wuWkQhA/dUqtevrLxTirSUg5fpWTUabqx/m1LjMDNbu4dmBLOrR18c7gip9nfEo+duzY\nnXr0xVrQu/kixYZfI58fJycnk3XiBNNGqr+Dw4cPs3//fn766ScOHJjB6di13GpRJwvyx3qUhCRk\nozfyL6tQjkeA1Qiygo9Lzxe3fYGWX+nduzeTJ08ufY31n3Wj+MfjRH64jYAVs2neoROdhj5UWh73\n6c8oPq9W28Z3I9rDEYUvb+lEh4e+Kyto3breP4+mrFH+1Dy0GoYEVEypWomEp1ZDmIc/IQ4TXnoA\nPUgG0Hth1FkqLGZfmcHQnKnar1nweiHvR/dhhysUSTIy4AU/jKdOAbDv+BAKvhvOta9/Sdur8tjl\n5UH6tU4KUxeALRBrShEmuSVPPVX9dlwvvqiuWZRjzWHJsR/Zrqm4nOtpewj+JicrA2VOeXRCG6yF\nDhOgw0FAXSJWl2LFfiwGWc5T89jdnB0Ync8SgI2gbdtoVlys7h5SktbpdBbyiHU/+muu59ops+jk\n36LCc1PQ8XaxDrMC826aR59uVd/PDzv/wK49f+qdZFdg0Xew0/2CTs32BuF9OBq/cB3+koHhhOCQ\nyrrfi106eqzOpV/fxwhM+wPaRkJgWVCUZSNeZ13kvLkY+dGqX9geLifz2Et6i44URhWz1ScS3XUp\nFdv4hj8K0LadTIIMXl7qSd45Lhf8Icl84hWKy+D+G9nueJ6Jv2xh1IM/YvKsmglVELOOEZrfyXT6\nozUonFpTscdus2toSwdi0tvQem0KfFC1x74F99cQyj4LO7JsIy/nzyplhYXNcCk+XOxpR0rKWVo7\nHDzxxBMAzJs3j+7du3PjjTfy+usRDBlwA7Hmz4nRfIL8kg/xZg1ZuzNJ/ekUW5UC/CUdJ/p6MKNZ\nOm+ufoD8HUX8mP0jb1rfLH2N6doU2npKDPrfIAqOFqDN1PK+/H5p+fjjPRg7EEJ93C9rPbZ5M3YC\nJjmHZ8plSk27qHf+91OTwH4z8C5qdtq3wNuVyh8sKT+XCvAR8FU9te/iaTRQkkMd0uIBMjN30LuX\ng0DXHhTFRU43O3bLFsjxIlR3hNGmntxyy+jzVumUnSTmJXJKe4p8uWLQyzbosMpW1uZnMaJdc552\nAZs3q4PzQExxMT/rz6ABCv381FRNNzncVv1qZElSB+PtdrXrWZK4K7ksdDrZnVeLOiFtqxqswoGf\nZIWxaPAxVD8PUVEgx7M9yzIzwWqtMO4qyfmE5rmwrllM2k3JgFRlNkhB4c3EdQvB+taLXD3+DVq+\nNV8dYzpXx+5VFAd50NLL/UVNgx40Tnh9ZE82FPxVpfzowau53voGUa8ux/rjKD5eYWO4o+K4TaSi\nBsIXln2Cdqz6UVW+6LDJE3qEdmf3k1U3l7DbweONY+hDDjD3Ayt+bvoOR7Rg6dyRFtu60OOUk7/u\nrzjGvuWkmQly1faXp3MpjMhQ3C5sddVf4O86gsOZTULC7CrlmZnDsDmjAFj7n7Us/J96tpuRkcH6\n9euZMWMGAO+cfYe849Gc70qTXq9nZEmP/aeffqJnz56MHDmSL76AgCgd19z6DQapCE8PmeKfO2Bd\nvZZV7Ed2adTzwtMmfI9bCA1uSageXnjgBQYPKVted+93V6PVZbBn0h5mnphJx84duX9S2TK2CZ//\nDhxjaJuhLGXpeT8zoe4uFNg9gE9RN6pLB3YCa4GD5Y5RgMXAUxd6sa2ShOVOmbRuGfTYWzEgzpBd\nSErNpsBbUlOZPeE1/ms2q1f2S7ZjKn7sMWILY3DdtJB+n8dgd9kZfHsWms/LNqKTnTLxC70ZcNvr\naDSb6PI/P3we/QDCw9mT/DqSFFOjNgC8OORFeldKRZwWF0eYhweJf/1ES53CtUjqqoAlZyg+Wi1r\ntNoLpuW6NBryPIzqolI7d6pXWUu2sHPZs0hZ/hv+huV4HXuMITtOqD36Eif8/JiuvxHNu6inGP7+\ncPfdMGJExRexubh9bRbS/mcgIaFK4HaZ7yGmXSi9og+pqTW/VkxBy539C5nxRqrZevaCPIyApFa9\neXPV8kGD4MBBcMku5t/6CT13fIB5+oEKx4z+OBGAYrv75RUuRK+HHj3gZDpE5+/GU6m6hHJAz0z0\nHk4iu0IXA3R5omK5dRHwVcnomgNSzlR9HV+bzOgiYN++KmXh6eB0ZnJyRB82bqzaYz96FPKyzOj1\np7n+6et5aMIHAEydOpXrrruO2267DYBjPY4Rn5dHvl4PTicOWcbicpHvdCJ7QrFWg1128uneTwE4\nkXUC12kX1r1WTufchDPlBH1ccfyzYy5TbnwFho2A99Q2vPUWLIrPInrMn4xKWc73kxZXaSfAEcmI\nC5lh3wzDfMKMPlfPl/ovS8vvPN2F23vC4c/aYz6ajXeajmjPj0rLXXn+0AI6GeLYtq3qkNblKiEh\ngUceeYSdO3diMBgYN24cH3300fk3RXFD6m5gd0EzGGVjbvFg6rrD54UC+1XAMeBcjtYS4FYqBnaJ\nGk4f6KUoHNmgIaivie+HVVzaMuewB0FW91PPy+vSpQuFLcK44d576RcdDevWwYMPArBWrweDgn7/\nk3zypYGrnxzM/K2+eLyi9pJyc+HR3yfiNLrIz1c7qHaHOsztSFXLa7ISgbToOzKe/Dcm/QtV5zTf\nfz+YzXwZvZffPnM/M7TeLV+ujkEMKplYotfDMbVdjv5dcEQfg3XLYHjZF5yiyBiKnbTKSuKO1u3V\nwF5urBRgZ2Io60beQ9ScJepZjymqQrlGs65B31ZNOH0c5Hl7s64wl4E9evDb7oUo2oq/k1udYXz1\ncQyOJe7X915htbCrTyA/X/sq7kbajf5eyLgI8wsDEquUBzdTezcHDkBiAtwQVbWO+cBRP+jupse+\n7Dk4cmQvIwfMJ/lM1edmZ6sTlgH2HfVh/xS1x/7XXz4kJDRnzRr1/oNeZ9jlcQsbfRV4eTt7D2US\nnxfLmujt9B8FCwq7c9XAW/jsZCF6yZOsfIXYdJmtsS4yihSSsl10CoDuvt3JyqqYvVNU5InTauWm\nNUa6nApkx+Hn3X6WepMRH1sACVMTmBI7hcjISKaUWyzmwPvfk9fhforztdiNTizeEnlBBaXlSuBZ\nCHCwI6ML46/aXq7mqmd9gW8HkmNtuL3xTEYT5uk1m946efJkWrZsSXZ2Njk5Odx444188MEHPPfc\nc7V6zdNfTOWpKRP4x6dvYZ1Q93WULhTYw4GkcveTgahKxyjAHcB1QDzwJOA2f80H0Jgl9BY9PSpN\nMd+lkZAuMIao0+jYUrgE+d4VvJsIGqMLRjrhmLpMquWqnzDoDGjyOtEvLAhJ0tA3W48xTA1oD74E\nyUZvWue70G04icMqU2B38MUz0Zj1ZiLuysY4wKHmJHbtWv1V0rNnWTxsIMM//LLK+1BSz2I+tZSh\nyxfS8r2HyHQCumx4RM1/zAlsjcvvYTTnWYempj4t3srZew4QcPI0BAerwRkocrmIPZVLPtkcafcx\n5v4O9Vtsd9mpr8P5LgoSW3t34KkJE+DIEbV3X45t9T4OtshizuY5vKS4eH3TaxXKB1iyybe7Lthj\nN/32G5w4oY57lE+zKyxEX1D982oi94Ys4ja05ETYzbzyUF/iir1QysV1i2TkZkmDR3cjCbe4/3O3\n7c5iRPRZOj/qflPvDHs+cZ5j6BTUEXeBvWtnyNLANddAh2g4E121jt99AQUGDKhalpSkprS2bw9P\nuTnvXboUVmWDtF9dL+7mkkmZb78NAwfC8OHq/QVLZK76MZHeDisHTdeRkGuk01k/+h8IIS0dejZL\nxNyiGz7mKIyuYPKsm/DK74l/xq2Ybc3J884BTjPptknkVPrbt1iewubyY76jF39F9cSWEen2s9Lq\njnEmMJjdxxdyyBxDamohtuNlw2fGFA2pf/ybR78bR8C6D2nWNpyON5RlxTgyHey9+RBb/j2X1ae2\nuX2Nc3KsOSizGm5xHOm1mqccxsXF8fTTT2MwGAgJCeHmm2+udne0875mWDApulZYQgwoUsMF9pp8\nar+iLpHvBB4u+bluG/6dh49Wy1GHEcOwjVjtCpIRNLKspjyUzOjxUBQGhV3N0lPu63A6oWtIIXsT\nC0n5/lkiJSsBBhsfav4Fko7Nko6dtnCUAQOQNm1S/2uqUexhwBUcDJWGYmRzKnm+Cfw0rjdtPPxo\nZwNyHep6MYDRNxhZdlHcIgjZ7j6v2mKJB8WFXrGTlDQPeVQ2FHwMZ9Rei8tVBESy03GaSWNfYNjP\n69W2XqemryRZrXz9QzxDz2RwV6w30oKd6gaR5dbH8e7VHEsNvltSClOxOW0ogOxmqCzcN5xrWrv/\ndTvzXOS2bA5fx5NR7AWHsuD3sjVsZMmCooc/ugSxZVHVkeETWSdQFIViZzEaN9P0AZAU2qWmktTz\nZri1VZV0x6/OngZO0W74HLSTHnFbxTvWj7kvcSX9+69xW16252nViUc1JSngq+h57/73qpR98vMw\nAprH0Cqo+lzFgJBobLM/ZEhkFgGh6mdl8PwL74CjBISqY/7tJzhIzuvMveZMXK88zqq3/GnVL4ye\nN3Zhzt0Kj3U+SYsCF/NuziLC5MeLu2X6D3YydrydKbuS2aPNQKODPVYjslTxb9Ph+AKnVuaksoiN\nmkRWpj/qtp1T2r9NfLM2LD8sk5ytkOApc+pw2d9N7xxvgl1D6Pzf67AftiMlS7whl+Wrm/JNfJj+\nIR6KHx9s/dLdS1yWbrnlFr7//nuuvfZazGYzq1ev5vXXX691PW3aPI9GK/Or4TGGKrVfOuKcCwX2\nZKD8Ih6tqNiDByh/LvQ/4H2qsSD2W47ZNOSt9WHTgLFERUXVuKHDAgLIGzqUTZsVJswp4svlNkbs\n2gXffgtLlqhvRpI44XGcJ+0n2dNVi2JX2Jv5Jh5d1Zltd6a6uFN+hb0UkxdUiHxqGrvazsDLPxAk\nDY6CTfTJP8SBhwYSZP0vnKm6kJYs2/FMW8q1OjOFsWM5XGlaZ3bRUPz1BmaMGc+IkPb0SrPjdeoj\ncl9Uh2VsxVZSlsQQE6jDliJz+9GjeFRat0axp/Cy+hOKoqg9UEVWb4BG44lOp47Z97yqHyN2H1MH\nikvG0E8UFfHbbhP3sZ4/1i1FycoEmx3WlfXY8yPaYNFKHG9+4SXsXhz6IjrpfV4bXrHHvuu3l2nd\nLJIw36oXf9X3IXPq6hYkTphF97lz1aWJy21SoYwbREEHLb2GzeJWr6qbgUz1mcYpSSKyWSRd9F2q\nlAMgqxeBc1t3QJZ1YKx4cdVy4/VIytNkFBYQ6HS/2qUsX/zZk97p5I5fYyG9EJ55pkq5n6UTRZ4a\nDN5Ve6FafQRSvh3t3mugmmVaXEFHULyLWZF7A6eNanZUrDWR0/mt+SMzEiQ9b+je5PWiWEKaX0XI\n9erm0t26qcvzqEO9ThQDPL7qcQxaA2mn09ih3cG3mm9JaQfNUvtx/7J/8rvfm0iVRlddLpCBNvMe\n45kOp9F7zHfbTqetiLC1o1h4/QO8EbiH9i0iuadb2dKM29YeJN6WTNFLRTyd/jQRERE8fW4HJcCW\namPNe/vJems3BRWSxS7vxWJeffVVbrjhBvz8/HC5XDz44IP8oyRhorZstk1kfrGY/Y7jWI7XrT0X\nCux7ge6o+3hkAHcBlb+qmwHnFkYfjbpMl1v3d3wAa5qO/BGhREW5P+09HyMOdA4bWruMp5KLQcoH\nbSHIZav/tfm0I/d0drF/OUi9IdL3Q4zL1X+mJTOzSTQ9wtyvfPj6nx+h+UtHl/Qt+Lz4EQQHc8TS\niaM5n+JrlQhE4VR8Bnl5ZemMLlcBmZk/oWmnwdFGwuvwDjq1r/gRjpd3kZz1FsFL/CgsimNRWgI9\nkrux5jY1JUwBnnG2wmJriYTMC+HhBLeomK5499EskJw4JA9at36G1itXwaNPQbuyz+yI7vwbOtgV\nNVA+PjQbV1ExuJwQkF1anurjxOnhRM6t6+UZlcUSR3LyURiWBdbvIbnsKqisN+E0SGh6eOETlAut\n7NCrbOhKo5NAgeGvedPGu+p27B7JBiQZgjQB6DTV/KkqEKMY2DvyfvQrf4NRt1e47vGD53DelCAi\n9xWsr73otorRcQ5uLuha/WY1isIdc+aoyyunpamzYMtpU6jhpPVOtDaXen2j/I5GJQoVTxb6aPnu\noeVVypZGg+4vM55ZuW43xlAnailI2QF8f9IXWqhf6uPNekad9mb8vgCOFxWReoNES4cFq08xWJNw\nuYpwOLKxWpNAaUHrq1bSqscaFrTXY9DKzPlDoU87hVEDZE4FeaP12ItOgfDrplZpw8qVsD2jgGc6\npBD5cnNaZbr/klxufJeMdhn06AFBQWrCV48eZeVHAwBFvZyzfbt6LTm63NCVsQiudcJvv5WtdA2X\n9wZKiqJw0003ceedd7J7924KCgp45JFHmD59Om+/XTmJ8MI8PKIIeMSHft/lYI6MrvD51NSFArsV\neAxYA2iAhcAB4DVgH7ASNcV0JGqSWQ4wofbNqJmjR/9BdLSBMOdzGE+OYY+3AyZaYY/am5NlC36+\nUymUplHSocVLcxZNgPpHaPcoJi/oBH6Si/ghetBCkMdRfIZ7Q3gQUm5ffl53G/0WetNuYgj9x9xG\nu3btKqwOGV/UHrvNiUORsJxOZPi6Zeh9y4JVVPFbDPJ/mvaTAK2EVp1Xz80ldSiSE11iPxzZDgLe\nzEE+3g05o+JfrY5vgarZGefkOZ0UGsGl1RCfZmanv7+arliSr3/G4UAqGcs+/epp+PhjNXtodtnJ\nVOSu7URLUOgo4vUtb3C3OZY3fn6wwusMzx113h14/PyuosicjsUSB8E2kJPU1JBz5KvJyq5+ToBk\nkFC0UDDEC1NQ1TMH7XYd5IGhUAY3Jxa7du0iI/o3dtotmG390JINlj6l10YkSUuasSdICbzR+l0e\nfaDq+vVffQXbDo4m4vhGuLHq4lsAd1gstNy1Cx5+WK375orDRvlZNqxrjPxxWweuWZjhtsee8/yP\nxBmrX9Ig3esoHaXhyLPdZ4bd1bEZVldbYmwpaBPVvUQLinNJy0ogLhEybWoH5CbJwo7bVpO7pR1n\nM2QOnfiZgC3PYrcnYgo7SeGJjpi6WDDojGg0BWi1fhgMofz++wP07bWeTh1OEjmk6hDk6t2QYc9C\n1mnQLvkNvdH9omz5tx7kVGj179PkD3h7sm3UYVJTssgKNZI36nBpuZ9ZJup3B/EhWeTnXhkrnqSn\np7N//342btyIXq8nMDCQhx56iOeee67WgT0qCjKzwBwPg6qfM3dBNfnkVpfcyiu/N9gLJbcGJ8vF\nRES8S7IuAmvkSYZv3w6vvQbPq1fo31nxB11y13LK8i72MANgR8nMpChM3ahhtqSgMbqIbQbb1ozA\n4Sim413FaBb3B60Wm08XjJpxuBR1zN7pdLJhwwb8/cuWWg3Zuo5p6z4jJdXB1xmZdLYl4WksC+yZ\n+vtI+e8j7ItO4EDP43Q3m9V0iZLTsrZtowkOTuXdfW3JVfy5+urjVTaz9ty9G0mqfpf3D5KTkVtq\nsaYYWHLsNL/26KFea1hfNnFm5PFC8rVhZCzLhkP+kBkGP5VtLtznpMwph4GOQZ3p28IPP49YotpG\nVXgdXw9fWvsH4G2oZlcYpQMLF65n/oL56kXR2Usq/r7mdeTIV98w+rpqLrlIEooEOeN8CW1VdcKK\n4RO9u2uVpZ577jkKUmzEu3zJPf0nmggHnCm7wJKYeJJudz8M0u3MaNeF5/duqvoWugPtH6PXkABe\n6nd/lXKAXWfP8q3ZTMa6dZCfDx98ULEOmwezbC+wdVEGL6YAD1Q9M2jn1Y7i/oW0nBtWOqR2Tr6n\nBlc3K4OdA9g2ZQWEhlbooi5dCltWfYrS6WumDC5b6/3ooQJOd5BYdZWdXKeDt4FTBg+2rQ+i+IZr\nSXJuw2ULI7coAsvwN3BKErI5kMEDVgAQFDSRNm2G0afPRPz9Ye8WL3o98RArVnSt0v6ICJjZz4k3\nhRAcAtVMMFI0GpTzTM0OM+jwPHaMdwb34b8rfQht488/Bpc7V0pzIGvz+L+UBIyXw3LUNRAcHExw\ncDCffvop06ZNo6CggK+//prISPcXmM/nyy/hrnvBLxx0F7F0/5XxlVidbt3U3O6S9di7OGLpFZDJ\nMmkc997pgqVL0UybRuA76kUIuz2dX1Z1Y9K/FQYMW8RB/Rg2/+aD9+8roUUYOwuKmb1xM4qikJ6+\nGEWxk5z8Efn5ZYtkueROmI9upW2hEWQn9pxDaFwVcyR3n9WSn2ahxdiORKalQUyMukcYEBCQh8l0\niu6sJwEdKSlfIssV1+ge6MwDBiHpdPTt2xdtbi5cfXXpRcEilwtNgZMiRwGzbozgli9/UFMjSvL5\nAZ5P+YGdx/3xX5oFsSYoMsCPZVsJDsiQ2ZIXQEvfMEZ2HAbem3iw94Ol5V+nppLgiiHJCfqdO9U8\n+UrJ5o9lS3h7e2M326FPH3VQt9wEpatW7OKsYS3WxALsFiPkayG9rBsiORQ8ii7uT7D30Ae4ZYWR\n+3cOwbtbV/WsRaN+TjfddDf/HtgbFll5MyWOKRMfr/L8z/6n8GTEZuKSgjhxsuqa8ADFZg0bziSx\n9flpsGeP2pko59iubAxPSYSktCajUCFrddWB0Qh9B3R2HXs+soDeUCHjak7BU+gczXhM3gfvtlU3\nzR48uFINGgyyjg8GlqUJP780i2vbh3DrwNactdkg7zgtnCZMTl8IG0C0ZzTtTO0YEDaAn/MUUI6g\nUdyPacyfDyP/05KE+V9y9+K+bo+ZfiqedbkWNugC3JZX5ufnx9SpU3n22WdLH1OcCi6nC134C9jt\ndr788ktGBpWlMtrsNvbr9Ozp169CXZfxSAw6nY5ly5Yxbdo0XnvtNXQ6HcOHD6/TrkodOqjzOgwe\nFzf8dNkFdklS43RsLP/f3nmHR1Gtf/wzs7vZTe+UhBYIzdC7SlEQLiBKEVBELqLXgoLYrteLiCA2\nxH+4g5AAACAASURBVPYD0WtFUUHUi4B6VRQpBkVQMRBK6AnpIT3ZbJ/fHxOy2exuEiAJIZzP8+zD\nzp6Z2cNk9p1z3vO+3xcO3KL+AMqT+goKlmA0tlVDDECND6skCfrhTSt4sctakGUK354LGzdQ+MhY\nzIVqNIPNlodBIyGXyuh9myEh8VueFd9tf0J4MgdKSynde5CtDoX/PPslRqOZpQs+xMfq9LOX3rsc\nyQoGcyt8lTxePNqW8MmTKww3wOMvLyDXOJ4vn72WrxRFjdR4TH04REWNZNy4lTSPKEXmI0ymZMrK\nnCN+RbEx0/oOdr4mctos3r7zGrpNvIejrz2Jua3quz2a/iLRBX9hJYJQ88PsHVcIvvGwV424MJtT\nmXSNg6JBfhQE+oOxDBz2igxcgFZWHQz3PiLKsVqJ1um4wk/HroE91DphleqTnjabefbz3QRIEhqN\nRv3DaTQuESkhObB0z0NIt5axx3g9fKWFF5wSrYY8Kzc91h9lQCkEF6nKjB4KmNitNsxnQyXNTt+u\nw+GocBUZDK0w5Eigb11xDlnWo5NV+UkNoPUwApQVB6DgCNMQHOO5CIbmg9NoFQ3927dXHxxVYhZt\neemUyUd4dO0EBs1cwMHHZgHw4dbdbDtwDIDnMw9h317AlOxC9XiNBkmSeOONNwj8uCfahDz8rhwO\nOw6rbjVPWPXExX1esRkcfCutWo0jLu5WjubkEFjYgvbdZK4I1EKbALb76xgQbmBymwDiIxT8wrIp\nU6qR40TGcqYN/v7uI3aAQi3kSLke2zzx7LPPsnChawGUxJcS2fDCBhacUbNlK9dKOIutyMbxx2rO\naQk1hJ5TSOK5EmqofW28IUOGsHv37pp3bCAanWH/2ygYc3aN8NP96uNrsnqjnTy5hQEn/sB4KJ7u\n9+vdNFZmbcsg4ugBFKUdx48/jKJYOXHiX+j1zh90WNg1lBRsJOGBB4iMjOSxlBS1kIdGg8XXF2NY\nczZLEidNIURd2Z6CFt2QZblCDtah88WuKDgyc1RD88036g/xOac4laKAJBtZmpDJXYcPwyuvqKtB\nAHQC/o+AADOSzyZWrlyCv7/TFSPLZqZMewebTUdxsZbn9j7Hp+Y83j34Fqfz1IfDhNb5ZP0wl69T\nh/HgewFEvfs8DBsG5RmIiqKw4PNXOXXUh50vLIC334KU01Ap/GrbL61R172rR5IktUKT3e4yytTV\nYjihtUKmIR/d922Z+tVP8Oqr6qpNOWUhOoplE0EvLYfN76tVj192FSRzKAovXv8Ar2q0arxqkDPq\nxWq10jF8EJLUza384VkKHd8R9cPrdAO2bZvr1n5FJ3hb6cD27jfTcmpL9xMArE/iTfMKdj/eAkon\nQVfXH7Cl1EaZrow1hVt5Z2YwZKjRR9uTsoloradZKz0jtk5C13kX4wcGw6OPgkbD/PnzOXbsGOA5\ncepc+dI2kemRmynU5ED8SizZJzEeyaAwfi+TOoA1uwWm0+dZ9v48kGUZX19XSWiDzoBO0rl9fhaf\nZj60f6E9jrKas9Brmzx0OdLoDHtoKIzsV76RcECN05qsbu7du424JTo2N48kb8gQWlVJDvpiNYx4\ndjovzuvJxKKN2JU9fFM8Ep3Z+aNXFIVrn2/GaTmGZR27qFVyX3wRIiIoBN7KyOSfj0bx/Uo/5Oho\n1XB36VKhrHinzUiQxYhFE6LGz48c6aZtXf5N6P0U/H0doDGpko2V0PnPwq446Nu3Qm3A9WhFg1TY\nnF/u/AWWdmLdlHUVkgKf7R5Dtk8pBL7HnE1/oonOgozfYY0zq7GkBKKK/42PTzOwBYLFD3wqRZ6U\nT8kPbuzJ/Xvaw4mHoVI1eXv/DXS95XNu1MOe731hUTh8/beKdpPkoEv7juRT87S8uKCAM3PnwlxX\nw+q49hrIAsdDD8P1PdW1CA+07t6R5PfXwj/+4bLPkCFD8AvrQGhYjNfUbSmkDNunU9jXbiD3TLjX\nrf2DTalE9B+KEux9wU9XDMlSBpMe0KjyDi+84NI+bKiDU3+/ioIVd0GZM8TNfuYVMhzD0JT15Ubf\nQMY8eTcdrnOqmoaHe9bQOV/ett3J1K9S6ZKfDxNGEJz7NVEnY+jiF8ePKxVKuvejzMe90EdjQtJI\ntJrrHlWEu66aoBourmFfuhS+LV+XnZcJ+3OJWXIbFJV3q6hIdXFkqBrWrc4cQ/OXhv33jkZzyy30\nqPLDWD0LVkyHfQ8YGW5WFx8VRXFLrNntf4jC5h14POVxfnQUMT3tebKMqvGX0iSCShfQ7a+1TOi3\njJAt31PWLAjzYDX2KrOklP/a7HBkLEWOj7nitbuQCYVVzvPf2EKLJFVfnkjj8w02xcHx6CUEhFcK\nAcRGWzUdqNrjFRS0xtv59d6PaDZrFowdC9OdGXxffAGfnq3KpNXCmjXw88/OEyxTXRgBJQlcsXOP\nOhKutNZjC95Jyu++JKWF0ryZAknNIcVpxO0hOWiDf8COMy7dE7Ks4ZGbb+ZfHkb4+YqCyQIFH43n\n12mZEG2BX51JQsXF2agBohc43VYkfCL1+HdxXwTW7QwggjNM0b3Bb7995vHw8PtNnDw5Dv+oFhBc\nCF1dz3OgxEq7qHTin+pNywDn7GvatFBuu60Tn346CIPfDnwNmZSUODVtbLYiTKYUAgIS0UQUoeAe\n8lmr/54C+37WYfPVsbr5DEq0hTBsPml70knoMorwYTN48h2FWf7fY9KKUe7lwMU17Fu3qgZpwABg\nGrSJIOZkEtx5l7MKTatWqg4KYDq9GfPA8fzVbyC9vJ8VgEevepQ35Dd4ctiTbn68vnGpPHcqmXev\nHkX4MyNYef1KbFHqKv9/f/wvkiSx6cgmFrzxLUtyi/j+p3jiU9XIG4fi4G6HA8k/mwBJ4atpqwh1\noE6vy3nvHgu2/O2smrOaDw8fVkuRDXLNPLEUl6Io0CywGQH+TsMuKTZkmwPdDRu5sVcmaWlvwrAC\nKF0DaWqIma81BdWlU0vuvNN9Ma5IzUtvc0MR90+eDC1bQqXgnLXbFB5f+yc5WNEGK6pYyWlnxImP\nrFCcUsqkLil0WN4BRqXC5nGw3TlyVjRPIPlFsPn4SQYEuSYOAbTv0YHgqz+mzSAH/qZoKCqENs6g\nZ612Jzddt4pmhybw87LTkDcS5jgfTkXHi+hRYMGBu5Z7bbHZW3KbspqJtp0s6+ZZx+7nk9ej6VVI\naOI8aAE85up7vXapjfuvKCE3ZQYFlTI2S0oySU1N5PbbXyTYL5MUW1vkg872oqIUTp9Ook+f9/Ad\ndIqibS+TlxcDfwB2pwEu2adDU+Y97DQ9HZ65NRjlCy07kwaTXmiH19U1+9xcOHgQrhqqgLF2InuC\nS5+L74rp0UMN3txlUFUIZVl1jXgocXZm71oCYyZQlOK90nt12MvsFGwtwL/YTs9sH1rmtKTI0p/I\nhNaQpsaNdyvphoKdMN8wmgf48fpQC4SE0DzAKR0Q4jCiFBdSrOQz/L3nVJ34NU7f8LQO09D5h3Do\n559Z99BDhG3YAK+5JuSOGD2aK195hcXj7nD5XFEUHt95iOs6nKBdRCGlpfvUkazpIBSq0+gin14U\np8UAiurfr0l3xte3QtKg4nu2ykiRZ7g25gsStL+rKWbOoBnC2Ifd4aBj+EqCWtwKv/wCXZxhi9Fx\nm/n12/Foj3fgxe7PwKqHVaGTdu0q9nnhr2PY8a53ITuKUZQQktN6MlYXAKdOQiXdEI1mH736/4B0\n9BG+Kd4OUXmQ/k1Fe54lj2Mt8tgT+yFrP1oG0x3wyeiKcIKErAS+PXaEvzNYXW9XFI+hBplKS06f\niSQtzXN2q1mnBzscil0C8T/Da67hjrPvW01C93jmX7nJ5fPQ0PF07nwHr7wynqkpP3Prx90JHeCc\n9YSF3UTHjreyY8dNDOxxPcEFZaSkDFa1Ur9zxnnmZAWjbaOgaD3PXBwOCAp3kK81cdeIt3k4Oxs+\n/5wZM9Rk5BkzINti44Xq1aiRgFKHnZEJniWIE0vPX7tE0LBcfMPegOT/kE/SXUnIPQ30KzOTFpQG\nJdfB6kIwqNEW4d+G46PL5+NOj6sPnXWPw5gx0HtYxXkOrlvND7Fags+Ecvy++wh3OFwWTxeNXYSu\nTV/44n36depEs+BgtxG7VqcjpGNHtz5KksR/tbMZvLKITTe9ToqxFI61hT+ccq+nuo5nTFoEhNpU\nv3tREdzh+oCwFVmxl8qUnfCc5fBS/qsoRU9S/EEfSr+52q19V68xOMpeIWRQIc/cYYdRT8JzTknZ\nPAf8+i3YjF158fEOkPQMvNIe/JwP5Jzr01AoYfvxb8jw9XP7DpvDhi0jmhNSd5qHR0CKBprfUtGu\n0TwPZLI/8AgfP32f6mNf/0FF+84hO0kb3AJ/XTsevaoVvLYbfnHG8v8zDXr8mY8UCRF3PQr3PqgW\nlK0UwdQuRv33u9++ZNsP7pLNDge8NaIQFGhhCAL0EOYawy1ZApE05ybPWhVNgA7uWIXU77QaNB7m\nnBX0zIL8vFQc9bzw+fcWzcmVM3isteewTwmYefgwB4xGznioeAVglS6N2POmToMads3cCdwxG/7u\nKxMfL8O8YtDvhHgdNlsReTuDcJgUdkXtxCG5r5o7lhZjjlKw21Xpk7Iq8iLVJEmq7Q6FoCuDyF7V\nik+Tk7mrVw9oNRY+3FWRBr5Nv00VCv/gA/WgpCQ1jXzjxorzyMf64SMPRzF+xPHNrclTDGB0KinE\nHowluZpKXmv2r6Horlw2bh9D8E73Rbvinm9wsHURD/93HrqN7j8Ux28SDgfkdIxQtd49LBwef+QE\nBeYIEq7zrPBw8t+xYDLw4q1xvNXBPayrTBtI4FIJQ5SVIYMVkHfCEGf7kSyQJDvR/Vex4ptAmPcA\nPPgQxMRU7PPI+kS0kRH8fGgt+3Tu/0+b3YwiOSijAE+ZtpIk4RuWx/gHNrEj4Re4xwwfdqtoL8w+\nyQ2GNJKkVxnVYRT8UeBy/PPXXkv01A6wrQRp9WpY+Yr6EKzEdSNA2iFx39T7uTLYfSaYnAxSRgLB\nwTkU6A9D8ywo2OGyT3T0uav4VSX90FJ6yvvgf6vVOqSVZj6pB+Hw7lIGZAbCuanAnhMtffQUSjIj\nw7zroA8NCeFfx72HIs7QyAQYz08bX1B3NKhht7+zmk9+1bLnn83YPzcWpkyGe2fD4BGc2VhAmWE6\nkl5iwMEBbq6YHzaDX6aD6ycU88c9qWxZ/TlSsmuZNN9b4L7/+aDwEnk2dfEy12rFUB7XXGyzY3Uo\nFNbkuggJcRb8nThR1VifOLGiOTl6D0l+BiiWMARbMCgKtHP68f8a9Bdnhg/EW4GYjOIMdEl6xsz5\nnNVXXuXWPjIxicffqf7H8W+/WE6WeE/LdNgchF4XyqBNnlWl3t5fyEygTXEO01t6DrdbJWnw0XsO\nidQa2uFw6GjWP4mED5dCjxaw/TOoZPNu6ZmAzxIDj7T0R+8hhny3xoYjL5yE1t/S80wBRJbBf3ZV\ntB87c4w/148gOUTPYzMmwLr31Dq45fj6zsPfN4PT3b1n6X799X4CjpsxFn1FSkYGfPIJxKvaQbIs\nc9vttyMhcVXHidzczH3xMsEOm7/7ldirNnAy+CT0LYCTC1z26dQJDkpeCsPWkqB4AzkftsE/bwyc\n6arq+JajTYWAU3bO1JtYR+1ZW0M25abSTZjy608jXVA7GtSw78s6QVFMCsnGfdz0RQC0TYSklyH/\nI8zpZpL8kpAkCW2IDvxd45KLHOALvPFRJsMOlnDPLVfQXdfO7TvMZVrWavT0338Ss6LQffdupPJ4\n9wFHHFybr7A0qYgJEd61WGrD9tbBSLkS0QOzVFfMg87p6y/v/UJWSSJmaynzk1fh1z4JvnUuzP2Z\n8SeSHXTaAIIN7qPE3f0GMGXmTLZFR5NTycVTlXd3epS9rxUd9OqCbSxRLO7lWYVutfwwSJ7DAHX6\nNpQYW/Lne4PRbH1SFV0ZN66iLivA+7/l8NTTdsZmDSRA636rmX16YU3sS/e4cBYG+0P6IZjzZEX7\nbe/8nZI/JiBHJtEitidkG2GA04D6BIZgl/Kw6zz7nmfPns2PP64gv6yQssICMi0WdTWx/H74/PPP\n6RoXR2yynu+/O0J8WYKzokU5FkVH6PFJ5P8yhO9uPKCm+/td47LPu6ehXW/X2cK5IikQOSmS9rs+\nVwc14U63y+HCPrzd8jruiP4K7nkD7rpLrZouEHihQQ17pjkL7Zke+Gs6848+0bApFQaNhj59yC/L\nYnjYAVAK2LOnFw5f1xFeRAQQegrj3y18cjiOUJ3BfRQoQdv3r+BBSebR1q1ZJkmkX311RVRMzpkc\nMndn8tjg7pwvWWuzsOZZaZvo4ESJg8P/7UAIvnDsQMU+8wbPY0XMftKkeGIMzQk0HYew2Ir22LBY\n9r9yhO9uvpkOXhI1srKz8Xuk/kv47vvsM247cMBjm9Vsxnj0iLphs7mEU+LvDw4HCvDIioVqvP+c\nm6FHh4pdPt+bj15WPBr1ygQQQU9dONiyoYVz9uCv80cyh4Byfn7bqVOnMnDgcY49l8DLx4owns1c\nLXcVOBwO3nj9de44OIVWfi1oo8tRF+8rafcUlmj4Jc1AfItvmH5t+YOrigY/9hKSbSaG7t3r8vGB\nwkKOnThB6qy9THnBjqMaX6FVdpBjsWBcsqQ87dpJSlArMncEsunXUeTtbglJdhioVv4qLnaNYhVc\nHBISEpg9ezaJiYk0b96cZcuWMaGSxEdD06CGXUZGkxuLr7YFN3buBPlvQOgg6DyatMT9HPMzIssG\n4uI+A3/XxbZvvoFt/3Mwa2UpM/fv5T99b+CqMFff8JHZRzBneJYTrSvyvstD0kgURkpglAjvmkeY\nooXJ6kiy+M9iun7Xle6v9SZB+x/uaj6WZumnYaBrKJ3m0+H8kJbGy7Gxnr6GZJOJfxRc2Cgwy2Lh\n8eOeE1JKk9WKhh1HjWJ0d88Pum2fbqP0+AnVh79pExRWcnloNPDfLbSxRXFaHgDjb4EfguEnp1z/\n4J3nH4ZYl2hkDTfccAPKiUPqwmT5OsDWrVtp164d0h9lxDfbypv9SlS/ytxpFccmJMCqqWUUHHyH\nHUM9Fz6Y+7admIkFPFNpfQFgvp8fY5s3Z913MaD5i+0FBWjPOPMbMsxm9hQVcazMiDkwh/3ZJjb7\nGFQNpErYuoB5+FGOFvtyY2Yg+JVBmPpnCQhQ3fEznyr1XgihqRIWphaQqS9CQysKyFeH1Wrlhhtu\n4J///Cdz584lPj6e0aNHs3fvXjp6CJBoCBpVVIzk0CAh4efXySW6AtSM9twy0LTYS36aDVro0Ie7\nSgpofL1nD9ZpP3USBc0lpAyJyCvyVVfMVNUFoQnQULqv5rCwoIgIAjUaOnTo4NZmPGKkdE8ug5IL\nyErO8nA0+HV1jzKpSorJRJrFQpyf+75yeejcw1OnMr5KKORZ/n3HE86NceNcG00mTI8t4LQxA1N4\nuSE67RqB42NW2D+4GedXbqAOkSTuvvtuNJ9+CDfdVBGh9OWXX3LjjTdyaFshRbl/sO5oipqyu86p\nUpmcHEJZsXfpYQDJKhMoaxlaJYU4XKcjzt+fkOQQJOCFlNMkBTvdRsbiYv5KTcU+PIHJX1sYpQ/k\nlQGeBbimJCayr7SUfw3cpk5fH7uGhAT1z3LrrbAhx8xrf3g8tOmSn19zxMSFUEsVrn379pGfn8/c\n8szqwYMHc/XVV/PRRx/xdKU1oYakURn2c2X27NlkZzulaIt2F6E5qsdm9uGL2UasVqsaY36Jcfql\n05T8WUSPMDu5Se6iS5ZMC5JGgkU1n+umiAgmRLovgCab7XwEdPaQL1BbrD6wLvAbPn1tlcf2tZtK\nuOpQzWsZFo2GXElWVQ8tzlG+1aGwj4/wKcji0VezIS3NJRHsxIkT2CUdT9ke4JdfPCtH2+3FSJbJ\n1X6/LigIf3Mw648fh+zsClcNQEFBW0pzBxLeZQ2PexGnttViYtJRCuDNTq3Q9nYmoz0SEsKY9u3Z\nl9gdv1NHadNTX80ZaoEk8eo337CmqAj69ePkyZPEx8fzf//3f9gUhWukB5GaiXDEusZTzQKHw0Fi\nYuJF6I1KozPsNoeNLstjKdO73oBlZWCKhS0fW5DjVDGrd999l48//riiEMbp7NMUp1rZorRjbOYx\nHho0iaO3OP2V5nQz+qjqfzySLGHJsrB3SLm/9NBkSAqAV9RtY5IRVStQpcRsRq8o6kgPKCkrwWgz\nYi21o3jUkKkFCvjPasY7fTN4fJB7FEL+1nwOTDrAwgfsnApKJN1D7LDDqGvcWqeAwyJj1+iIj+tN\nRAsJWnSF735z7jB+EleaTmCy+PNbcLBaUqeSv77DzJl83Hkg67QK+/p6qBJdzq6xSbDcez90gYGM\nvf1uJuwzlbtinJo2ZWVwy3MFnCnr71HTB+DRZSZ+8ql+5OiDTKyfL8GV9I2CtVraGQxkFgdQZtZS\nncnVSRLHysqIHDFCXQfYuZPinBy+Skpi3s6dWBwOFL2eT+67D7/vv4elS1m4cCGDBg1i7Nix5Fmt\nfP90EVmdDbQpj/jKzc5m47FjPFW+3SXZxtTGftM0Qnr06EFwcDCvvvoq8+bNY8eOHezYsYNhw4bV\nfHA90egMuwOFiV0m8uCIJ1w+37gRvvse3nwDZp1wuicmTZpUoexn7Gkke08pz9weTtt7DzGxuXv4\nmv8V1Y9Qu23oxuGZh4l5rtxfOv9dtWLOUKf/dNfN6oJi81atiFu+XJ0OntVetoPD6sA6WMLg64uv\n3v1BUna8DN0xE+HFVoqNxW7tlhwL4C5nepbgwcHEfRnHk/sSub5za0J07n/GLmN9SF/gy129FR7w\nYDHkOnB/KwDR0eypEht+FrPGxr4EqKLcWoExW4umSMf1p/5iwK971KDxmc76mErLcLKjOnM6Skfn\n6SHw6acwZ47LOQptNt5KT0ev9568I9lrloD1hq8vXHt3MadMJh7v6Hn2sbvIytYLD2WvltYGA0+0\nbcvc995Tfctz5nBveDgjO3Tgpv79+V9uLp9lZzM0JkZt79eP8PBwYmJi6NevH9kWCz/5/sr8tm0J\n7q0mWD0aHs6Atm2Z2lt1NRmz8zEGZlfXDYEHfHx82LhxI/fffz9LliyhT58+TJkyBVtNYdX1SKMz\n7ACBPoFEB7n+UMN04GeD6CDQyJ41of1i/Yhs6YeicZDzNz8iY2qWpa2Kfxd/ZL1MyJDy4VlEOlxh\ngyHO4dpZ9866nTvp9eabqixvtNrf3MIuHE+9kZ3XGGlZVEjBnf+jIHwQvOZcVDy54CRh7XQMVuwk\nGdyzHQF8O3o37LJOJvSaUA7oZPz7BxPqIUFp6rXwfs/DTI6I5G8eVAQdZTDUs+x2rQjRavGRJMrG\nj+e+o56tWmSIzLW99Gi9yIsbDKB3KAQe68Ff/ldAKzv84holFJdqR+4ZwDy9rIZ/VKledNpk4p1y\nkbimjr9GQ6TFokYo+figl2WCtFoifXwI1mpVeeVqUDQSpSsysf1XXXA0HSmgZFc6uR+pRTWteVYM\nMd7vO4F3+vbty65dzhyM4cOHM2lS9QJ59UmjNOwXisMucfg7P9Z7LsuITqdqj2k05RvDhztFxyxh\nkPGQMzIhJUUV0fLG/ferZeDLCchxEPaRBX+rHZ8ACVPr/uAfAKec1q31Q62Jn21gZUY6d7b0rAGe\nbTXBBdgrSQLfFlYiWzho4+H5ZjdemKcmUKuljVZL0htvsGfRIu87uqsVVPD119B1TDSjbFGwf7/q\n3650LQEYD62ntwBTPQ+JLwO+mCnz7wecejiBzwcS2TOSmLHO2aihnTDs58PBgwfp0KEDGo2G//zn\nP5w8eZLbb7/9ovWnyRl2gwG6jytl/4YA7F68Lj/+qCaWxsWhlkqvHDKVboeZBfBZuYSrJEHnzt6/\n0N/fRWBLD8SOhpePHKGHvz+Toj27CCxGIz8XF7G72N0Vc5bZVWqhNkWaXx9BrwEd4a2f4M+98Ky7\nZjqgllAXXBDFoRIhVztnnj7v++DXyc85OxWcN6tWreK9997DbrczePBgtmzZQkCVehENSZMz7BoN\nTHr5DBZFYUmVuOKzdOtWKUoqKsolIYUAE+j2usUS1zWd/fx4u7oHhuCiU1hYSE5ODjkZGRSYzRyr\nEmElyzLtKmm61ETWmiwKf3HmAhiPGMnZmEP7lBSsaWXAhRmCdIuFL3181Dj9nBxOm0z8XlREQE4O\nBRfR31tvhIZeWGHQ2py/lixbtoxly5bVX1/OkSZn2AWCasnIUBdpQZU8zsoCm0EVB6uyCDxjxgz2\n7NmDTa/HqijEVym/l56ezoYNGwgZ5FmP5ywhIfDsz9F0OlgMOGP9jygONiTaaI+F4EE6eo09Pzlq\ngCv8/Wml17PaYFArfmVlcdxkorioiJQsNdjgtuZefJOXKrVIHrpcEYa9KhJYs63sn7Df6y7aPBNe\nir0LGiEmh4PQn3/G/Oyzqg7vETWqyVpayrbUVJ6wRdPmkzWQuw0mO2PeLRYLq1at4nBcHKdMJl6r\nkkU4btw4LBbPssiV+fJLsNubA66GderUAG65pSWTJsUyPHEvGYYitpz0fL74wkJuPKtvZLWqDyW7\nXS2UbjLRSZZZHxurpsp++y3ccQczQkIY1aoVM7p183hOQdNFGPYq6FvriVsfh8PsPQZ9X+soMlLt\njE9MxOAlEiHTYqGfF7mAuuSP4mLCvBRyzmuK0+/zQAF+79uXtmGuiy5jw8J4uHdv2vwRSfP7/gVT\nX/Z8ggtEll3qgLt8rtWq6/aPtm7NX+W5EJ4YFRbGjeHhqlbNggWwZIlq4Nevh3urrEvcdVcd/w8E\nlxrCsFdBkiTyYsO91VUGYJsJ/hZm54me1ftE2xvqN8JgZGgoi06d8touAe29iIxdbuhl2U00TpYk\nfGQZuRFkJ4+PiGB8bRRHH33UmX17661OTQGBoBKNxrB/tg7iblYHIStWwOuzXNtNJlXmoyFYP0Nv\nngAAD3JJREFUulSd0bZv732fqVM1dPagwdKQfFKDNnZdYMnO5K233vLYVlDXAkxGo+rz9kSu59wF\ngUDgTqMx7Dk56pRUp4U7/wEPD3Xfx1tKd12jKOrstrrw9csBjUbGJyyCP71MX6xWq3vc+fkSHQ2b\nN6vlCL1xzTXnfXrTzmIKglzTbW35Nkr2lWDJrtlPLhBcSjQaww6ovgMJ/Hxd6jUILhKSLBM5bhxv\nPX2Lx/Zdu3aRP2pU3XzZuHHeR+sXyJ9DZIJfTMNYxRVTdryMzA8zaRfWDt9OwmVVV8g2GXup3XOj\neIY2CA1q2BW7AmUORn5oI3FXIuydCM/o4J1EelYpcycQ1BVvPK3jtt5xtK6y5hE4MpDYx2LpPbJ6\nWd5LFYPBwLx585g/f77H9tzcXEbV1YO5HFuwjf5b+7Oz2U6P7YqiUKC7sDoDgpppUMMebFaYb3+f\niOTttMyVoSAfDvrBcT0tC+z43puPxqqgaIS0qKD+kWWZJ554gtde81yi4o8//kCuQX/lQpAkiZde\neolPP/3Ua/vixYvp2vX8RH1WrFjBQm8KbOVEe8mMPl8ybslgS48trFy50mN7cnIyXw79ktcuv7Ig\nDUqDGnY/G5TJeqbd9y4/3xUDs2apr6FDWfJgNjffPJ5dfrdj82lcHiLB+XH99dezZcsWr+02m61O\n0q4VRfGoiV253RPLly/n2LFjXo+bM2cOQ4cO5WBOzgX30RNLliypVrP7lVdeYf/+/edt2A0GA61b\nt655xzrm999/59lnn/XYlt8EC12//vrrfPDBByQmJjJt2jRWrXLWJ9iyZQv3338/aWlp9O/fnw8+\n+IA2bdrUe58a3IJaJB2nItpCbKyqsxIVBbGxZAX6UxatpUQTBHbVEWcymdQFuirYSksxFhdX+2MW\nXHwyMzP56aef6NPHc1UgWZbx8aBMeS74aTTk2mzI27d73ccgy/hp3Ktrde7cmc61lHU4bDSypsoa\nQJrZzLb8fILOMwOya9eu1Rrtzz///LzOezEZOXIk6enpGCsVK6mMXq+vcRZRW8Li48mvx1yNUK2W\nvMGDa9wvOjqaJ598ku+//56ysrKKz8+cOcPkyZNZs2YNY8aMYeHChdx88838Wq5/X5806qFxs2bN\ncDgcblWQyhwOdkoSLVu2rNepclNHURRSXkxBF+45wQnLhT849Xp9RTHx+iBcp6NsqIcQqjrkyuBg\ndhcX83WVkMtsq5U9xcVEG41ME6v9AHTq1MnraL2uybfZUC4gUqompG3barXfxIkTAXWmkpqaWvH5\n+vXr6d27N2PGjAFgwYIFvPrqqxw5coROnTrVeX8r07CLpzhAsTPF/DK7d8fDncngcwh2BzB1qhVw\nNTDFxcUeDfuYfft4IDqaMR50xgW1Q/aV8WnugzZci66ZF8MepiWnvXhwDgwKYo2HnIFxAQHc26YN\n4xogn0DQ+KnqQThw4AA9e/as2Pbx8aFTp04kJiY2LcOuxjPK/Ki7lSVxD8Dye2DGDIgbzJtvwqRJ\noRD0Xo1n0QD/PH6c51NSPLYnm0zMatGibrvexJAkiYAWAUxbPa2iAlVVMvOyCA+9wDqcAsFlQtUB\naGlpKc2rCK8FBARQUo10RF3R8K4YSSJfbo6/fyc4EwBKW/CPIze39gXH3+zUiZMmL2V5yul+AUWa\nLxd27NhBkZeydgB/GI28VFragD0SCC5dqo7YAwICKK3y+ykpKSEwMLDe+9Lghl1xOMguzeG61ffx\nfPpe1v/4b/Zkv0RCR0g+CsXaE8zoMaPac7Q2GNxikgXnTlBQEEFBQV7bTxYUwMmTDdgjgeDSpeqI\nPS4ujrVr11Zsm81mkpKSiKvnWg9wURZPFXy1vjw++HFi3v03U+MmMWJwf578Hsb0hquugl4tejV8\ntwSC82DNmjX8/vvvHtsOHz7cwL0RXAzsdjtWqxWbzYbdbsdsNqPVapk4cSKPPfYY3333HaNGjeKZ\nZ56hR48e9e5fh4sUFeOj8eG69teB30tEtOwN7a9jeTH0CoLrqhHeEjQ8R41G7k7yXHA71Wxu4N40\nLubMmeNSwLgq06dPZ1ANRTgElz5Llizh6aefrtj++OOPWbRoEQsXLuSLL75gzpw5pKam0r9/f6/J\naHVNow53rC98fWHYMGf96qoUFtadttWlTN/AQJ5t3x67l8WPb2WZ+R06NHCvGg+jR49m9OjRF7sb\nly2hWm2tQxLP9/y1YdGiRSzyUtB9xIgRHDp0qA57VTsuS8O+bRtUU0MagKZWRex88NNouLNlS6/t\nK3U6rgsLa8AeCQROapM8dLlyWRp2f3/1JRAIBE0RkX0iEAgETQxh2AUCgaCJcVFcMXY7HDoErUsh\nLwVKD9Xs8xYIBAJB7WhYw66oFeMLC2HSJHj7NKw+BfEBasX2i6AwKhAIBE2O2hj20cAyVImWD4Gl\nVdr1wGrgCqAIuBVI9ngmSVWLCQtTR+yMhiEPln+DQCAQCOqEmnzseuBNVNPbA5gMVK0jNgfIALqj\nPgCW13EfBVXYVo+xu5cj4nrWLeJ6XnxqMuwDgQNAGmAD1gHXV9lnLPBR+ftNwFWoA3NBPSF+OHWL\nuJ51i7ieF5+aDHsr4HSl7dTyz7zt4wByAVF1QCAQXBa8/vrr9OvXD4PBwKxZsyo+t1qtTJ48mZiY\nGGRZZns1Vb7qmpp87KL2nKBasrOzSU9P99hmsVgauDdNj7y8PK/X11v5ucuF+LB4bPn1VxpPG6pl\ncN75l8YDGDp0KA899BBTpkxxU3+8mAwBvq60/U/giSr7bAH6lb+XgRw8zwSOoT4oxEu8xEu8zvlV\nla1sdfusLjnX8y9YsEC5/fbbPba1atVK2b59e7XHV/N/915x3Qs1jdj3AN2AaCAbmArcU2Wf/wG3\nAb8D44FfUV0yVYk9184JBAJBOcrF7kBNKLWtFFQ9dTKsr8mwm4DZwPeoo/CPgD+BxaiG/Cvg9fLP\n9wPFqOGOAoFAcFnRmFwttYlj/7b8VZmnKr03o47kBQKB4LKljkbsdUJ9acVMQQ2TtAN9qtlvNOpI\n/yDwr3rqS1MgDPgB2Ic6ewrxsp8d2Fv+2tAwXbukqOl+06OG9O4HdgJtG65rlyQ1Xc/bUdfczt6T\ndzRYzy4C9TxiX45qU//EPZfIjfoy7PuBicCOavapTfKTQGUx8A3qdfq2fNsTRtRr2BuY0DBdu2QQ\nyXZ1S22upwKsxXlPvt+QHWwo7HY7JpPJpTSe3W4H1DqnJpPJ7f05chPQBogD7gRW1U3Pz5+teB+x\nD8U14uZRYEG99+jS5DgQXv4+Au+r5EJKzTu1ud+2AH3L35+N8Go8jtPGRW2u5+3Aijr6vguOWjlX\nanv+p556SpEkyeW1ePFiRVEUpW3btookSYosyxX/JicnezwP3heI30M17mdJxD2fyIWLWWjDU/LT\nNRenK42eSNTEL4AzeE8AM6AuasvAC8Bn9d+1S4ba3G/eku2y6rtzlyC1uZ4KMAkYjjo4mYs3Hanz\nQBuqZZu0ra5O5/H8taG60ninTp2qi654SxRN9XbAhRj2H4AWHj6fjxotUxONZ6WhceDtelbNG6iO\ns2GpMcBPQALguRL15Ye43+qW2lzPTcAnqHIkd5a/r7N6drVJHmpCVJ05Vnv9L8Swj7yAY0F92lQW\n6m2N61PpcqO665mD6oI5gzp6z/ay39nPTwKbUd1gwrCr1OZ+S0X1ZWajznrCUa+9wJ3aXM/8Su/f\nA16r7041Uc5e69/Kt6sdrUPDVFDy5qOsnPykQw2ZrBpWKVA5mwRG+b//87BPMOp1BNUgDUNdRReo\n1OZ+q3ydq0u2E9TuekZWen8DcLRhutbk+B8wvfx9H9Tot7SL0ZGJqE/vMiAT5x88CjW64yxjUBcC\nDgL/bsgOXmJUDnfcjDPcsS/wTvn7q1CjkRKAw8B9DdzHSwFP99tiVKMDaqTHZ6jX8RegXQP371Kj\npuv5Auo9ewCIR43qOF/qak200YLqXjmNGhZ6D65Z/q/jDHesLoQcECv+AoHg0qDc9jVdyuPg68Qm\ni2LWAoFA0MQQhl0gEAiaGMKwCwQCQRNDGHaBQCBoYgjDLhAIBBeAt9J4v/76K9deey0hISEEBwcz\nfvx40tIaJkpRRMUIBIJLAbeomPj4MGy2fC+7XzhabSiDB+fVuN+XX36JLMsVpfFWrVI1ujZv3ozF\nYmHUqFHY7XbmzZvHkSNHvBb7rsuoGIFAILgUcIv73rq1fmPbz/X81ZXGUxRF2b9/v6LX6722U4ey\nF8IVIxAIBHWAUkOc/datW+nRo0eD9OViqjsKBAJBk6G6Qhv79u3jqaee4quvaqOPeOGIEbtAIBDU\nAd5G7MeOHWPs2LGsWLGCq6++ukH6Igy7QCAQ1AGeRuzJycmMHDmShQsXMn36dA9H1Q/CFSMQCAQX\ngN1ux2q1upTG02q1ZGZmMnz4cObMmcPdd999sbspEAgEjY4Ljlo5V2p7fk+l8RYtWqQsXrxYkSRJ\nCQgIqHgFBgZ6PQ91GBUjYiYFAsGlQLntc9JY4tjrirqMYxeGXSAQXAq4GfamhpDtFQgEAoFXhGEX\nCASCJoYw7AKBQNDEEIZdIBAImhjCsAsEAkETQxh2gUAgaGIIwy4QCARNDGHYBQKBoIkhDLtAIBBc\nAN5K4x08eJA+ffoQEhJCQEAA/fv356effrqIPRUIBILGhZu2Smho6Fl9lXp5hYaG1korZv369cqG\nDRuU2bNnu1RQKigoUE6dOqUoiqI4HA5l+fLlSlhYWINoxQh1R4FAcEmSn59fY9WiC6G6whmVmThx\nIgC///47qampFZ8HBwcTHBwMqAqQsizTpk2buu+oB4RhFwgEgjrA20MmJCSE0tJSoqKiGswVI3zs\nAoFAUAd4G+EXFBRQUlLCzJkzmTJlSr3OMs4iDLtAIBDUAdUZbL1ez+LFizlx4gT79++v974Iwy4Q\nCAR1QE0+eYfDgcPhaJC+CMMuEAgEF4DdbsdkMrmUxrPZbGzdupUDBw4AYDQamT9/PlFRUXTv3v0i\n91ggEAgaBx7DA+uT2p7fU2m8xYsXK+vWrVM6duyo+Pv7KyEhIcr48eOVEydOVPt9dXWxRAUlgUBw\nKVBu+5yEhYWRn19/pfFCQ0PJyxOl8QQCgaC+cDPsTQ1RGk8gEAgEXhGGXSAQCJoYwrALBAJBE0MY\ndoFAIGhiCMMuEAgETQxh2AUCgaCJIdQdBQJBo0er1RZLkhR4sftRn2i12mKbzXaxuyEQCAQCgUAg\nEAgEAoFAIBAIBAKBQCAQCAQCgUAgEDRS/h9omO6C2GnpPAAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(Pt_Lep)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEnCAYAAAC9jGg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGX/x/H3mRUYtkEQxA3EDXDfysTEsrTdSs211NIy\nWx9bbPFRs/rV02Klli2madlqu5aWhYqaK+4bLqAIArKvw8yc8/tjyC0NUHAEv6/rmsszZ86c+c5w\n+Zkz97nPfYMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFEreYBbAASgH3A9LNsYwa+BLYDq4GmF606\nIYQQ58Wz/F8D8BfQ+4zHJwBvlS/3B364SHUJIYS4QF64jt6jzli/HOhcvqwDMgHlItYlhBDiFLpK\nbrMFSAf+BHad8Xgj4Ej5sgpkAfWrq0AhhBBVU5lgV4EOuAL8aiC2JgsSQghxYSoT7H/LAxYDV56x\nPgVocsr+6uFqjjlNRESEBshNbnKTm9wqeWvfvr0GzKOKKgr2eoBP+bIncB2u3i+nWgIML1++DViL\n6yj/NAcOHEDTtEv+NnnyZLfXUBdqlDqlzkv9Vhvq7N+/P8A9VQ12QwWPhwLzcZ0M9QAW4jpqnwps\nBH4CZgILygO/ABha1SKEEEJUn4qCfTvQ8SzrJ5+ybAMGVVtFQgghLkhV2tgvC7Gxse4uoUK1oUaQ\nOqub1Fm9akOd51vjxexvrmmadhFfTgghaj9FUaCKWV1RU4wQQrhdQEAAOTk57i6jRlmtVrKzs6tl\nX3LELoS45CmKQl3Pj3O9x/M5Ypc2diGEqGMk2IUQoo6RYBdCiDpGgl0IIeoYCXYhhLhA2dnZ3H77\n7fj6+hIeHs7nn3/u1nqku6MQolYKCICa7AFptUJlex+OHz8ePz8/srOz2b59O9dccw3t27cnKurM\n6SsuDunuKIS45J2tK6CiQE1GSmX3X1RUREBAAImJiTRp4hrodsyYMQQGBvJ///d/VXg96e4ohBCX\nhH379uHp6Xki1AHatWvHzp073VaTBLsQQlyAwsJCLBbLaessFgsFBQVuqkiCvUZERETg4+ODj48P\no0aNcnc5Qoga5O3tTVFR0WnrCgsL8fHxOcczap6cPP0XS5YsYeHChQCYTCbefvvtSv2xkpOTyczM\nZOXKlcycObOmyxRCuFHLli0pKSnh8OHDJ5pjtm3bRps2bdxWkxyx/4ulS5cC0K9fP5YsWUJqamql\nn+vj44OXl1dNlSaEuERYLBbuuOMOJk+ejN1uJyEhgUWLFjFixAi31STBXoGuXbsyfPhw/Pz83F2K\nEOIS9e6775Kbm0u9evW44447eO+994iMjHRbPdIUI4SolaxWV5fEmtx/5be18t1339VcMVUkwS6E\nqJWqaejyOkmaYoQQoo6RYBdCiDpGgl0IIeoYCXYhhKhjJNiFEKKOkWAXQog6RoJdCCHqGAl2IYSo\nYyTYhRDiAsycOZMuXbrg4eFxyYzmWtGVp42BzwArYALmAP87Y5tY4AfgYPn9RcCL1VeiEEL8U8Cr\nAeSU1tzceFYPK9lPV3x5a8OGDZk0aRJLly6lpKSkxuqpioqCvQx4ENgBeAObgaXA1jO2WwHcWu3V\nCSHEOeSU5qBNrrm58ZSplRuI5vbbbwdg48aNpKSk1Fg9VVFRU0w6rlAHKAS2AaFn2e5izp0qhBCX\nnEtpTueqtLGHAV2B+DPWa0B3YDuwHGhfLZUJIUQtotTkUJNVVNnRHb2Br4FHgTMn8tsENAJKgeuB\n74Hw6ipQCCFqg0vpiL0ywW7EdUJ0Ia7QPlPhKcvLcLXLhwDHztxwypQpJ5ZjY2OJjY2tfKVCCHEJ\nq64j9ri4OOLi4i5oHxUFu4KrJ8wuYPo5tgkEjpcvdwYsQMbZNjw12IUQoi5wOp3Y7XYcDgdOpxOb\nzYbBYECv15/X/s486J06dWqV91FRG3sPYDjQG0gov90A3F9+AxiCq319O/ABMBRQq1yJEELUQtOm\nTcPLy4tXX32VTz/9FE9PT1566SW31lTREXs8FYf/jPKbEEJcNFYPa6W7JJ7v/itjypQpl1xrhEyN\nJ4SolSpz8dDlSoYUEEKIOkaCXQgh6hgJdiGEqGMk2IUQoo6RYBdCiDpGgl0IIeoYCXYhhKhjpB97\nDcvPz2fTpk0AREZG4uXl5eaKhBB1nRyx16DGjRujqipjx47lhhtu4MMPP3R3SUKIalZWVsY999xD\no0aNsFgsREdH8/33Zxsv8eKRYK9BrVu3ZsOGDWzatIkRI0bgcDjcXZIQdUdAAChKzd0CAipVhsPh\nICoqio0bN1JUVMTrr7/OsGHD2L9/fw1/AOcmTTFCiNopJwdqcgz0Sg7D6+XlxdNPP33i/g033EBU\nVBSbNm2iefPmNVXdv5IjdiGEqEbp6ens3r2bNm3auK0GOWKvJrm5uaSlpQGX1kwqQoiLx263M2zY\nMEaMGEF0dLTb6pBgryajR49m/fr1+Pj40K1bN3Q6+TEkxOVEVVVGjBiBh4cHM2fOdGstEuzVxG63\n895773HLLbe4uxQhxEWmaRr33nsvmZmZ/PLLL+c9e1J1kWA/Q1paGq+//jqqqrJixQqaNWvm7pKE\nEJe4cePGsXfvXn777TdMJpO7y5GTp2faunUrixcvpkmTJtxzzz3079/f3SUJIS5hycnJfPDBB2zZ\nsoWQkBB8fHzw8fHh888/d1tNcsR+FmFhYTz++OPuLkMI8W+s1kp3STzv/VdC06ZNUdVLa5pnCXYh\nRO2ULVPjnYs0xQghRB0jwS6EEHWMBLsQQtQxEuxCCFHHSLALIUQdI8EuhBB1jAS7EELUMRLsQghR\nx0iwCyHEBRo6dCghISF4e3vTuHFjJk2a5Nbhuyu68rQx8BlgBUzAHOB/Z9nuHeBawAbcCyRUY41C\nCPEPAfHx5NTgdJNWg4HsmJhKbTtp0iTmzZuHyWRi79699OrVi27durlttNeKgr0MeBDYAXgDm4Gl\nwNZTtrkTaAJEAx2BuUCHaq9UCCFOkeNwoMXG1tj+lbi4Sm8bGRl52n2DwUDDhg2ruaLKq6gpJh1X\nqAMUAtuA0DO2uRFYUL6cgOvLolF1FSiEELXBgw8+iMViITo6mueff55OnTq5rZaqtLGHAV2B+DPW\nNwKOnHI/BQl2IcRl5t1336WoqIgVK1YwefJk1q9f77ZaKhvs3sDXwKNAwVkeP3PsTJn0UwhxWerR\noweDBg265MdjNwKLgIXA92d5PAXXSdZ15fcbla/7hylTppxYjo2NJbYG28eEEMJdHA4HRqPxvJ4b\nFxdHXBXa98+momBXcPWE2QVMP8c2S4DhwDdAJ8AJHD3bhqcGuxBC1AWZmZnEx8dz4403YjKZiIuL\n44svvuDHH388r/2dedA7derUKu+jomDvgSu0t3GyC+OzuHrBALyP62i+N7ATV3fHUVWuQgghailF\nUXjzzTcZOXIkqqrSrFkzZs+eTc+ePd1WU0XBHk/l2uEfqoZahBCi0qwGQ5W6JJ7P/isjMDCQVatW\n1Vgd50OmxhNC1EqVvXjociRDCgghRB0jwS6EEHWMBLsQQtQxEuxCCFHHSLALIUQdI8EuhBB1jAS7\nEELUMRLsQghRx0iwCyFENUlMTMTDw4MRI0a4tQ658lQIUSvFB8TjyKm5qfEMVgMx2VW7unX8+PF0\n69YNRTlzJPOLq04Hu6qqqKoKgE6nQ6eTHyhC1BWOHAexWmyN7T9OiavS9l988QVWq5WoqCj2799f\nM0VVUp1Oum7dumE2mzGbzVx55ZXuLkcIUUfl5+czefJkpk+fjqa5f56hOh3sOTk57Nu3j927d5Ob\nm+vucoQQddSkSZO47777CA0NdXszDNTxphghhKhpW7ZsYfny5SQkuKasuBSO2CXYhRDiAqxYsYKk\npCSaNHHNP1RYWIjT6WT37t1s3LjRLTVJsAshxAUYO3YsQ4YMAVxH66+//jpJSUnMnj3bbTVJsAsh\nxAXw9PTE09PzxH1vb288PT2pV6+e22qSYBdC1EoGq6HKXRKruv/zMXny5GqupOok2IUQtVJVLx66\nnNTp7o5CCHE5kmAXQog6RoJdCCHqGAl2IYSoY+TkaRW8//77BAUFERERwaBBg9xdjhBCnJUcsVfS\nM888g9lsJjk5mYkTJ7q7HCGEOKfL7oh9w4YNTJ8+HXAN5fviiy8SFhZW4fNGjhwJwMGDB1m2bFkN\nViiEEBfmsjtiX7t2LVlZWdx8881s376d3bt3u7skIYSoVpUJ9o+BdGD7OR6PBfKAhPLb89VSWQ1q\n1aoVQ4cOJTQ01N2lCCHqgNjYWDw9PfHx8cHHx4fIyEi31lOZppi5wAxg/r9sswK4tVoqchO73Y7D\n4cBms7m7FCFEJcTHB+Bw5NTY/g0GKzEx2ZXaVlEUZs2axejRo2usnqqoTLCvAsIq2Mb9I8tfoHr1\n6mG32wEYPHiwm6sRQlTE4cghNrbmxj6Pi6tarF0K47D/rTra2DWgO66mmuVA+2rY50VXUFBASUkJ\nJSUlzJ07193lCCFqmYkTJ2K1WunatStLly51ay3VEeybgEZAW+BV4Ptq2KcQQtQar7/+OkeOHCEr\nK4sJEyZw5513snfvXrfVUx3dHQtPWV4GlAEhwLEzN5wyZcqJ5djYWGJjY6vh5YUQwr06d+58Ynnw\n4MEsXLiQn376iVatWlV5X3FxccTFxV1QPdUR7IHA8fLlzoAFyDjbhqcGuxBC1FWapp13m/uZB71T\np06t8j4q0xTzObAGaAUcAUYD95ffAIbgal/fDnwADAXUKlcihBC1UF5eHn/88Qd2ux1VVfnmm29Y\nvnw5N910k9tqqswR+5AKHp9RfhNCiMuO3W7nqaeeYt++fWiaRqtWrfj666+JiopyW02X3ZACQoi6\nwWCwVrlLYlX3XxmBgYFs3Lixxuo4HxLsQohaqbIXD12OLruxYoQQoq6TYBdCiDpGgl0IIeoYCXYh\nhKhjJNiFEKKOqRPBvnnzZpo3b06zZs1o1qwZP//8s7tLEkIIt6kTwZ6amkrjxo35/fff6dGjB0lJ\nSe4uSQgh3KbO9GO3WCw0a9YMPz8/d5dSI9LS0pg6dSpOpxOAMWPG0K1bNzdXJYS4FNWJI/bLwZ49\ne/jzzz/p1q0bhw8fvuDR34QQ1euLL74gKioKHx8fwsPDWbVqldtqqTNH7JeD0NBQxowZQ2JiortL\nEcLtAgICyMmpuanxrFYr2dmVu7r1xx9/5LnnnuP777+nbdu2ZGZm4nA4aqy2ikiwCyFqpZycnBqd\njk5RKj8OzZQpU5g2bRpt27YFICgoqKbKqhRpihFCiAtQWFjI1q1bSUpKomXLltSvX5/77ruPkpIS\nt9UkwS6EEBfg718OP/zwA3/99ReJiYns27ePSZMmua0mCfYL9GtWFpMPHWJvcTGfpacz+dAhdhcV\nubssIcRF4u3tDcBDDz1EQEAAfn5+PPbYYyxZssRtNUkb+wWalZqKj16Pgutb8recHLz1eiItFsA1\nRVaew4FNVSlxOsm12/HS6zHp5DtViLrAarXSqFEjd5dxGkmXajCkfn1aenkxJDiYHmf0o/8qM5P6\na9bwYWoqLyUn02jtWm7evt1NlQohasKoUaOYNWsWubm55Ofn884773DzzTe7rR45Yq8B2Q4Hh8pP\nnCSVljI8OBhro0aEhobSvX17njhwoEZfP6W0lGnJyadNPNvS05MnmzSp0dcV4nI1adIkjh8/TkRE\nBAADBw5k2rRpbqtHgr2aNff05JXDh/kiI+PEugdCQ8n4l+fs3w9ndk3X6aBXL/DwqHoN24uKWJ2X\nx6PlPw+P2+28m5oqwS7qFKvVWqUuieez/8oyGAzMmjWLWbNm1Vg9VSHBfh5sNtuJOQ7LbDZo0ODE\nY/eHhnJ/aOg/njPhX/b32GOQlgb1659ct3EjfPIJ3Hjj+dXY2MODMeV1HCop4YO0tPPbkRCXqMpe\nPHQ5kmCvooCAAMLCwhh10ygyczLpZInBq+ET5B7OJXFHIpmOTIJur9rFCaoK06adHuI33+xaL4QQ\nVSXBXkX+/v6sXr2azTGb+TX8VxZkbqF0YkO8J3vjafSkeE/xvz7fU6djQ0EBDdasObGuND+ah6ib\ng5cJIS4+CfYLYAwyUmLXobbxxOBrwGCu+OPs6OPD0e7dcZZfCp3jcNDeaavpUoUQlxEJ9vOQnQ0l\nJZCTDfZ8PSmJeoqKQDNX7vn1TaYTy2adDpBgF0JUHwn2CvyVl0d++RjoACZF4ZWh/ty+A344CBlO\nH16624e0g9CnpxsLFUKIchLs/8KpaVyVkECfU7o9xefl0b60By1bwsjrYFZqLjNm5jI6Uk52CiEu\nDRLsFVCAZe3bn7jfYt06qORIoenpcPToyWVVhS1boG1b0Ourv1YhhIDKBfvHwE1ABtD2HNu8A1yL\nq7H4XiChWqq7yAocDp47dAh7+YlN9QLHeh41CvbtA19fSEkBoxHmzIHvvoNrr62OioUQ4p8qM1bM\nXKDfvzx+J9AEiMYV6nOroS63OGyz8XVmJu0sFtpZLHTw9ubzqKjKPVnToKAAjqbC5s2weTOO7Hze\nfTWfzZthxAj4z3/gqqvAbq/Z9yGEuHi8vb3x8fE5cTMYDDzyyCNurakyR+yrgLB/efxGYEH5ckL5\nPhsBKRdUmZsEGAyMa9iw6k8sLYUdOyA9DdYsd63b/RZ8uBHu/E/1FnnmSzud7Ck+2X/+gBsH+Bfi\nYgkIgBqcGQ+r1dUDriKFhYUnlouKiggJCWHQoEE1V1glVEcbeyPgyCn3U6jFwX7eNA2Cg2H8A/DM\na651bVLBue6f25aprA5ei7PQiQb8WKrhcYfCKg+FLgld8Az3rNJLf5SWxtTkZBqe0o3y1sDAC3gz\nQlz6cnJc/+1qyvkMQ/PNN98QHBxMTExM9RdUBdV18vTMj6AGP+46wKHiLHLSI6MHOXY74dcX8uVE\nK0GTN+PIq/oEuHZNY3hwMNObN6+BYoUQlfXJJ59w9913u7uMagn2FKAx8Peh6TmP1qdMmXJiOTY2\nltjY2Gp4+fMTHv4nSUllLFuWi6K4xl5s75dP6KvHoVvV96cpoCoKTk3DVt7vUTWoOM/xra8oCnqL\nHp1dpVSvAw89SE8ZIWqt5ORkVq5cydy5F3aaMS4ujri4uAvaR3UE+xJgOPAN0AlwAkfPtuGpwe5u\n6em+NG9uY/x4O1ddZeOKK8DskUVZyvldBZrX3MYaXwv7k5L4clUyAPbXYK3aicKa/L0ohLgkLFiw\ngJ49e9K0adML2s+ZB71Tp06t8j4qE+yfA72AQFxt6ZMBY/lj7wOLgN7ATlzdHUdVuQo38fIy0KpV\nEN26NQZAr3dW8IyTHHlO8lbn0aDAgemldFQFonc7Ga73Y6YlAt8uvlzfJpXfZu6r3qLz8qCoCMxm\nV+d4cI1vIFPtCeFW8+fP59lnn3V3GUDlgn1IJbZ56EILqW3sWXZUXxXVAHi62lsUBWyHbaR/no4l\n2oJBVTHZQHNW4xF7cLDr6iZFgQ8+cK2LjYXJk6vvNYQQVbJmzRpSU1MZOHCgu0sBLuMrT3WaBnYN\ne7Yd2zFX84u/qqKdce5SU08PZUXVTpwZ9or0Il1voOw/9eFXDUNACbYDNlLfSSXt3TQet2k81Q9W\nKivJapGFzlPHrek7Mb6p/fN0c2VomqsT/COPQGAgPPWUa/3IkeCs/K8NIUT1mj9/PnfeeSeW8kns\n3e2yDfZbnXb27yll30P7qGeuB8CswnwO/egNM1zbqGUqq+utxll0MjRnA09o+ag40Zl1cMoXQVFY\nCWEjw3DkOoh4JYLr26Sy6rV9JOVH4jHfA4vVQqIWSPMYaPrfYNLLysix29G87eRQhlXTsKtnP7rX\nNCcaKk6Thqo6UFU7TmcJOp3prNsLUddZrefXJbEq+6+s2bNn11wh5+GyDXaTplFaT8/bzxn4qLsB\nroTnPT0Zm5vN//73P8AV7Mmlyfz36H9pUD79XYt16zDc5yD7SA6/b/ydzJIDvPHAA6iaRnJe3j9e\np9QT6verj3mNA1NwHmsSnbz9yQS06+6Dn8u3H2flHoeN94vM/HfjUjpnb2LP8XuYt2Ud8R57GNFu\nBIcPv0peXjyrv9c4Ou8dCgsV4uOnEhh4O1C1fu9C1AUyM965XTbBXlRUxLJly9izZw8Gg+ttq5pG\nkNHIwjZtiAQaBAbhX5JJ8vHjrsftKkucS4j5I4Zhw4ad2Fdebg6gER4ezvbcEjr36cOKA/M5UlBw\n+ov+fTTRuzcZ/qtQsg0UHr+BBo0VnEoq71lGsjwniFkvrceZ/AD43Y2i88Tfwx+zUU/c+7ey9ONu\nzPeoh6FkOMczS9g6sRm2GD9CGzakTZv2HDnyOnpzEEY1F7s9y/WyihGDwbeGP1EhxKXqsgh2/UY9\nrTxbMe3+aQAMaDcAnepkI66p6lqXt4sFWa009A9lWPkRu7PYydYZW8+6T09PT1pHtmZ5ahGxAwYw\n/f35/9yofjCwD6ZMQXu3Hw18BuNpCyEvC7w8wmkSMo4hDXXM1usx2D3wKvOiOK2IPfF7iG4wi64R\nrbF1tLHK1JnuiYv4/kOV+W1vYW/OD+j8/DAagygq2kbU7QW0zv2VdetcHeEdjjy6d0/BbA6p9s9S\nCHHpq9XBnp0Nx4+7hsYtKnKNpJif/8/LjJPeTOLxkMexh5wcfet7dJT66aplptG/R4HUNJVCr7Uc\n7/QAqfE6cgoWAQrx+jvQlDJ04c3RPD1BVTDqjQR4BlCqKihmM4+YPfAsKcFQVka9lBS8tSN8fGQ9\n/YbeitNUQLSSy29GhUmffsak0YFogK9vF3r0yGT6yJEcnjCB6W1dg2+uXRuGqpZWwzsTQtRGtTrY\nb70VkpNdHULy8uDmm+HAAShvDj9hy5YtZPTMIMMn48S6ZUHP4e3rmssuf2M+AMV7iylzFrKmYflE\n0xoEOp9hzsgoxo51rSpRu4BNQRdy6MS+5m6Zi4ZGRnEmnx94l6tLW5Dy4XCKjzYDDmGa+BWGgx+Q\neTgf7YzRFlS1iJaJTuo778VLA2uZRvytz6I6VWz2LewojCDH38SqkhYYtB0YtTKMNhv6khLXwGMe\nHtX7oZ6nA08fIH1B+j/WN5nYhEaPNHJDRUJcvmptsKuqysaNLTCbc3A6y7j55pv48ksICYHDhw+y\nZs0aSktPHrWOHz+eJgOanLgfEwMZJa6LemzJru6OBS2t6AIC8A04Gb4tlui437aHrrkhHMw+SM/t\n+2j44SsUrh3FyqSV5DjLSDiWgIKCXe1HeuEg5m3Yg1+XviRluL4w7mn/MCXHi+m6U+WAx158/FWc\nmpNpG+PJyVvD8Vv38W3YdprOeZ5A8xsolhSutjzBrlEvMbfdVfzRshE7CnJpnbeJa1FY9pWOANVJ\nwhdvcfVDXjxt78echDl89PMcGng34JMuF+MvcLqS/SWETQ2j3k31TqxL/SCV0kPyy0GIi63WBrum\nadhsh/jpp+N07uwaExnAYunCjh0f8MQTf9GyZUvq1atXwZ5OKvX3xPRCNG2uPrnu2uBdXJNRisUC\nmxNXUWrwwuKhR6/T4+flR+F336JttKAdzycgvBNhzYopKMikQQMTL3e38hhwMPQgzkAHKU1S0Lr/\nRL5nCGTfQNLulbwc8yIb5+hom1aCt2coXZqN5Wf7szy+dzI8Bpv/XMXS5kP4ywbqFvAZruK/PRof\np8KE3Vmk/mcnH97/EHe3u5spA56n4ZsNgQbneos1yhhgxBx6ckZvg58BZ570rxfiYqu1we6i4OcX\nQEDAyTVBQSN5662RXHnleexuzx7o8xDo4k+us/162iYmvZm29dvgZ/bjrfveInXoUAYHBfHshg1c\n+fPPjB27n/T0xbRpMxqHqvHYSrA9V8oj+x5B/7ueNakTyC18Bl7Uk/CSD9k+s/giP4EoH4USAtn7\nbWsefuhVrj2QwPOvtiPOL4i9pVvxUXMozmrL8OV25ntnodN5olN0eJl9UHC12XsWeeJf6I+W7Ys9\n3YneswzFqFSqN2Sp00nRKZO2KoDVYECpyY7CQogaUcuDvZrZy+DFafBIx5Pr/BPAdsbAYEVFUFSE\nYdUqLN28aJCair5evX+E4N9PKykBpwO0AgelmoEsyxWohjDev3I7dkXFtsrIXwPHEP7LHuxNitEb\nsqjfajia2c5P+UeJaduS4qYN2P/xg8DzeBk96Vi/I+bkkz12jLkqGzpuYLbHbMo+0LHNeBSFY9iz\n7DTc05GK9N66lV1FRRjK30OB08mi6GhukXHdhah1JNjPZDCecUKyPKwXLKBZ8mo8OlwPq1dDblf4\nYyfNW6qY8jcxqEEDmvc9Snr65xQV7WTTpklMfSEUHo8koB5odgNtNQvFhdnkNe6D4szjg731QYPc\nADuJvZIp+rOMNjc9CTonoeGb+XGxxg03wFPD4zCaFY732MHULfdTtnEV+83+PDR4MI+Uz5ykLwNj\nfSODHxxM3LUN6NAhDk/PMP6K+AvNpv7zfZ6h2OlkZceOtC9v0rpr506K1YqfJ4RwDdk7ZswY1q5d\ni8lkYsCAAcyYMQOTyT1Xhl9WwV6WWUZJomvaOOfuHBRnGtaluyle5+q3Tn4BGM4Y68FsBlspK1cu\nYLkzEXt9O1ujC+ld4MFng9oSHfACqcGhOOwWnN5WFMWAougoK7Mzdsx/+YmvKSmGJ57QERpqpXPn\nTJ6aMYO8Fk+x59jff3QTEMWGVzeg9ynjGe0V3q9/E9FR7VBVJ1+Ors9XPbvx7X1L2ZdxDGdBKek5\nCqs7NOHLYak8qdlRPvsaJbMLm98po6jJUZY9GMvem0fQLrcHS+d8TF7ZId79+WdGqCo+ZxnPYmh2\nNlxCwyoLUZGAVwPIKa25ufGsHlayn67c5a0PPPAADRs2JCsri5ycHK677jrefvttnnzyyRqr79/U\n/mDfuhXsJ+ccpKQj4HXWTQ89f4ic33MwBZsoyW2IzuRH9JaGZNW/Co69Dh3aQ9szGqQ9zJAPL/RU\nyS6xYteOsqWRJ7k4+Co5nmFNc5m5PZ0dYY/j/edsftyXgpeXkbWrfJj/nxLQnFy/bRv7MjMxl5XR\nICAAZ7/gfF3SAAAgAElEQVQYOh7/nswpz518HZ0OR9Q1qPY0vEuLsXjb2Mg4OjCLtr37MLxtSzTt\nV8IPLcNmVLkyogmhhRvpHLiQvqv/Qs2wcsDRiUb54HePA0gmf8sr7OATHp4xg8eUo/jZHeR5Gvn9\ntpNNM9FB0TTwacB/3nmHPRMmgI9P9f1thKhBOaU5aJNrbq4DZWrlzy/t37+fRx99FJPJRHBwMP36\n9SMxMbHGaqtI7Q32jPI+6TNmgM9u17KmwbbpwBVnfYrm1GjyTBNC7wvF27KZ4mYG4h/05dVxPV0t\nLhZv0INTdfL5js+xOWyU2F0hmJydSqh3E/p5BBNQ3I6GSn1eCdeRoxkYENaYPSYn9cKzadTKwW2/\nOvk/5wfkOkv49O0X8bSGMW/zZgKB65OTSWp3mKvCUzjWtfHJ4hK24Ig+js+6VGbMe4N6WTOx6myg\namQFBWGw+JFyuA3PDt7N11/a0OcfpXPbQAyt7ay+xUmWoT3N7wkm6GETv/cIYdpt6dzz4JuY3wxj\ny7szmBSYTeRbrxMR2452fTsB8OuBX4lp3JTJsZOxvf12zfydhLgM3HDDDSxcuJBevXqRnZ3NL7/8\nwosvvui2empvsP89TO1HH52cyk5VQb/+gnednJfMuMXjGBQ1CLvaBoD9O/ZzYFMa+oMhaEX5dCSW\nnD1gsjRieMy7zNhdSE/lduYNmwrvxVDWP5Y1pjdYsW0dQUEHSc/Kodio5+c8O72aNiC4cTdatfrg\n5IveBBs6bCBiXmsiem5jR9euZD94EOa1Z+P1g7i+eXM+f+hh1Csmsvr450QFXsHHjCFas5M0dygD\nxxRjNIAeHUYvhRK9QpMoL9J1OuxenhT7+NEwJIobo27lrqvuAiDfln/Bn5UQwjU7XJ8+ffD19cXp\ndDJy5Ehuu+02t9VTe4P9PCWUJfD8D8+T2C+L0p37yEtcwOgfNgCwL3I0+wsfpRE+BHkFMee2OeyO\nKoO1a2gR5uD6qHxaGV0DfbWcnYS+2WYsrfT4+wOKwsqVKxk+fDiT9u3j6z/MtGyicMvbOgIDFQ6+\nA4GBCkOH2oAkPD1vrrBWj6YeaE6NB4YWohn2kpsfhdWmJ/ioF+3i65EcacZ7qxlPm4Ggv0qxH7Pz\n6WufUtbnaeze3uTrdGgKlAAaCnbDZffnFqLGaZpG3759GThwIOvWraOgoIAxY8bw9NNP8+qrr7ql\npjr5P92WYaNwu/20daXJpTiyHayzreNowVF8j14Jym58fCOIaRLDXOZiM6fwn4Rr8NujI7skh2bT\nQ0iL8YK1c0jVNAb0X0JMkxgAtn6znbB2d5Csd82Y4uvry333309DhwPrhg107XwVmWWjaNOmE1FR\nUXzzzQRCQ0Pp3n1Cpd9H2KQwlBcV3vjVl5dbtSLgbn9MVweTuczEweuD8b41GL8B/jhfN7PNYzeR\nhjyeKHyCtC0PY/ugFXcancytV8z7WinozXw3ahT5b7/H6tUJAHi1XkVEVHWMliPE5Ss9PZ1Nmzbx\nxx9/YDQaCQgIYPTo0Tz55JMS7FVVluma4WLPvXsw+BSfWF9EGDtv24mpqQ2Dj+vtaU6No28fxdvP\nm7b3fUOM5yHsz6xjyktF3OKVSsuiXwCYFG5n6fqHib32U1L8izAc6cKiX8fDjUv4KUZBOXIbq4+4\nXkebpLFDU1AK9RgM/hgMJdx6yy1EWiwwezZ9+/Z1jVtQjdq3hw9WQf4RA38lmNCFqSz5y8mT/R8j\nJOhnvPzNNO3ZiLxwK102PEvjUAcWbTIxaR+zpSSJ3Y3fpHcfH+7s68+MY0dIdzQjhu8IiI8nSdPw\nlHlThaiywMBAAgMDee+995gwYQIFBQXMnTuXqKgot9VU64O90aONiIgqb29XVTx6HqbVRIXuNzr4\ne3qjlb0h+LVwZnYsIya1hPedj7Bt49VkOacwR38LHZrfBbSmfbtVtGu7FaPJyfHSMkJabaNf23vA\nVEyTrVFEbDrZm2Tz0ptoNiAH/3fHla+58Lb9ikybBq22BTLiwW0UNd4G4cXgv5VluUuJbeJE/8VN\nTFI0UNagxGiu2WU+G0zP/Ef4cv8+aKrQoMGNtG49iA+PrSDkq98YOtTJ/iuuwEevx9fr7L2JhBDn\nZjAYWLRoERMmTGDq1KkYDAZ69+7t1lmVam2w/827nTd+f5881TT0/hlYlrwJ8btObuS8mWN5eSzJ\nKqY3Kl6ahrarHkbVRAEWbtuTBsDAwm+xehei15zkmUwM8AskeOavXP1HF3bPVNnd0IAC9LbZYJUX\n/LIQGHdmSTVqeLvhvNY6juYhIfi0G0Yv/4fJLnPw++FibhmUhT3XwR0fW3jqg5+ZOONOVv76CFdc\n0wF9yl+cebmRzuZAVZ2sOrCEG1UHy/YtxuHthV6nR9WaXtT3JURVWT2sVeqSeD77r6yePXuyfn3N\nH9xVVq0P9tMoCrRqBW+9D6eOFaO8CppKfZMJ79IyoosPk/5LGclhGgXZ+2mb8BnbgZxnQrh2xGtY\nwjey1BFLovUx1nXrxNVfBDO7lWtAmo0FBcxu2ZImb+6F5HxXd0uAFi3gs89c4wikpl68twzodKDo\nypcVKj1RtkdWVzQ03t/wMdc57Wz6dDqlZgN7snYQ3mEywcFNXBM/dumC6wyxEJeOyl48dDmqW8Fe\nkexsApOOMerNRTxU8jN37Cnl/tc30Fc14QP4pLSmT0hnunQI59VGEwj2DubbGz8C7uTndu0AuGPH\nDteRr9kMffq4ZvcAaNoUkpKgoMA1UHzr1hflLR0tKyPf4SDXYceuaSQ31nAaTj82V9VsAo02HGoG\n+sVfULr1d+pf05tH9i7HWKznyINv853TytUzUwC4pr4Bz/ULifC3uAa8f+QRmFD5k75CCPeqk8Hu\nUB1sTtuGVj6zkWoO4os/8sjwKSHHZGbCrQNJTHwDQ9gABt/VnHlXToNbGxHV3AMfsy9BXgaCvYP/\n/UX0enj4IYgpP5Jdvx6eew7Ocrl+ZSl6hT337GGa6uCQ93ZSFAXNrhG2wQGt/rl9W29v5qSlkW23\n452jcoPTyX/LL2b1y3ONQKakN6ag+A3ebHYczfAEprtyWK7X8aY6n3rvl/G/vRrN/9eesM6t8TS4\nptbbdMTJQucYHoi5g7tee811fYAQotaotcFeUOwaRuDpp58mIGD/ifVJSa+zNftndh164kQbWeSD\n7SkNy+Y23/ro1TLC/MO4Pegj5gSUcUwHsb1cz/1ofy+Cp2Tg6+sE83cA9Dp+kO3cedprFzmdODWN\nQocT7K5ulc4z5+M7D9HfRFOWVsbj27bRN7IpVqMRekLgobOPaT6hcWMmNG7M9CNHyKCY+oYs5j/g\n4K1+XQk+/hkAxm/HETDyLQan/EBGaSD3bPiEa6NvZ+Hv2Uy46xFG/nAv33kex1A4mtCr6+HZWmFt\n0s346rfxa6IXLdI2U1zqQ8I6D/w9/BnRfsQFv8/du2HDhn+uv/FGkMEkhbhwtTbYM/OyAOjbty8t\nWrjOntpsNr77LhM/wxquDPTl6tYPA7Dyu0N4N/QgBcj7U8cvITOYqBUwtcCPICUUvdPVBDGz6Yv0\n7/81HTroCQkZCsDkh2DAlpN94hubzTycmMjLBU4W7NzJbr2rQduk0+FXyQuAFi1axL7yJpzw8HAG\nDx4MgGe4J57hnuzTdHh19cWvGkeGM/u1RpeVRQ8tmo4/dSQ7IR1lkEKHxM4c8D+GMzWQ3L0BhHzU\nGoO9FTYnxG1Oo/eBHLItpSz4eR+b9bPY++1dPDfRhGclxng/l//9D/buhebNT65bs8b1HXnvvRf+\nXoW43NXaYP/bNddcQ7fyXjHFxcVo+u2s0YFTF8OUI64Hxm7pwc/NCslTS7luTgBrN8+l+adtaem1\nm74+qzmcOBKAdQY/OjYqovPVd0JQDwB2+MEA4k683tstWvB2ixZs9t3M0PbN8I+p+knFSZMm0aNH\nD4xGI7Nnzz4R7GejKAr93ixFfWcLK8rPirZ2FuLRqQDOMhSFalNJXbGB6XmH+Oa6qZRlagzsfhfv\n6ILY18yDkLx25BTnsGQ0tNGB7ok3cFpTwbiTvGw9e/f6E9kgg4PFxazx68lzT7RBU/SUelpBu5L/\ny9uMuqsRL3e+sHlMx4yBUaNO3pdAF6L61Ppg/weTRpHeiD41niObXc0pHLoL44pDdFlUQlGhhtms\noikaChorLc8wrdtjgIKPTxciIxcQFFTzZT7++ONYLBYWL1787xvq4eU4X6a1akVPf9dVopOum0vz\nJCe58bkAWNJL8M8oAwU6xnekeMTnFBds5cYiCwuUYxwxq9T3epCv+qvc+fJRutkCeOplIP6/pPnl\ncajfHAw+kRiyDfj4hJCTs4wb1E/ow0KM1vL2db2eMmcZitnIb7YZwP019+EIIS5IZYK9H/AaoAc+\nAc68RnZk+eMp5fdnAB9XU33nlOPMA0XlofV98N3jWqeqKgwuA8JQMtOwLiwP9uK7GNJiEz2v/AS/\nJrD3wHwOvKWhPaPHib6mS71gqlFBMSrojOWTb1t1cBAOTjwIQKitjHqaSkC/APy6+2HwNRB25dU8\n8/4zbHz0Ubxu6MnkziaOFhdz/7wgYgfHYl6xgvyekzjW6TX+POLF4yEDMCeaCQ1tTe7muXxi68Na\nuvPG/8bTY1spdoMTB/DHayH4276jsO+jbIlowLNzvwXgrtwiSo9pTOAifCsKIf5VRcFuBt4DYoB0\nYC2wDEg4ZRsN+Bx4pCYKPJfjTtcA+3c3m3haz8JtC7OAJXTyG8mLW6YB8H2TRKy+7Wjd+mPIWEmD\n2LnQti12Hx+MSu370VJaT0fe3f50etE1/O6KI0c4bLNx56mN1iYTREa6xlcPCXHdLylxdXo/g97S\ngslr36N1chhvv/MVmsOG0/c4amAe1/crZeLQIJy6HFSjg+D6FpIN3rw8sSn3TU/kBfM8lOCnKPBI\n46vCwn/sWwhx8VWUalcAO4Gj5fe/BG7i9GCvwiUx1S/S3IfOp0xm7Zu5Gx2LCW8QT1bWeAA046Pu\nK/A8Zdnt/B3B9mrocQOgU1WeCQjg/9ato0zTiF6/noKpHcnwu4IbSk1YS1XaXHUtHDlMssmXa35V\neCZvC6ZDJtTEDRxquYC0GwuwlvjSwKsbaPvRHXyfhs8lkrRlKGorXxg8GK65BsaOrZaahagNtm7d\nyrhx49ixYwfBwcG89tpr9O/f3231VDTqUyPgyCn3U8rXnUoD7sD1BfAjcFGuRT9ePs/GbbdBWNjJ\nm7OsBA0FTWtLcPBwgoOHo7MrWC2xF6OsatHC05OeCQm0Xr+eMk3jUEkJgUZjlfZRXAz790NhIWQe\ng+JV/rT+31F6/+LDyD1t0f0ZxN172vLRW/tZ914hz4WFcVtgIBu6dGXDyngG7C3h3j8stJ/fnsj5\nkUTflsrug39w3MOALTeQr5LCyPCzcjzPl3m+TUlR6lFYZsAZHorzx6/RNOn7LmpYQIDravOaugUE\nVFwDYLfbueWWWxgyZAj5+fnMnTuX4cOHX9IzKFXmUPFH4DNcI27dW75cvcManoVKDooCixeHYzaf\nXJ9ytAwPXR67dj3DwoV3ANDFsRHT4njwWQRpaa4uGSkprqaKS9DqTp1OLJsVhSNXXYX51DdZgdBQ\nWLkS+vWDY8dg8xYD2SXN0XurbF+5jkW6PaiaxhTVgol4nvUJo9/u+jhznGy7aRvsuoKenp6gP/k7\nZ9PRo3y935cb0w+zr2ln1ja+iv69yicKuQ0ePmBi4F+L0W2eDgoc/eE+YGp1fSRC/FNOjmvWtJqi\nVO53/rZt28jJyeHhh13dq2NiYujRowcLFizghRdeqLn6/kVFwZ4CnDJ/G405/Qge4NTZZOcAb51r\nZ1NOmSw5NjaW2NjYytR4VgZjEQBm8x+0b39yfcq0TzlUFkHbzJa0dW4FwORRRIurAqEwHBwO6NYN\nevSA+fPP+/UvZf37u5rVP/oI7rwTrh3g4LXwjezv2pXiYtefs158PDd8EErx6vro26RhbWOleG8x\nDR9sCB8uYUG0hSuvO3m56670dHzMflzdPJLuGZ8x2vd7MrQUvDN0aI3NBD0QRpqHB5rlB8oeHAJ5\nNTfJsBCXEu0sXy6qqrJjx47z2l9cXBxxcXEXVFNFwb4BaAM0BDKAQfyzn1sQkFm+fAtwzt8fpwZ7\nddHpwk+7WCbgz67MfFbPt81PTiChKBb8ukXAd8dc38JjxrgeWLCg2uu5lOn1enzKJ6tWvLwwGowY\nDWBp6MDSzoKz2Im5Vz3Sv3Gwq5GZRl4WDhxwfWSqphDq7U1MzHzW9/mOIy+pfLDhaSK/Bfv9jbh5\n6aM0GvkIqr3Mze9SiIurXbt2+Pn5MX36dB599FFWrlzJypUr6dWr13nt78yD3qlTq/7Lt6JgL8U1\nLu1SXO3xC4DNuH5jbwR+AiYAN+LqDpkDXPg15xdoZ5SDgLHdXT1BzjTu4g6zWyts346uZDGZi8PZ\n/WkmRbZruWuBgk63n6/MGbykRTK6XTdgJyZTELr9bSjWOdlTYMAnUcFm86Y0pQ2qVvmuo0eMhSzL\nPvklcLQB/KkvI2FfPo1OaXa61mqlq69vdb5bIaqVyWTihx9+YPz48UybNo1OnToxcOBAHA6H22qq\nTF+/X8pvp5p8yvLE8ttFpepcc4/GbR1Gqr38J48CfrziWv75Z7jyynM8W5zQqBH4BlI/IgmfERk8\nsfxGrmm6n+X3hdJXC+GaF46zvTPYD1auW+if61PoEKSSlFHA8QOJ6PPKWLvATo8ewTRrdvJk1DvB\n2/kt2ePErE07o6DEy0Z+ajFPNHY1FyUUFpJUWirBLi55nTt35q+//jpx/5prruGOO+5wWz21rxN3\nOZvqav2Zd7wJ3kdLACiyXsEbqkLlzvkKwDXq1vU3o3vsMSxAzmBw9u9ITtudOPP+ZawaRaGMAnb1\nVVCzEskrSyclpyleXSazJUrFYYzHt+FdKJoOP2MOab8E0Mz4Aqxbxz1rDCztfyufzf+dJsWuaQ2X\nrbbw6pDHWRVzkFciIgCYffQoW6RvvKgFdu3aRUREBHq9ntmzZ3Po0CFGjhzptnpqbbAbCvNQNIj/\neDEWiyvID5TuItP+FoqqQSUH5KoUHSRcnXDaqqJtRSj6yp01r7UUsKXY6Fu0HUNRGA7n/Wy/dTuO\nHAf1DU2J1A3Emfgjjq71CDR78tnO1znSR4+uIBljgZ2+v4eglvjSyzqFxm3/gi8/hfr1Sa53Hare\nBG3auE5mA73mPM4M2xg3v2Ehzs/cuXOZM2cOTqeTmJgYli9fjre3t9vqqbXB7llSCsDBZz6kS3vX\n23h51y7uu98DvIBTugxesPe7EN7y9PYyRa/g2819TQROTaPE6RrOt6yGunw5w01EL4rml5c1vNI3\nUlqyhpvuG0LWz1noizQClUiO7fqRQysOkX5oF6pPIXkHZ9IsvJAMvzK6hXxGUoaFbW2H0MC41dUH\nE4gbBXaPtTBsGHh4ALBjnJ1Rs45z11yNdZ7rAAhXHRya7nfWseiFwGqtdJfE895/Jb322mu89tpr\nNVdLFdXaYP9bYevO0Nn1NvZoGuiLXadxz3Lp/JnMnp6sf+opgv77Xzz/bRza5t74X11NBZ/D77//\nzqOPPgq4RnScP38+nc7x5WTR61mclUXA6tUn1k0JC6v+onQK9frVI3k++NkLKdz6A4EvHwLtZZg5\nC99WRsKCGxCpj8bP7o35SBLRZdHsObyZkDsd6ErWYnd44x26CpvOxvffv0J+/kT273fNILhoEYTo\nYOBAKNRa8NMAP+J6ZrOzW1sA4oZtwzNDLnQS55AtU+OdS60Ndp3N1XMi7cnN/OjlWjespAS1REOr\n8IJal8dmz+bTgweZGxmJh4cHN91UU9VW7MCBA0RFRTFlyhQefvhhDh8+fM5gj/Hzo39gIE9dXcPf\nNqeKjgb/XjB5MlxVStE1d1BqMvPwu0+C1UrGsa34t+vMxHs9uPU/1+FQTDgwoyh6fCwWNKeGr8/z\nbN8eREQEWJUDZB/dSvw6I23a3AjA1h0+HB6Yw9Q5rj9o62NGitIv/UHahLjU1Npg15e4fsKvvtlI\naIDrP/+qXBuH7/XmP60rdymw0WzGHBBA0MUYp7cSAgICiI6OxreGeoEUFRVRWupqwtLKzt3ffMWK\nFXw7+gZ+UBTuVRRKSz8Gfmbs2HBXTyMlju+fCyOhxMpwowoUM6YU0lY2puPMIHQtXuHY5vn8+vm9\n+F5xHPvqu+jmtZzsnocZOHANq1bBYY8M+t+USnSTddhsJSi0IKSDja2nXMldlKsja69HjXwWQtRl\ntTbY/9br6pYM7OGaZ7TLxo1MaxlBF+kedxqjonCktBTfRo3A6URzOl1H4E37nHX7vLw8wgcM4Lmp\nU7kzKIjRo83063cr99zjGq/G4G/A1sqDzu3S+WK460Kw7RPtFHjt5QZjAq8nvUFuk13YY15A9biV\n/wuYzYzMLLS1GjbtSyJSnyMl/D7GRHTkp6+fODGTUtu78vhdg6efdt3/6C2N4zs9ePPN0+sbNMjV\nS1MIcXa1PtirIsduJ+GU7nPbL5OudAFGI0e6dyeirIxNhw+zPSGB6VOnovuXE086oxEPiwVvb28M\nBvDwMKIvbxVR9ApqgJ68MP2JGaS8gkzk9oR1TdMpeSqfDtd/h+OYhjHJm6tSxvHgkqsomvkW36Tq\nWZ3zIyWOtsxY1p1W7fezJ6spjboPRMtK5kprc44fzwegXkwyHrk3k5Jysq7ffnPNF36/zPMhxDld\nVsH+fmoq76WmEnHKidL+l8nsyQ3MZhSgiYcHmSYTxlNCfeHChWzd6hpXZ926B4C1mK+p2v7NOh3P\nNm1KRmtPBnl4En9lP0Z9vorWSSaONg/kmz69UX69FrNqJzxUJUGx8UliKn39i+mk7KbRzb8QWbQN\nq3970nYtAcB/7HquW+3JmAmDXOPKI4EuRGVcVsHuBIYHB/NSs2bn3GbuXPjjj5P3k5JqvKzzcvjw\nYdavX4/RaKRDhw4o59ntq2nTW4mMbHDivsnUlN69+3Kkf+kF17i1A1z9eyB3LCkg9OhhrCOicRy3\ns//TEgpf78KCxW+xdEcCKzyK+eTIVFoE3cH4T/7LpPKhIJYU38VXvt6M27iRPgEB/HrqaG9CiHO6\nrIK9IhMmQMLp1yFx771wqeVJ+/btefvtt1m/fj3bt29n8+bNRJ7HEMSxsfD99wFA3xPrwsJg3LgQ\nXjbsvOA6D7ZQSB3YkmffcKDao1G+MRHhLGBcSSKl+XnEx69m2pPfke04jv1NGDO+M2Wz72RM19GE\nha8AT3j8u+08tdyTTzp149h3f9Jtk476ACsVqF+f06bPEkIAEuynue021+1SN2zYMIYNGwZA27Zt\nz2uwIafTyd13F3L33WCxWP55xH/huQ7AtGnwZMsE9ow9wP6ABhhtGn52yHprC5pdo8M7Bvoub81v\nb+Tg9K2P2tjGd7YP8Uqx806UB1n5durvCaBjRilpB/bTqqAhfgd3QsIvkJUFBw786+svW7aMN888\n+woMHjzYrZd8C1GTJNgvQwEBAezYsYOQkBBsNhvTp0/noYce4pdffmHv3r0AHNE0yoYMocTpxKkp\npGdBaqqCoiioKtht5276ycvL46svv8S5Zw9fpKVByiGCG33Ms/Pns9TZnILHkrl+cWOGN1Sh2A4P\nPYRJfZGbMqNY+MlSvuzbCN3wQ5SYnOx4YTu+KTuYFWEiiTV4Tn4Y73r1+eQ/3Xj6nrHMPHSIqeHh\nrhfetAl27z6tlg0//oi/lxcjT5mqb9myZaxYsUKCXVSLmTNnMm/ePHbs2MGQIUOYO3fuiceWL1/O\n+PHjOXr0KF27dmXevHk0adKkxmuq08G+q6iIzQUFJ+5vKSyk5b9dYXqZaNOmDXl5eQA888wzFJR/\nRs8++yyRkZFYLBa2fv89Yzt3Zuy+fdiNYXw1JZjJ0wxY9HrezVG4J243pn0ONn51DICSgyWE3BNC\nw4YN6d27Nz/98ANqZibf79uHLT2dFYcOYcnPp8CZj9PhJDsz0zVUm9kE69ejeK7ENGQ4yqfzaPDy\nQrKzPyYz40v6+PyG0lqhjW41OlRMU35Hr3OwXx9B+xkzyD58+P/bu/PwqMrrgePfWZJJMpNlEsjG\nkiBbIRBZRAERAZWCgIqACFiW4oICWqvSikoAbWu1agtaW1Gpwk9RMIC0FlAMKIvKZtkJaxZCErJv\nk8ks9/fHzZ4JCZKZhHg+zzNPZu7cTM68Sc7ceee95zA0SF2Zw9//XtnSrG92NsFWK2zdSufhwxk1\nalTl87948SLflJc3AMj+bzbpK9PrjJN5pJnIByPd80sQVy14505y3Vga16zXkzOk4WZw7dq144UX\nXmDLli1YLJbK7VlZWUycOJGPPvqI0aNHs2jRIiZPnsyePXvcFnOFVpXYvbRaJh87hl/5urwjxcVc\n5+PDoPJ17QaNhhFXUP/h5+iZZ54hIiKCTZs2kV5xZutQiDt3jl1vv03m5s0sClQo03kz4vl/MLZ7\neSEXDRh7G9HqtaxatYpSh4NNO3ey5tZbKdm1i+7Dh5M2aRKP0J1HSx5h9JCn8QkIRJev5cSDJ3Da\nnFwfl4s+x0HyC9mE+s5jddEjfNX1PlJfy6DrgjsY2+0Cprg3CWiXSP9nXuLltWuZPWcOf0xKUmMY\nMgSioznj48NDERFM+aeTzrpfYP8xgJNz1HciGr0GbbeaZybnJeSh8dLQ5u6qFVKF+wrJ/jxbEnsL\nlmu3o1xFF7aGaBrZxWj8+PEA7Nu3j9Rqa3Pj4+Pp27cvo0ePBuD555/njTfeIDExkW7dujV5vNW1\nqsS+oVcvMqudUakBfuHnh74RdWNEw9KPHWP6Aw8watQobhw4kMzrnPj382/w+/x8fUnp1Yvot97i\no/KpmJyNRxm1bh1OYzQB+JLxYQa5sd44t2sw9TFheT+PRa8ZOJECAf4woEsO+Y4ThIcdxifoAkbj\nCUSxsHYAABdYSURBVCKHH2W5dQfRhb609WuLxus40I5vAp6i0B5O8p+TKY64QFmAFVMftdJeyp9T\n8Aqs2xjcdL2J0PtCK29rfbSUnChpsrETrV/tFnlHjx7l+morL7y9venWrRtHjhyRxH4lwry9CXPV\nNUk0maioKGJjY9Hq6tZw+eabb/jggw8A0Oh02MaMoc/evWCxwFNPkVZWht6r5ousc3wQkSEhnJ5/\nmuQJRpzvawm7P4z8bfkUPFpAnD2O7/PsDFx1hn1j9lJUmkxZhsLnezvz9L9Ps3GOHzn5aay46yWi\n/vYX0mYFYyo9RmFpf9BCsX8CpeFRtBujzrFnrJTaM8I9ai9AKC4uJiwsrMY2k8lEkQdOjGxViV00\nry+//JLs7GzGjRvH0qVLWTt9Op26d2fjq69Sun49Y2fNIjUUvC54ce7VbG45Ho4+JZ1zvgU4bTWr\nOMZ8GsPxk8dZ9N9FfLEsm95/2EKmIYQ1y3pg8smmQJNN+H47f/m/HA5dKuXguzNILrGja+8NbXLh\nQBY4pnNfaiI+SUkweDCUlIDm7+C6koIQV6X2EbvJZKK4uLjGtqKiosq+w+4kiV00qf79+zN79mze\nfvttOvr40KGsjJdfeYUH7XZOxMVxTufNH31moqxWcNw0EMVLg8ZbQ5fXu+A0VE19eAV74dvNlz3b\n9lBmdzD229vIN+kZnfd3ynR+bFAGETa1FyUh+4jOP0tSQSzhB/5Nui2EqD5HaNfvDMq9m9htUjDa\nFExBNrSlWrwezAWklpBoerWP2GNiYvj4448rb1utVk6ePElMTIzbY5HELtzO5O/Pm7t2sSo+nq27\ndxP1p18DsLukhBs7hxEdEqLueOpUje/rEtyFQ3MOYXztRv455p84goP4z1ItRcVtGJz+CXsD9GxP\n3s0gPwu/WzwS56Rw3t/5ABETJxAeBAMnpfLwbyYw9+hQFq78kIM7+1DqW8g7F4v4X1YW+/buBeCl\nYgN92wS5jL3U4eBPyck1mpkE6/U83aHDTz7bV7QuDocDm82G3W7H4XBgtVrR6/WMHz+eBQsWsHnz\nZkaOHMlLL71EbGys2+fXQRK78JTu3dWSjEFBaks8gPL6NPXRaDR0b9OdMcUWvoi5FYDp/A4d17Fy\n2btMbRdDyNBg9n3bnk9TX2FyjIWYiAMk2fthsPhAbjC5ZVBW4oPBEI4GHQ6gh58fit3OoxYLG7Oy\nSErzo62uCO90b8LDw2vEkGy18taFCzxV3mDbXlbGgnnz2B8YSPW0bjabeeuttyTZ/wy9+OKLLF26\ntPL26tWrWbx4MYsWLWLdunXMmzeP1NRUBgwYwJo1azwSkyR20eLlKgq7vviCwaNHc3TKUfIS8jh/\naQUxpb6MTtHxWaAP+dpAkqMHYm3jIC0tF4L3oCjTUTRw3rCZLVva4uvIRtP7MNf3iqK44BRfvPtr\ncgqvozB3IOtOmvlsYy5jyrutzOoGFZXgg728eDYqCoDMzEwW7djBuBUralTHnDp1KsuXL0fn4kNl\n4R5mvb7RSxJ/6uM3xuLFi1m8eLHL+2677TaO1zppzhMksYtGcygKJQ4H+XY77umyqh6lT5s2rUar\nwqMOR2XCNPYw4tfVD/NfTxL23FSeurEL966+mShjMdYV7Wgz3orR3hXLqQGgFIIC33uHcXL3rTwW\nuIHO/X/Et+1ORv7KjtHbREayjraW/+Jjzuaj1U9wNvQbTp8KQfPdJYZfKoJ9GeBdqymxtzdTpkyp\nkdgfeOABN42IqE9jTh76uZLELhol0mDgtMXC3MREfrNnD6VOJ5FuWFo6+733GFlrOkO3dy/9L1OJ\nLTijgN4bD+DU+NLnAyMx+hw0CuiNOkb950Zy0PDLOwezf2cuwfEziH/aQWGPUg6k7cQ/ZSH3nT7A\n6Gkz+PA3T6sPOFSDVgGtExSbjZHaecBAnGVOUmal8ErRIg6POlT58zVeGgIU+UBWtByS2EWjPBIZ\nyddt23Jvjx5MvuUWAnQ6/tC5c5P/nIju3bmtfD67kpcXXOZtsd7h4LRvEM9GFJGXVYpzqg6NHfy+\newevpNOMyr+dB7pO41clWm7+jx9tjlzEnm7hRn9/YBmhiT0omjGRJfespkwHihNGJ88jJHs8ZYOn\nYBybR5Hdjj3fTtH2Itb+4jDXPzi+cj5d/2Qq5p5DOGux0NVkqjdOITxFEru4NqSmQnEx5OeDXQGn\nk/TMTOwpKQwfHkzxcSvRIQkcDHAS0Pl6Si61w9TjXorv6UTfVR04NPog2r95EWSx8vhHGXjp8lDQ\nsjE6ipA8Mz1z/DiwOQoMPlzILCbPdoQvu43hzC9HorfbCPn6a0yF8C+tN3uXT+dVzqPx9gajkYcM\nDpSJE/nt2bNsio1t7pESQhJ7a1FYWMiIESMoLS0lJyeHu+66q7lDapT1WVmcKFHXrx8sKiLax0Xz\n6thYGDdOvZ5/N6AjxsuL99asIX/1av7ivJ6xuWPJVz7E96GHWDKpPwuPpFAyIoxS7a3EDbJg0WTj\nqwuEkEIyFn6KT5fDOPFm/zuvc3tiGTkXB7GhoDNn23jxcccgAjqv4/4Tl+i1ewt9b8lkirIG/IHP\nvEgos6HRaFBQ6NTuj1wYpHDj+Q20s04iM/MEAAZDOwIDb/bMIDZS0p+SsKZYa27UQMffdcSnozQN\nb00ksbcSBQUFJCUlsW3bNgCPlAa9WrMjItiVn8/5UrVbU1+TidtcFWlLSKi6vvQ82BWWLv0rc8vK\n6Pb998zJ6oDhtUxeXb+bacePMz08nMSXO9CzJ6xu8wmv63QMmjgRgE+9d1FwZi5TFQvJd9xLTrEF\njc9OCn95HL8hX+Ef6EdQ/Gyis/tgLzLyux+eI7h7Mr+PjCb7rMLgJ6K4/7k3+aLzc0R+PoL8Aa/g\n6NadKaYLZFxcw6Xvk3F4Oyn+hQ+Dhl6o8TScdieWUxZqf/KsN+sxRBgaHC9FUeqcyQjg5+eHzaZ1\n2e0rKgoqXitTXk2h47Md0RmrVu6k/SONopFFkthbmcYk9lHAq4AO+AD4c637DcCHQE+gAJgKJDVh\njKKRvLy86N27d3OH0WiTQkOZFBra8I71CNLruTMkhM2JOdxUVsZn6enc06YNplpLDpeYTLQtX3I2\nzGHHr3x7x5iO2DrkUVTYmcjALEK+O0ZPbx3fJnlxXfu29A46wZqxK0kONvP1XwZwaNcgbio5SXH2\n/xh5+vfE5vTBnFDE7G1zeXvUlxxrexN3/fgVvz9+gNwXLrL9nTvI0xs4ZVJfrKKSI2jzlS+2/FjI\njsBfp0NnB8WpMPDMQACePXuW7Xl5dZ6rUatlZEICzy1YgMFQ9SJgs9mYO3cuYWGv88orUL2Fb3Y2\nzJ8PcXFV2yJmR+AVXFUELWdLzk8ef9FyNZTYDcDbwBAgA9gDbAWqN5CbB1wEJgP3AMuAa6APkWvb\nt29nmBtLgTaFayFGgP379xMdHe22xzdotXzcsye5GbkkGZP4lYsXtb/u3k3ikCHgp6bzUC9vemRk\nwHXqKhZFo+NE0Tnu63c/4bNmEX8snu/nmuh2oAt2r3SCVs7CX6dj5/lO3OV7BmOulgnnn6JTjpn/\npXpTZPbFofHmTFYM2bYgVhZ7YTSYuPOQBpvyFTkRHVCMYfgX5+P096NsWi4XozuxSXcPE0NDGWE3\nceapM2Rn57F7t45/5gYQ8mMHjBlGAKxW6N8f1g88hOOrLO6//11mzJhB374QEgIrVqzghx9+wGyG\nxx5TO1ZV+MMf1PI4nnat/H1eC7b/xHX6DSX2m1CbpFW8p/wEGEPNxH4nsKD8+ufACtSKue5a6uxW\n18If5bUQI6iJfcKECc328y9dgpDCMAZNrzorMN86l8BjG+Gepyu3nSvYC5rbIDSU4f6Tua5fOiVd\n89EeL6Gs5w/86teP4f2nJHqF+aFdb2TtnAEcTE7EuaoUh91O20AdN1nS+CRqADzyGK8D1Zvx3f5D\nEMcynuehHaGMdjjQPryWMRFp6FNLOJFfBMM7kbI5E/92aawymtC164gvahXMoiIoKNbT3RHIS0Xd\n8Ikdz+fbThNzEQYNgqywMFa//z5abQfAm9deU5/rtGnTiI5ecVXj99vTp/ns0qU62w1aLd/160ew\nV93yx3Dt/H1eC9yV2NsDKdVupwLDLrOPE8gGQlGP8IVoFt27w7JlsJqF0G4hoCb6NREH6PJ/U2BQ\noMvvM/ua6dHGTBfvLIJ9szEEdiTAEEBUcCinchKwWruC4kvJy88wQVEosRVjdX7EqMmnGJW9gE9X\nz8doKmDO+EVotg7kbMIrbD0fiC78GS7qj3P8UimJyy/w+dTxRF9KYdzRfbTf/Qhd/R4mINDMb154\nlCfi19Lz3GkUjQ5fi50LoVrCXlQYF/E9kwauAzSggP2YHoxejH4vCkvZWkLIIhwLBUAy7+Lvv474\nf/2S+2PWAzA79HX2XXKgKdOBLgCtIRqr3U5hSQl+Dkdlg5oKJ0pKWBwdXac5zZCDB8m32+sk9hKH\ngzKnk1KHgzybrXK7r06HoRX3RKivNZ7NZmPKlCns37+fpKQkEhISuPXWWz0SU0OJ/Zo86m6p8vPz\nSUtLw1btj95ut5OWlkZerXnVnJwc0tLS6pQCdSUzM5Oyag1Gaqt4LKfT6fL+goKCOnE5HA7S0tJq\n7Fe97ReoLeaq15YuLCwkpKKgF2o96vT0ui3nrpaj0IE1rWp1hy3LVmefxx9XL9XNnw+2jZBx0ka+\nQf1+nywbGruTArudNKu6rdip48ttCrrcEOILpmPdF0leSgBPjg3DT3cMNBoSExLRAnHbF/PC79uw\nfV9byrwzyDhn41LEDXQ6eCMD+yZh7j8Fr/j53BOSzr1tf+SHf8VwadgRCm0PsXVkdw7fMJTXD/rQ\nb/kHOJ3qIvr0rt9ijCrDGVBCxEU9c875on27DOe+bJQC6BjmR2mBL5Hni5j57LNEFR3H7qz6V3Zq\ndRgL0rjdtpWpczbgsGtAUdAVvs7JZCcajY0o/QUsig/ej2uw6+Db7Q60ihMvvZ0CSwBJeZ2JMnfj\n4skCNluKUVDw0fph0PlzQ9vObNi0EkOZhVJnCQpOvDU+/KPdLegVhfSk/WzZ8Q4awAGEW3S8dExt\nv+jwNWINCkaj04BBh6++5ofG9iQLTgdgyAKtA31JId75dd81AOwM3ok9132t8fRmPUNyfnprPICh\nQ4fy5JNPMmnSpBZVR+gW4N/Vbj8DPFdrn23ADeXXtcCl8q+1nUZ9oZCLXOQilyu+1JZAQp1tTelK\nH//5559XZs6c6fK+9u3bKzt27Ljs99fzvH8E/sUVauiIfS/QC2gHZAL3AY/U2ucL4AFgH+qHpntQ\np2Rq63KlwQkhRDmluQNoiNKId9eN0CSH9Q0l9lLgUWAL6lH4KuAAsAQ1kW8C3izffhgoRF3uKIQQ\nPystaaqlMevY/1t+qS6u2nUr6pG8EEL8bDXREXuTaOqPqn1Qp28OAonAGy72MaAumzwM7AKimjiG\nhjQmxpmonxUcLL/82lPBuaArj2GTi/uaeyyru1ycM2kZ43keOFQeww/17LMMdYnvAaCvZ8Kq4zyX\nj3MYkE/VeD7vqcBqCQLWAv8DjgODXOzTEsbTI5roiP0g6u/2cRf3NXosm7qkQCkwFLCUP/ZOYDiQ\nUG2f5j6hqTExKsDHuB5cT3sCOIZaqaS25h7L6i4XZ0sZTwU1KdZ3uuUEoCMQg/qPsxLo45HIamoo\nToAdQHMXBFoBxKP+brVA7dKWLWU83aq+1ng6nQ6r1Vp5JG+1WiktLcXHVT2kKv1RzxtaX2t7ixlL\nP9Qj4561tm9DDR6qVtE01+RUfTHOBJZ7PJq62gNfob7wuDoSbilj2VCcM2kZ43kOCLnM/e+h/gNV\nOIL63DytoTiH4XqcPSkEONXAPk05nle9auVKNfbx4+LiFI1GU+OyZMkSRVEUJSoqStFoNIpWq638\nmpSU5PJxUF/QR6IebF7VWLqjCJgW9a1CZ9RyBMdq3d8STmhqKEYFuBcYAZwB5tM89W/eQF1iWl8X\nh5YwltBwnC1lPBXgS9S/+3dQP/ivztUJee3Lv3pSQ3EqqNMeh1FXq/0WdTrEk7qiHkh8inpgdAB4\nDCiqto9bx1Nv1rNds70pHqrex2+My7XGO++qMtvl3Q985GJ7S/nbJBD4jrpnqp5ETT4VTgBhHoqp\ntvpiNFP1ojcb16+g7jYWeKv8+jBcH6G1hLFsTJwtYTyhaqzaAvuB22vdvwW1jEaFzbVue0pDcZqo\nask6EvUI39MGAzZgQPntv1K3QGBTjmdTHYi3WKgv2JdQf++1XdFYuvM833zgP8DAWttTUeeKKn5+\nCOqTaQ71xZgLVJzS9h5Qf1829xmMOod6DnUOcwRqFc3qWsJYNibOljCeoB7dgjpG66hKShVSgert\nm5rliIiG4yxC/awI1KJ8ZUC4Z0KrlII6F7y3/PY66s75tpTxvJbsx/X/8BWNZVMn9hCqPjzzBe5A\nfbtYXcUJTXD5E5rcpTExVn/FHEfDc4nusBD1F9kJ9e3Z18D0Wvs091hC4+JsCePpV34BMKKWoz5a\na58vgGnl1/uhnhF/Ac9qTJzVivPSv3y/TDwrBcgCupXfvh11ZUx1LWE8rzUf17O9WceyN+pynR9R\npwUWlW9fgvoPDeoSvU9Rk+luINpTwZVrTIwvoy43O4o6bRDj4RhrG4ZaORNa1ljWNgzXcbaE8eyE\nOg/9I+oy14qSj49Q82zqN6laUtbPkwGWa0yc81F/54dRj/CGejjGCtejHrEfRU08Ztw3ns09U+J2\nqFMx1VeV/eSxbDmnSgkhRP3Kc1/rVb4OvklycuutpSmEED9TktiFEKKVkcQuhBCtjCR2IYRoZSSx\nCyHEVXjzzTe54YYb8PHxYdasWZXb9+zZw/DhwwkKCiIwMJC7776bCxc8s0JRVsUIIa4FdVbF7NwZ\njN2e67YfqNebGTLkcnXYVOvXr0er1Va2xqvoebp161bKysoYOXIkDoeDJ554gsTExHobVDflqhgh\nhLgW1Fn3nZDg3rXtV/r4l2uNpyiKcvjwYcVgMNR7P03YJUqmYoQQogkoDayzT0hIIDY21iOxuKO6\noxBC/OxcrtHGoUOHiIuLY9Mmz1RbliN2IYRoAvUdsZ8+fZo777yT5cuXc/PNN3skFknsQgjRBFwd\nsSclJXHHHXewaNEipk2b5uK73EOmYoQQ4irU1xovPT2dESNGMG/ePB5++OHmDlMIIVqcq161cqUa\n+/iuWuMtXrxYWbJkiaLRaBSTyVR58ff3r/dxaMJVMbJmUghxLSjPfVVayjr2ptKU69glsQshrgV1\nEntrI2V7hRBC1EsSuxBCtDKS2IUQopWRxC6EEK2MJHYhhGhlJLELIUQrI4ldCCFaGUnsQgjRykhi\nF0KIq1Bfa7xjx47Rr18/goKCMJlMDBgwgK+//roZIxVCiJalTm0Vs9lcUV/FLRez2dyoWjHx8fHK\nhg0blEcffbRGB6W8vDzl/PnziqIoitPpVJYtW6YEBwd7pFaMVHcUQlyTcnNzG+xadDUu1zijuvHj\nxwOwb98+UlNTK7cHBgYSGBgIqBUgtVotHTt2bPpAXZDELoQQTaC+F5mgoCCKi4uJjIz02FSMzLEL\nIUQTqO8IPy8vj6KiImbMmMGkSZPc+i6jgiR2IYRoApdL2AaDgSVLlnD27FkOHz7s9lgksQshRBNo\naE7e6XTidDo9EoskdiGEuAoOh4PS0tIarfHsdjsJCQkcPXoUgJKSEhYuXEhkZCS9e/du5oiFEKJl\ncLk80J0a+/iuWuMtWbJE+eSTT5SuXbsqRqNRCQoKUu6++27l7Nmzl/15TTVY0kFJCHEtKM99VYKD\ng8nNdV9rPLPZTE6OtMYTQgh3qZPYWxtpjSeEEKJektiFEKKVkcQuhBCtjCR2IYRoZSSxCyFEKyOJ\nXQghWhmp7iiEaPH0en2hRqPxb+443Emv1xfa7fbmDkMIIYQQQgghhBBCCCGEEEIIIYQQQogW6v8B\nc8emrurnHO0AAAAASUVORK5CYII=\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Planarity\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEnCAYAAABbpaNzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvnZbeKyQQWgKEKhIsgEREQAUsiAWXteJP\nsQuK64oUuyK6qMjaQHTBRhEFREEiICC91wRISEJ6b5Mp9/fHRCBkQpJJhgnwfp4nD8w595773ln3\nzeXcU0AIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDivPkCyAT2nFX+BLCrqvyd8x2UEEKIhukPXEb1\nZH4T8DOgq/ocdL6DEkII0XBtqJ7MF2NL8kIIIZoJjQPndAKGADuBjcDVTRqREEKIBtPVfUgNGsAH\n6AnEAQuBKEBtwriEEEI0gCPJ/ASwqOrvW4BKIAzIOPOg9u3bq0lJSY2LTgghLj1JQIeGnuRIN8sy\nYGDV32MATyCrRjRJSaiqKj+qyuTJk10eQ3P5ke9Cvgv5Ls79A7R3IC/X+WS+ABiAbcTKCeBl4ENs\nQxb3Vh1zH2B15OJCCCGaRl3J/O5aysc0dSBCCCEc50g3i2ig+Ph4V4fQbMh3cZp8F6fJd9F4ihPb\nVqv6f4QQQtSToijgQG52ZDSLEEI4XWBgIPn5+a4Ow2kCAgLIy8trsvbkyVwI0SwpisLFnENquz9H\nn8ylz1wIIS4CksyFEOIiIMlcCCEuApLMhRDiIiDJXAghGigvL49bb70VX19f2rZty4IFC1wdkgxN\nFEJcOAIDwZmjFQMCoD6jBR977DH8/PzIy8tjz549DBw4kB49ehAbG+u84OogQxOFEM2SvaF7igLO\nTCv1ab+0tJTAwECOHDlC69atARg7dizBwcG88cYbDbiWDE0UQgiXOXz4MB4eHqcSOUD37t3Zt2+f\nC6OSZC6EEA1SUlKCl5dXtTIvLy+Ki4tdFJGNU/vMe/ToYbdcURQ+/fRT4uLinHl5IYRoct7e3pSW\nllYrKykpwcfHx0UR2Tg1md98882MHDmyRvmECRM4fvy4JHMhxAUnJiaG8vJyUlJSTnW17N69m65d\nu7o0Lqcm81atWtl9Ovf393fmZYUQwmm8vLy47bbbmDx5Mp988gl79+5l4cKFbNiwwaVxSZ+5EEI0\n0KxZsygoKCAoKIjbbruNjz/+mM6dO7s0JhlnLoS4YAQE2IYPOrP9+h0XwOLFi50XiAMkmQshLhhN\nuPz3RaeubpYvgExgj5268dg2cg5s6qCEEEI0TF3JfA4w1E55K+B6ILnJIxJCCNFgdSXzdYC9lRBm\nAM83fThCCCEc4cholpuBVGB3E8cihBDCQQ19AeoJvIiti+VvzlysSwghRD00NJm3B9oAu6o+RwLb\ngD5A1tkHL126lLS0NADi4+OJj493NE4hhLgoJSQkkJCQ0Oh2GprM9wBhZ3w+BlwO2B0wNGLECMaO\nHetgaEIIcfE7+0F36tSpDrVTV5/5AmADEAOcAO4/q14WLBdCiGagrifzu+uob9dUgfwtJSWF48eP\n263T6XRcccUVaLXapr6sEELUy4cffsjcuXPZu3cvd999N3PmzHF1SEAznAH68MMPk5aWRoCdebXb\nt29n7dq19OrVywWRCSFcLfCtQPIrnLdvXIB7AHkTzz3NNCIigkmTJrFy5UrKy8udFktDNbtkbrFY\nmDFjBtdff32Nuri4OCwWiwuiEkI0B/kV+aiTnde7q0yte3DerbfeCsDWrVtJTU11WiwNJasmCiGE\nA5rbHseSzIUQwgGKM5dvdIAkcyGEcIA8mQshxEVAnsyFEOICZrFYqKiowGw2Y7FYMBqNzWJghiRz\nIYRogFdeeQVPT0/eeustvv76azw8PHjttddcHVbzG5oohBC1CXAPqNfwwca0X5cpU6YwZcoUp8Xg\nKEnmQogLRl0Tei5l0s0ihBAXAUnmQghxEZBkLoQQFwFJ5kIIcRGQZC6EEBcBSeZCCHERkGQuhBAX\nAUnmQghxEZBkLoQQDVBZWcm9995LZGQkXl5edOnShSVLlrg6rHol8y+ATGDPGWUzgP1VPz8DQU0f\nmhBCnCUwEBTFeT+BgXWGYDabiY2NZevWrZSWljJ9+nTuueceEhMTz8MXULv6JPM5wNCzyn4CugKx\nwF7gpSaOSwghasrPB1V13k9+3fuLenp6MnHiRMLDwwG44YYbiI2NZdu2bc6++3OqTzJfB5x9h2sA\na9Xf/wQimjIoIYS4UGRmZnLgwAG6du3q0jiaos/8YeDHJmhHCCEuKCaTiXvuuYcxY8bQpUsXl8bS\n2GT+b6AS+F8TxCKEEBcMq9XKmDFjcHd358MPP3R1OI1aAvde4CZgYG0HLF26lLS0NADi4+OJj49v\nxOWEEKJ5UFWVBx98kOzsbFasWIFWq3W4rYSEBBISEhodk6PJfCjwPDAAqKjtoBEjRjB27FgHLyGE\nEM3To48+yqFDh/jtt98wGAyNauvsB92pU6c61E59ulkWABuAjsAJ4AHgA8Ab+A3YAcxy6OpCCHGB\nSU5O5pNPPmHnzp2Eh4fj4+ODj48PCxYscGlc9Xkyv9tO2RdNHYgQQtQpIMA2HtyZ7dchKioKq9Va\n53Hnm2wbJ4S4cOTJtnG1ken8QghxEZBkLoQQFwFJ5kIIcRGQZC6EEBcBSeZCCHERkGQuhBAXAUnm\nQghxEZBkLoQQFwFJ5kII0UCjR48mPDwcb29vWrVqxaRJk1BV1aUxyQxQIcQFI3D9evLNZqe1H6DT\nkdevX53HTZo0iblz52IwGDh06BADBgygT58+DB8+3Gmx1UWSuRDigpFvNqM6cSltpZ5L0Xbu3Lna\nZ51OR0SEazdck24WIYRwwLhx4/Dy8qJLly689NJL9OrVy6XxSDIXQggHzJo1i9LSUv744w8mT57M\n5s2bXRqPJHMhhGiEvn37cscdd7h8PXNJ5kII0UhmsxnFmeus14MkcyGEaIDs7GwWL16M0WhEVVXW\nrFnDN998w6233urSuGQ0ixBCNICiKMyYMYP77rsPq9VKu3btmD17Nv3793dpXJLMhRAXjACdrt7D\nBx1tvy7BwcGsW7fOaTE4qq7IvwBuArKAblVlgcC3QBhwErgTKHBWgEII8bf6TOi5VNXVZz4HGHpW\n2VRgGdAdWFH1WQghhAvVlczXAflnld0IfFX196+xPbkLIYRwIUdGs4QAuVV/zwFCmy4cIYQQjpCh\niUIIcRFwZDRLNhCM7ak8BNvLUbuWLl1KWloaAPHx8cQ7cYEcIYS4ECUkJJDQBCN0HEnmy4F/AO9X\n/bm8tgNHjBjB2LFjHQxNCCEufmc/6E6d6tiYkrqS+QJgALYn8RPAy8BkbEMTHwAygDscurIQQogm\nU1cyv7uW8uubOhAhhBCOkxegQgjhoCNHjuDu7s6YMWNcHYpM5xdCXDjWB67HnO+8beN0ATr65dV/\nluljjz1Gnz59XL5iIkgyF0JcQMz5ZuLVeKe1n6Ak1PvYb775hoCAAGJjY0lMTHRaTPUl3SxCCNFA\nRUVFTJ48mffeew9VVV0dDiDJXAghGmzSpEk89NBDtGzZsll0sYB0swghRIPs3LmT1atXs2PHDoBm\n82QuyVwIIRrgjz/+4Pjx47Ru3RqAkpISLBYLBw4cYOvWrS6LS5K5EEI0wMMPP8zdd9um4KiqyvTp\n0zl+/DizZ892aVySzIUQogE8PDzw8PA49dnb2xsPDw+CgoJcGJUkcyHEBUQXoGvQ8EFH2m+oyZMn\nOyGShmuWyby0FD7+GKzW6uVZWfD997BlC4weDf7+rolPCOEaDZnQc6lplsn8wAGYNQtGjKheXl4O\nR4/Cd99Bq1YwfLhr4hNCiObGqcn8l19+IT//7F3n4NChQ+zfv/+c53buDB99VL1s82aYOBGmTWvK\nKIUQ4sLn1ElDRUVF5OTk1PjJzc1l2bJlzry0EEJcUpz6ZH7rrbcybty4GuXr16/HbHbeYjlCCHGp\nken8QghxEZBkLoQQFwFJ5kIIcRGQZC6EEBeBxiTzqcBh4CDwA+DZJBEJIUQzFx8fj4eHBz4+Pvj4\n+NC5c2dXh+TwaJYOwBigE1AJfItt8+fPmyguIYSoYf36QMzmmnNXmopOF0C/fnl1HqcoCh999BEP\nPPCA02JpKEeTeR5gArwAK7an8uSmCup8GjVqFFlZWXbrWrZsyYIFC85zREKI2pjN+cTHO2/98ISE\n+m800VzWMf9bY5L5u0AKUA6sBFbV92QTkBUVxczU1Bp1KUYjGzXZmNxNgN7B8OpvyZIl/PLLL+h0\n1b+K8vJyRo4c6fTrCyEuTC+88AITJkygQ4cOvPrqqwwZMsSl8TiazNsDTwNtgELge+Ae4H/1OblI\noyGzTRsSy8tr1JVbLKzTZNMmshAIdjC8hrnmmmvQ66v/4igtLT0v1xZCXHimT59Oly5dMBgMfPfd\nd4wcOZJt27bRsWNHl8XkaDLvA2wAcqs+LwL6cVYyX7Zs2akujPj4eOLj40/VeRYVMTM6ukbDBzw9\nOaG6OxiWEEI43+WXX37q73fddRfz58/np59+ciiZJyQkkJCQ0OiYHE3micC/AQ+gAhgE7D77oP79\nQ7n//piqT+lkZs4HwGIqRNn8F68PGlSj4WM7duB12VW0L9pZ1awQQjRvqqo63Id+9oPu1KlTHWrH\n0WS+BdtwxN3YXoDuAD46+yDz/g2Ur0ipcXKfdoFsTbVSUlFRo+6u2FjWhQZzxe6fkWQuhGhuCgsL\n2bZtG/3790er1bJo0SJWr17NW2+95dK4GrPQ1pSqn1qFbLTSJsVSo/zaVpEcHRbN6xPtn95/4W/A\n0UaEJoQQzmEymXj++ec5fPgwqqrSsWNHvv/+e2JjY10al1NXTbQ88wzYWTVx/9IfSErZ58xLCyEu\nQjpdQIOGDzrSfl2Cg4PZunWr02JwlMt2GiotVXn44a5267J6PoXZUnOkixDi0lafCT2XKpck886d\ne9CmvIigAvv/LCkvt2I2VZ7nqIQQ4sLlkmTu7+dH165X8Mad9qfCfv/Bl+c5IiGEuLA1yw2dOyS5\n0e+Pf5KgJFQrL6aYbX22MZ5SjO6tYXg71wQohBDNTLNM5p5lkBeYysjp1beW85lm5PIx6Sz5Kp4B\nJSYXRSeEEM1Ps0zmmKoS9dq11cuLi2HjRjjRHzq1Pv9xCSFEM9U8k/nf5syp/jkuDiZMgDWuCUcI\nIZor2WlICCEuAk59Mi9cW0gaaTXKPYqKCNYX81dSpt3zrKoe20K5Qggh6sOpydyUbqJ0b82lZPU7\nUuh93J2xuXl4UHN9lpC7vdFocpwZmhBCNMo333zDtGnTOHHiBMHBwcybN4/+/fu7LB6nJvN3rizh\nw5uza5S37K7jySkK3+/pjL0VI0c9thedrmaSF0Jc2gIDA8nPd962cQEBAeTl1T3LdOnSpfz73/9m\nyZIldOvWjezsbMxmc53nOZNTk/nEyEgejourUV7+67f8kdPBmZcWQlyE8vPznbpdm6LUb92XKVOm\n8Morr9CtWzcAQkJCnBZTfTk1mS/e8zX7f9pUo3zovjJU63OYreZaQzgZGMoziYnVyk4YjczIy8O3\nRzBs3gLX1VzEC4AHH4TRoxsbvhBC1FBSUsKuXbs4fvw4MTExFBQUMGLECD744AM8PDxcFpdTk3mX\n0C4Mjbm+RnnbwB0cRKW0shTwq1Hfbe9eQgo6U/rVV9XKDbm5+P/xB7lXjsSz0A1efLHmRRcvto1F\nl2QuhHCCv/918OOPP7Jp0ya0Wi3Dhw9n0qRJTJ8+3WVxOTWZX96yN6O71UyqxaEmDp3jvPJKIx5k\n8Ezv3tXK58+fz+0xMcxOAndzCVw36lTdI488wq5duyAjA8rL4YwlKj09PVm2bBnu7rIdnRCicby9\nvQF4/PHHCQwMBODpp5/mpZdeuniTuaNMGi2lXsDw4dUrpk2Dq65CPVpW45zVq1fz2muv0WrTJkhJ\ngfHjT9XdcMMNFBcXSzIXQjRaQEAAkZGRrg6jBpclc114OlazQkmJT406n7BsSsut/Oc/73HmvKbM\nzEwWLVoE6lCys+HOO0+fk5EBc+dehk/GZXTSJTL1qqtO1en1+mrtq1YVq9F66rOl3ILGfMb8Keet\nfS+EuAjcf//9fPTRRwwfPhyNRsPMmTMZNmyYS2NyWTKPmDcaY1lHDhzQ1qjrd38RiiGdTav6kZUT\neKq8pKyEXYm7CG0xCG8/I4NuLMLX3RewLeMyeDBkLT/Iu2t6cuiuu06dV1xczNixY3F3d0ej0fCs\n4VlK/1eKolNQzSobQjegU05/FdZKKzG/xSCEEPZMmjSJnJwc2rdvD8CoUaN45ZVXXBpTY5K5P/Ap\nEAMYgAeAjfU9WdFZ+Ozg3bRoU1SjLmxnEL1azSLyynW01p0e8rNpfQnd++6io99HlPulkRq+lqlD\n5gPw0ktw003w8x9rMKs9uOammzBVDWH6efly4gYNwtvXl/+++y7pQTnEftyVDg9FougV+hf3r/b0\nvmvwLiwlNfcuFUK4VkBAQL2HDzrafn3odDo++ugjPvqoxj72LtOYZP4psAhYgK0vxLuhDYR7hxPs\naahR7mPwht8Gc9sr7fA2nG52ged0Bkbfyt4kI26tDhCsHLfbrlaj4clWrYiq6iMv12r5tH17tAEB\nZHh7s6moiI+PJBJ2oBgL8OCBA2jOSObXl5ZSkdvQuxFCOFt9JvRcqhxN5kFAT+Dv4SRWoOYjdh0C\n/XWEeoXWKHd3M5B9oD2XtXwEf3f/U+UGwzz8gm5n98oSrnffSyufFIp+fNMWQGk+Jav+S4x2Mw/F\nfERiRSiLrrobN7dwQnQ6tvTuTUhICMMCAhhQ7k9cixYU+vvyNXCNvz+6M5K5m1LAysLCht6OEEK4\njKPJPBrIBr4DYoHtwDigpCGN/Ja6iNbGwBrlEdktCSrz4dekX7mjyx016q2AJjmc4Mv+4nDZ6wCY\nrCUcK5+N++0GugZl0UdbysxNS5ihf4Ncs5mumzejCQig4OGHefj1Uq7MzaXFiULGqir3pqai11V9\nFcHBrNHLQl9CiAuLo8lcA8QBTwFbgPeBScDEhjTyZLdp3HJlzxrlWcpJliytfR9QK1Bhak1BhD+t\nfKs2qTDshTZtePvodVRu78KbwROIHuzJPzpfTledjtU9ehAUEkLHb77BdDwXvv4NVm4FqxWefBI0\nGjAaoagI2nzfkNsQQgiXczSZnwDSsCVygB+wJfNq/rtwISuTkgCIvuoqYq6+GgB3b2/aA5ZzrrGg\nkpPzMydOpJ4qqazMJCt7ITAEBZXfK+7gg4EfAuDmFk23bosJ2PML+eUqxnR/TLkadie4YTHBvj/d\n8Pd3w1LpgblVexh3N9zfAvR624xRvR5OnICqGIUQ4nxISEggISGh0e00JpnnYBvJchgYBBw4+yD9\nVVfR9t57ATAD+0tty+H6Gwy0B3IqK+02rig6tBpvfj22jcz8E6fKc8oKWJG4CTRDWJfrzodb3uPT\n7Z8BUJlXSZdZXbB2vpm+mhZsy0hHn67j16+hrAxmzwaDAcpva0VOYbmDty2EEE0rPj6e+Pj4U5+n\nTp3qUDuNGc3yIPA/wBNIBu45+4DrAgKYEVNzvHZx3ka2naPh4i3F+B9rieXnGHafUV6Wq+XoKm+C\nY8C/ogU3dLiBEE/b0MXFbou5rsN1ZBwPxNOoIdbPyiHvE6xcCSEh8N13tj/dPikA6p4JmmmsxKSq\nTDp2zG59fz8/BgfW7O8XQghXaEwy34Wt37zJWY1WWni3YPEPi6uVx8XFMXXSZD6YX8JV6lU8cc8T\np+o2PL+Btwe/zbSFCynMyUHTiA3xfHQ6hgQFsAYw2BnTuq+0lAOlpZLMhRDNhktmgCqKra88YqKR\n3YG7a9SXHSxr1JR6vwJP9JbehLRPJf2TdKwVVjLmZWDyMXHDWi0BdYw61CsKo0JDmaQoTGrTpkb9\nD1lZfJOV5XiAQgjRxFySzD1b2vrKc/qp9Gxb8+nWEGagMst+f/rfjuQcYdt/T3fWFBYWsmDBAg4X\nFnLrvo7ofONoEbSflPwHsSrFpBqeptTNwJ1XluHRUyGrUyClie2a9saEEBc9b2/varNQy8vLGTdu\nHDNnznRhVC5K5mXpBugMJ9dlcPJXT7vHhN0TZrdc0WjQaXTkFeax5actp8orSivYuWYnapdoDIqe\nyvx8Psy0Mufm+9Ea/iTqursJDvZl0qod9EzUc0WbNiQljbd7DSFE8xQYCE7cNY6AAKhrkmlJyenp\nNKWlpYSHh3PHHTXnw5xvLknmVovtt1rg222IG9CwbndFUdDr9VzmfRl9y/qeKv9d/Z17y+/lT7M7\nOnM+SqWejXl6QkPvQFEeIyTkZkJCQlhb4oNnshvBwZc1eTK/+WbbKMdz1X/6aZNeUohLSn4+OHHX\nOBq67MsPP/xAWFgY/fr1c05ADdAs1zOvi6JVCBoeRMfZp3eDdot2I/arWI5v2YKyyzVxHTkCCxdi\nd5PqtWvh44/Pf0xCCOf58ssv+ec//+nqMIALNJk3Z0FBEFpzuRnquRibEOICkZyczNq1a5kzZ46r\nQwEu0GRuVlUOlpWx/uTJU2VFFgvfZ2Wx29OTvlZbn1ZMmhGmTLHNGnr7bfDyghZ9yCnyYcMG2z/X\nVBXWrQOdDshyw7cyVvamEELU6auvvqJ///5ERUW5OhTgAkzmnhoNff38yEwz8tcZKxtWWCxsLy7G\nr2VL2mZvJbxQ5ekEhR3GrzAbK9iz6HsCdFpaPh/FdelzeO29WJ5+xILVCi+/bFuaBaMvf2YtZ5u6\n13U3KIS4IMybN48X7W0q7yIXXDLXaTTcERpCSXoJD3c63Tm91mDgjfbtiY6OZme3CnJO7OVkh0qy\nNamYkq1s6paOj7tCuXslnSt2c9D4AxbF9mS+ZePpoUZWiik9WEaAyb+2END/UUKXPeWkrU+rVt4/\nH8q/hYxoLWH3hDl1EX0hhOts2LCB9PR0Ro0aVffB54lTk7lSvJyjR2uO8zF22OPMy6KJbcHCkDv5\nLOpTzNZK+An+HWMCL8AHCrw8eTcVEs22L2BLp9boFQWryURidk+smeNYsXk9FtX+bkNeL2UQ2QZK\n2lZf8TeyAkwH4dDrGQSPCEbne8H9rhRC1MO8efMYOXIkXl5erg7lFOdmG8UNrbbmBkRaixv/2daS\nob2dd2mNosE0ybYmeciHIex/bj8hISH03rqVuI/mkfHzFVTqyrFqFDbe2hGdVoO5uJjlCV68tMtI\nUdZxjGZjre1vHufJ2JurD1tZsBZGTobcFTI7VAhnCAho+PDBhrZfH7Nnz3ZeEA5yajJXva8jKmpC\njfKiY1/yc8Fhpybzc4qKoqKfAbOxAo1GywOTF6PX6yk+cIBH3uvAZD7hxtY3MJFZLgpQCGGP7BpX\nu0YsRyWEEKK5uGA7da1W2H3GGl2VlXDwIJSXQ06OrX7/ftv0X6sVMjPBYgGTGXJywcOq4K5VUVUz\nf/0VjU6nYK00MX++nmKKMXpocdOA0ZiBm1t4/YIqL4Mlv4LJF+bPB48zpqrtD4f8PoAMOBdCNL1m\nm8xfS04m3Vi9zzq5ooK3kpO5KlOHIcXCywOgVStbXUYGTJgAbm4wNB/K+0OXLhAWZpsCPHCgbfhh\n7mtwz7Pw5YsK47YFgFJE9+6/otfrKU1KZOSdUfzEAvyeiADG0ue/nUit0FaL473i/7LmeCpBb1/H\ns1c+y7+v+ffpIFauBMut8MdaMJyxj2hSFBz0Ac69k5HVaCXtwzSsJmutx/j08iFwsCy/K4Q4zanJ\nfM9mPZ99VrO8fGc01qhzv8V4KyWFF1pE4a45nUjdFS2ROg8CNQb2GrK55Rb4e/JVdDT8/LPtz93/\ngv/mnF7DISQE9u2z/dlnm4L2w0ReKZ7Eya5gUZ+jy49FKDo9GpMXGcMVlE+D+e3HcFRgdNtneei6\nx6rFtu2zA/RrFUW38Bc5nHu4euCPPw478uC/s+HM0SxfpsKjKXV+Z+VHy0l+PZkWY1vYra84XkH+\nqnxJ5kKIapyazLevMxDlW7O8Mj0Yz7ZmgkJrXzGnogKmxLVEX6k7o0zP7LtCGab40fq6bFrYz3fn\nNLdTJ1IqKti372eSshXyUBhmikSr6skvO07y1XnwKYRVTck/mexFkGdQtTY0iga9Vo+3oeZInaZg\nCDXQ/s32duvyVuWR8mbdvxSEEJcWpybzVu3Ndp/Mi17cSEKpEQ+P2s9VVZj1EYwdfbosLg4eeGAr\nAYeCWLQ5jUevV1mzxlZXVlZWr5hivbyI9fLCW7MDnzINhQrMHBOEXq9ny5505m8zowC9e2vhN1hr\n/JB+ny8BoFLrTYlbBP8uGcaGfav5pSCLTsGd+CknB4DMh/J5x8vMaKuVSUePYfY5/X452b+YrH61\nd50IIURjNNs+c3sGDx7Md999R0WakbS8crKnLT1V17VrV0JCQhrcplW1MvG3iWh1WopPmoC7UQHN\n9NfRqPDVJwXoj9kmD824/3Z+7dcbg9kdr8ohHPDch/vxzszIOwJAWUctlX9ZUKwQrNdj1Z9O5vs1\nVtJutD8JSQghGquxyVwLbAVSgeGND+fcXnvtNQBSZqUy85dEpi+Nd7gtrdaLzy/PZTBWBhs+RqdT\nOBwSCVl3s9Orgu0+5ai58L45iPyqDaD3KO7ErsqmdZaJO0+2Ya/1FXpuGs/02x4B4Ppn4B/DM9AZ\nK3k4OBKdrw6dDvR6YGMFGylu7FcghBB2NTaZPwXsB3yaIJbzqk+fw1itFShKKNdcnYxeryfk2HHI\nqiQqujvGXj+izIdbZt6P1RoBwOS0YjLKSkEJIGNAMWqSymLf4/z8jK3zvoX5KDOWavmXFcK3rqfs\nzJm+hV7g6YWSkADAjPbteebvoTgukJ2dzZ49tS+r0KdPH7y9m/6dQMo7KVQkV9Rabwgx0GZymya/\nrhBNKTk5mbFjx7Jx40YMBgO33347H3zwAQaDwWUxNSaZRwI3Aq8Bz9o74ID/q3SY+Z8a5VZDMem6\nPPRax25c661lyApY57fObr21wkrF/517PpRW64FWa+u01+sD0Ov16LV5QA7Bqgb3qJYA+Hq+gaLa\nRtQMCOxBwVn3AAAgAElEQVRJoaUc880xXJa5gmEtTPypW0jl5asASDnpTmmQBePrH+O7azxRfhqS\nXllKxcm2vJN5mEnak9zfogXbS0r4OjOTw+Xl1WJ6OjKSSIe+kYabMWMG3333nd3lOw8ePMgrr7zC\ngw8+aPfcJ48cIdVY+1IHoXo9s+3t0AGceOcEkc9EovXR1qy0QNKEJEnmolaBbwWSX+G8feMC3API\nm1j3NNNHHnmEiIgIcnNzyc/P5/rrr+c///kPzz33nNNiq0tjkvl7wHOAnfEqNm2KH2DZP2omhOLp\ni1i1PJIOL3Ry6MLB94QyKugQOf2uslt/0mhkxZGdDW/Yzw/I4WRSKTlz+qKaf6BwfY9T1WEtNXgb\nrFhbZ5BVZGF4hIJXsjubDvoBYNg/ntjBhzCE5DLx2n+xeO+rJPsfpVWrdvhaPIjsreWbQG8quhtB\nq5K0wwuNBp58En6xZrCxsJBRtX+dDTZv3jzGj7e/NV5JSQnvvPMOjz/+eI26hx9+GIul9v79uRkZ\nzIqOxlNbMyGbVZV7DhyoNZkDtHiwBYbQmr/IrSYrSROSaj1PiPyKfNTJzts3Tplav4VfEhMTeeqp\npzAYDISFhTF06FCOHDnitLjqw9FkPgzIAnYA8bUdpE/zwf2/NZOCsqE1waUhDi8RqygKZd4KOj/7\n4WuNFsdW4/HwIDBIIdc7iu1Rl2E+8QLfHPrzVPXq4r1Epe1n+PwyrpyWSMjvRUQPyOX/YnMBSL51\nCjr3XDRx/rQoyOSZKCu7XxvJyJ7J/PVDKa/828qose+yY18pFlR6e3qz9EctRy16yoZ0IbG8HIIu\nc+g7sSc1NZXRo0fz0ksv2a0PCgqyW14fI4KD8dXV/P5NVhmxIy5+N9xwA/Pnz2fAgAHk5eWxYsUK\nXn31VZfG5GgyvxoYga2bxR3b0/k8oNpmeJnJP/PWpGUAXKFpxRXa1qfqVtx7PWNjQMmwfwHzEvD3\nqz0AFTh+VjfFqeuaTHbL6yMsDLp1gwGPwydb4OuvT9cN+cGDwrQrYMEfEBFJi/GraO/Z4VT9IK/j\nTH8umeBXVEbm92Pcsg600KXT9/s2BPzZlxTLs3x1dBZm326gaDiQtgtjJxOK4QXy8vLYnJkJNzRd\nMgfw8vJyaJSPEKJ2U6ZMYdCgQfj6+mKxWLjvvvu4+eabHWorISGBhKp3aY3haDJ/seoHYAAwgbMS\nOUD4lSP5YJ39f+Yv/G4T61+A3hH2LxC0CYbY70VBqyh08fQkfmftXSk9nPDyrqF0Gi0dAjvwSutH\n2aE5ybysJbwz7R1W5uViUlWGBf2D8Ute55ZBj3Kg4C9ITnZ1yEKIOqiqypAhQxg1ahR//fUXxcXF\njB07lokTJ/LWW281uL34+Hji4+NPfZ46dapDcTXVOHOHOrFODdtrIK2isDMuzpFLnjeqSeXaVtdS\nVrKeI5lHyDTloQkoZ++uSrS/5qJRVKZHbmXsxtvRzjxOwdMlmHcWsnbSThQUnnnmdFujR9smTAkh\nXC8zM5Nt27bx+++/o9frCQwM5IEHHuC5555zKJk3laZI5n9U/Vxy0tNnodef7ndW1TsoMK0A3778\nGb6OkP6t4IWjRKlfonaFCV2rjhujUKbXompLOdJ9KS+/+wZpBi3hEeWUdg3Cf28Orat6pH75BZYt\nk2QuRHMRHBxMcHAwH3/8MePHj6e4uJg5c+YQGxvr0rhcNgNUqdRww7Ht6FPsv6issFrRNcM9NI8n\n25YaWLLkXU7+Uf3lbmVlCCqV6Mcthht/onv31bi52RbpSl6/lYG3fcrL/3yTNl/t5+upMaiGCdwa\nuYYHnzbywkl3iAnHGG7Celyl8z9tL1V3ucGMRTDnBh0ex/zoVApD8uCuMwYCDRoEH3543r4CIS5p\nOp2OhQsXMn78eKZOnYpOp+Paa691+e5DLkvm/i/2Ys1GC8HB9uvdNRq7Q99cqUOH06vaRse0o2Xr\n6i8WN258j9iIQbh9Gop6yxYURcFgsN2gj7svppIfGRH1AocK3Jg5czhlPpmceKGcke9cSXnMVSyP\nv5xlpmxu07Tls9RUAKxXQY+e8GdlPnvDBmDaCKWfwpKq1SK3b4ePPjpvX4EQLhXgHlDv4YOOtl8f\n/fv3Z/PmzU6LwxEuS+aaCh1heh2hbq6KoOF8fKDv1bZRj3fdBV5nbXu3ePFS9Lqa2+SdSVNse+Je\nMGsWBUffpqv37+R+/QnrRxvpXLyFSdZSUvIC+aXHoOrnJSTQqRMUpEGKF3SqejLPzbVtzLFiRc1r\nHT5s26zjzz+hb1+Hb1uIZqM+E3ouVRfUQlvNypy5sKp6N8vdycl0WPktfruyMT+fQUFAdwqq6ioq\nYKoOzKtuA+UHuhlGsCLyJowalZbLr0O9x3acurEVtzMNzVQNoPJ864H8s0VvcBvK/pUvYN4RRHlp\nB44f/4mWLR8FgklPh6efhnbtqoeYlGTbXemaa6CszLZxh6upQL/tO8j2r/nOXGtWma2qjN6/n/ku\n7n8U4kIjydwRoaFgTIaC0mrF3mYz7gYTIQ+0xRpV/cm6KPUEKcaZ+Ce1xazVUVwYzHMLd3JwGJQt\n7kLvQ2/RJnYL0+LakPS7FwntLmNeRglZaQUUZxbCFVC8sxDTZh3aMgsZGXPx9e2DXj+ErCxb0q7q\nmTmlsNC2ZZ6qgsl0jmRusYDZXP2zyQR/T9nX6aCJurxUVHLNJn7vcXnNOpOVZGULe0pL7ZwphDgX\nSeaOCAyEZ5+FWK9qxZ/+9RcnevakR48eNU7JaxfO5wsDmfrtl1iHloC/P8q4BzCWPsee9w08tmMK\nHoZsUlv5YYpR0LRNZngrH/bmHObagztRGcXVHaPpVe7D6CQ3Jpx8FE7uIUiXjs/sjrRK8+GLW7tV\nj+dT2xP555/bcnOt4uJg797Ts2bNZvjyS9s9Wq0wYACsWtXYb+0UnaLQ1s5i9ladlRSa30tvIS4E\nksxrYco1gQrGk6cXlHLLsqDX2caQ2zN06FDWrFnDmr93zDjL7XfdBZf1BM2foNeTF5DEuhOejOjY\nnl9/vYwQ3z+46god5Uu6wRVz6Nn2MYJ0b/LMTbvoPeYpdP7+dNgbgW+WLz1XrKA4yIdCHyOW/CfY\n7ZNOt27Vk3l4OJSU1ONmCwvhwAFoX7W70cMPQ+/etj+3bIFx4+r1nQkhXEeSuR0eHTw49sIxrBVW\ntvXadqr8KosZDQpWDx06/5pf3cSJE5k4ceI52zYXm9FUqhi/eJFSQymR6Qqm0O7E/BmNh8GLgkQL\nysFwrOoozOahqOr77NwxlOeHHaNdu3YoqQqqcTEzO5yg1OpFYaWRJfvMLCo69z3ddx/UtjrnB5lQ\ncRza2N+pTghxAZBkfgYFSDMamfa4GfMDfpiuUZi12v9U/Y6SEv4ZHs7E1q1rb6QOWm8tx14MRC3x\nIygwkJ3Ht3Jl+NWgFJNeWMHmA4l0sCzn/0YfAn4kNFTF2zsHnc6fDz6YRtmcMiozKzG88l+SjZ1Q\njL8Q6J4CReG1XlOvhzvuqD2Zm5dCYiK0uc7h2xJCuJgk8zNEe3jwaceOVFqtVLi7s8hqpe3hw6fq\n2wIxxcWsS04mJCSETp0avoSvoiicvM+XCquVqHZRLJ2xlBcfepFD37txX7dIbhkZBYsWkfKt/U2b\nd53chXFfKdY8T4pPBpPrkcsR92+pbDOYmDdjANsvDBTI2ZRDhFsEGs3rjBwJ7rYNkygxmyk8Y4nb\nzDB/cnRm0qpeeFacY/nbi12h2czOOvqmenl742NnxUghXEn+izyDTqPhjtBQAMxmM4sGDiTh3Xer\nHZMAGI1GMjIySEmxn3CdyT8yl8q1GbSccZhbsnSkjA7Dq8Abs7uJj+f6U2l0x9zDE31EJW/kFLNO\newCtpYSFHv+Hwds2nOXlO+8kLTAQXVXS1k98lcKgLJTfbGPgKzIz2fqZiWXLoEM+PJIIuxfCyJHn\n/XbPu4/T0piVnk7bv3/znSWxvJyJrVvzZOT52kZEiPqRZF4LnU7H8uXL7dalpaXRp0+fJrvWvqx9\nVJjDyS/P53hBCWF7d5D38umVtvamF3PX/PmoqopqsmK1aNH8bkRRcrC+bOW229fw1OgN5PY0oVZU\ngk6LYtDhVV5JX6OZu54bTsrSO0Gvx2rWYNzdmd6egfhrtRxL0xLd2syYW23XUj203IWOXnEqowaD\n/xHQH4CEhEsjmVuAMWFhvHb2oP0qzyQmYlGdtzmCuDDs2rWLRx99lL179xIWFsY777zDLbfc4tKY\nJJm7WP+o/kxcNRG1+E22pG/h29zN3BVRgLLxfwAUVRZRQSzX+fnxWevW5Be2JbVwELz9GpFpfVj4\nez7vbTKwoNVojK+O5miP9/FJWokalYRP8XHyQsE9NoEow1oArkq2su92PRtitORkR2Bq2ZHKpXMI\nPXYM1apiyjGhuxY6d4abbwa2QOYHsHUrvP66LebKPjD9XXA/ozcmJgZuv93535fJamVjUdE5E2oH\nDw9a1fJkLS5wgYGQ77xt4wgIgLxzzzI1mUwMHz6c5557jieeeIL169czdOhQduzYQXR0tPNiq4Mk\ncxdbMHIBALf85xCD2w/mlhfnnl4pHhizeAzeB70x7JyPf69eWEs6UvhnIIqXBj8PHZ46HWg0oLNN\n6olcNY7KjIdILLoL9es26AtTUfqFo7n6DluD/5qJV4dePNr7ICH+g/nn8pn0vzOUKz4JxVJuYX3A\negIzrZj2l5O7IhcOm7Fa2nNv8CHYaJvBqe9hQXMyHY3Zts/qsYoWfPWV9rwk801FRYzYs4fLfOzv\nIZ5VWUlXLy++7dLF+cGI8y8/3zYLzlnqsbjf7t27yc/P54knngCgX79+9O3bl6+++opp06Y5L7Y6\nSDJ3kMViIS0tzW6dr68vPrUkG0dsSd9Ca7ORD+JUzHkqUftBDYA1AfDrMTBmuYHGlswNIQYMIQa0\ne3R4BPoTpFVp2yqW6OhHbI29vQiz31V0D6kgIqjmU4RqVmm3T6WisJC0Y2lQpkDu1Vz92y8AFJva\nEtfbjWeXXYdveTkUFJDxzFtcy2NNdr/nYlFVenp7s6ZnT7v1P2Rl8U1W1nmJRVyaVDu/TKxWK3v3\n7nVBNKdJMneAj48PXl5edvvNTSYTkZGRbN++veEN5+fDWbsnPe0Wz6yKkxRareg0OlRFi4ICioIf\nmZSVHcVoigGs5OWdnqVpMmUBtt2W8vJ+Yf/+qsVfRuwhLiIfa2kmOaY0nu9Ugb/3DODZU+emtVXw\nGRtO98e7V5Vceapuz/A9KG75tklGOh2MH49irODkSfi//wOrAuY7VTp/dqjafWi1cMUVcLvFgvxn\nJy5k3bt3x8/Pj/fee4+nnnqKtWvXsnbtWgYMGODSuC6Z/1ft2bOHgICay1va+y1bF19fX5KS7O8i\nv3//fm53pL/Bx8c22Pu+T6sVXw5cm1fAfzSxGE+8gXe6CV1xClvX/JeyskOYD6/EUqGgqhaSU14/\ndZ6i8UCjDcDdw5/Wrf+JRmPrEqk8kIh6sjdqaCa4ReCVXULHdnNJ/eAOrCYrNHA/5ve2beNff87E\nwr/54gtbmfYL+HtAp1ZnYMT7G1j+ayAPtTThZoSZfwaQmphaoy3VouLgplVCnDcGg4Eff/yRxx57\njFdeeYVevXoxatQozGeub+QCTk3mhw/ZNke2Jy/P9mB3PgwYMIDx4+3vRdq/f3+0zWHd9JYt4cX3\nwM4L8byZ89k5/mf65voQkpmHbwUUFl4HXEdReTblmrWgpNPnpw3VzrNu+AO1UuW3H/9k1yM7AEhe\neQTfyitQ+h5B4x5FWVEupui/mL1mPwCWgWayS8t5Z+9eZi9aiAYNTx9ty/B021N+xYmKatfIKivj\nxYEDef7HH+3eVseOHZk+2JtN01qiTUuBcsheoeF3fc3NuNsV5DX4l4kQrnD55ZezadOmU58HDhzI\nbbfd5sKIGpfMWwH/AwIAA/A58PaZB7RuDfPn2D/Zw8P2Yvp8+OGHH87PhZzIYID334e8VbD3VQtt\nJ9iebDt+qaN8iw+JfXti0dr6tU892yZ/DeXl7O74EKHvvotbURFf5+VzMPwApbELCPa9nC0lZiJC\nIfHRbSiKQnlSOeYvMmldoKf9yV0sDyhnW2QIt2uCMKYbqThaUSM2vVaLey2jR5SqF0pvvgmmr0DV\nKqQNaYfJu/p01EWLYErYQXyTaiZ5IZqb/fv30759e7RaLbNnz+bYsWPcd999Lo2pMcm8EhgH7MXW\nObsdWAns+vsAd4/an8yF404YjSzLzaWzpyc5JhMaqxXf++/nvtWrATCrKsOCglgeEUFWfiYLj+2i\noHVrPBSFJddqwazjfx0eQ1F0RLbMJYwVjLesxtfHF3poGR1axODok9xx9Vpi09Kx6P/kMZMJi7eV\nEcH3ErF1HbdOGYe2NJjE9unEb4wk4doEW3ADgTGnY60wV7ApdRO9hpThne7N8fXwzLNgCK1+T0lJ\nQKLt7y0SrZS41zILU3uu5R+FOD/mzJnD559/jsVioV+/fqxevRpvb2+XxtSYZJ5Z9QNQAuwGWnJG\nMhcNc/Kkrdv8bNnZNcvGhIUxJjycWaGh/Onjwya9nv+cNcZ1h5sbVp0Wt2XTGdrtH9x9/10EztqM\nPjmbUV8sxGopprTCF6L88TesRqsFtzxoaYTKsmTKy1vg4d2LvuoKLm8RhKoq+D/4PV4tMlDCU7GU\nV7KrsAhdtxM8sDQJS24bDJ/pyVpuG02ioFKqDeDN9W+StyWP9ayv9d69vWH9n9BT78Zdz1Xww8kD\nNY4J9rPiHWiB72sunysuEQEB9Ro+2Kj26+Gdd97hnXfecV4cDmiqXus2QBxwfxO1d8kJCNjC44/f\nhL1OY1WtoFWruxxq103nhp/Zytq/Pudg6E8M8R6CIdrAzyMq0Co6ctffRNqiSPq8NJvW0a2Z+dQq\nNnbswfESC8dTIzjscRlrKs345q4kwMOf606EsT2sJzHWz0jJdONYWkduu3Ib23icvdmelKsGvDS2\nzSXyrH5YPDPoGDac37JSWGFdQXvas+zwMtTc0y86+0T04f33I9lfrFDYNZz/65fDxti4avfx7bew\nZEk59+zZgdVq2w7vbLJcyiWgjgk9l7Km+M/fG/geeAooboL2LglZJhN7zljQKW5YCgeOd+HtOXPI\nt1hqLHbl5evLL7m5aIpKMFqt6Ot5HXedO+PixlFRUcGr414lOT8ZS5mFN8e9CcAnWpiwbAF3d/sn\nrTq0wsfwFxqNnm7h3RnZdRA/lrlTYLmcL2/6Bn93f/Z8t4e5bfJ5sL+ZPcVxfP361YzpOZBZgwZi\nTWxF0Z5KWo7yBOD9OR3ZkzKVwE77cFfKWGxezBM8wQ/7f6Dcz5aND+ce5sboG3n7+rcxGMDNYBsy\n7+tb/T6iouD11TBItT3BB/arXq+qEBkJb1Z/ByzEJaOxyVwPLATmA0vOrsxMXsmUKbb8Hh8fT3x8\nfCMvd2GorKwk0V5/CRAcHEwnT0++zc5mY9HpRciLT5wgt7KSx7KzKbFY8NVqaXHmmrVVj6JR2Sau\nUqCL1+ldjvLz8zEajezevbvatU6ePFmvyUtaRcf17a+nS2wXMLxAi/xCLsvRMPKEN9/vsHIks5BH\nb/gEgEElnan4w52BM4ZhNHpTUZHB8dQigsJ+RG2hohZEkbjKB1QrQ8ISuD40GIPmBHfkDERZcQME\n5vJwq1UoXmVERf2LH09Ek1uWi9lceM4YBw+G/Qfgr3i4pj8knPVknpUFXbvWeatCNDsJCQkkJCQ0\nup3GJHMF2wiW/cB79g4IixrClCn2hwRerAIDAzEYDAwdOrRGXXl5OdHR0SQkJHB7aPU3gMuzs/nQ\nz4/lcXE1zjtTXnYeKd4p9KxK0tHR0Rw7doy0tDR69+5d43h/f39MJhPPPvtsjbrTNJhMCpWVoB12\nM63/Nw+31b9jPZxIYFgc3j3C6X6TbYXIFisDeSRqH2Xhx1AAvcXM6Gl63KxWrGaVrcZ/0X7pDXh2\n9WDsWAvbfnuCT364nMz4TwiL34NqBb2/J2azkZQT04kxK7gb8li//nM2Xh2B1aBwXYqV6ZmnNyxt\n69+WuNaDCeHJc34358vKvDwW2nuRUaWTpyefObA8cn38mpdHckXNEUV/89ZquSs09NQoItH8nf2g\nO3XqVIfaaUwy7wv8A9uLzx1VZf8CfmlEmxe88PBw9u/fb7duw4YNTJgwoUmvd/3113PgwAFSU1Op\nrKys9biIiAi75cHBUFAwgrg4bdV7pemYzMX8nL2Bpw/rwHsz2i1pZIQHAxBk2YH+ivvpOPY+9IrC\nksJCLo+OpruHBwVzdqM8m4gh3IBHa0/KvOC4eg//mduZnzJ70zq9NQazgUORB4n2seIVfIy93d/D\nXaPj+lALtxT3Rg02kOxtpFtICADJBcnsz08jxDqF4tnDIK2SZ4eY2KDfQKIpkQJrAWDbqnRsvsK0\nsWGktS+i71+ZeHq2xcvr9OqHej3Mng1BQY37zpPKy3k8MpLL7YxeyDKZePLIkcZd4BwePXyY3j4+\n+NbygmBuRgY3BgXhJy8QLjmN+V98PaBpqkBE40Q6uL72bbdBbGxP3n777VMrvg1Y1YPHrd0IMRhI\nTU1l3rx5fPS8bQrBpDGTKM9LZVaX+/DV6di2ZYttKIq3N5oQf1BVdvbdgKJRGWbxZhM/Eb7cwHhN\nT1Sziu+NLQgc3o+kpF+ZN+8uKr57A4CYD2J4bseLKL1DeKtTDp/0ioOjR/lx+8f8UpTLgMssVGxN\nAy8dn75v5ofCLG4bdx/t0WGomt1aQgwRv7vjudWbwPR0vHyCuOflFafu9d13Yc0Sd2LiatlyCTB7\nwbn2lM45ZKDIquVkshdHjf416vUtK8Czof8rNMzr7drR/qwNsceNg/XrwVoaydWeWrRn3cN118F7\ndv/9LC4W8utb0KtXL5555vT66TkVFXzm5oa+6p/qAwYM4KabbgJgpvtM7C8vBv43RqJot9CD5/FR\nkuirg2GKBfRzURQFRVVJSmzJnEM3kpFxjEJTN+bMXcT9tU22mDEDji6HrhVgsdpGMpj9KVZzydu8\niqInn6DzP/6B59/vD2bkMGyelXwzmENMmAuy8Xnu9Bo5LyuwbUIo01rF2r1cejpc+SH0OMdS9X99\nGEjRyBy2HYH0k9XrysshYR+4fVb7+c6yaRO8+CI8VHGQT7r3qLYT0o4d8Mkn5z8mcX5JMhd89dVX\n1T6327SJVT160M6jgeO5AwKge3eUz9aj9PLhSFkZnTZuRK+qoChorFa0ZjMmgwHVaqHy/sNM+2n7\nqWRuxYrpmxzuXGPkYMhB+PMyUmO8KNX9hZU8KjStwFuF2DB2DR1K5YoVtPX2PvWS1/MGHQXbs3nj\nYz1l2dnoP/2WvYts7+WtlVbW+azjxiEqz31jP/zx42F/PXbM04dWEt0/i2jP6hObirI0rLgnoN4j\njZpaTAxoS8vo2h38zvh/drGMMbskSDIXjeKj1XLF9u38vbrN+yVWHty+naQSBQtwVWIi64cNg4gI\nWLsWxoyB4cPJzNzFfVFjCC8pwnTfSD46nktOwSCOhnblaOdRvH3yZ643ebCjJJf1+m0YFQsvjB7P\nlNlT6PP472xyD+ZJTTDW2d/i5hVI38hemDJVcrUmrjacYJ+xkhxFRanqb1C0ClihMqOSvF/tj1UO\nLDCw72czh9dYWL7C/kvGCn89Bo2GLJMJt6o9U/9WWqml3GLBYJUFZsT5J8lcNFjECchfnINRq2Wh\nNRKTejp5nTAd49funfHqZXs56PaPf8CwYbbK3r1t2xVZLBhP6MksCMGiM5IauokOEe5477EyaPM2\nsox78VBLIRwGVWh5MUEhpR98tXkrSTfOpluYgRxNGLtyLyPG8zi/5+4kV7MeXetKcnufJG/PIXK8\n7qWydz7/+uUBAj0CeTzucbyv8KTsYBknpp+ocU+WEgvxx8q5oshMpa8GH01ujWNMeWZm57ZjXbGB\nkA0RtCqpPluwqAg0amkTftOiOfrwww+ZO3cue/fu5e6772bOnNMLUK1evZrHHnuMtLQ04uLimDt3\nLq1btz4vcUkyv8Do/HQUrCkgQZNQ6zERj0XQZmobu3WWsnr0I5yDoYUB7xyVvPnZFNsZ/ubXx5eA\ndp4Y/u6z1engyitrTM/UmsM4MOL/CLX+RtvXqnrhCwtJ/vln3k9NZUb7dpi/nAUtIvC97hqOMY60\n1yy48yORikIk0MPWe0NHVUVRoNKkhQoNVhTK3b5E19OIe+UmzEYzG9a/S27v7uRUPsj8O39Ac8ar\nezedG192/5Jjg4+ReY8P+1/wt7sH6K6HEwleYsVkguwc8MipXl9cDGZZOsapAtevJ9+JS80G6HTk\n9et3zmMiIiKYNGkSK1eu5P/bu+/oqKp9gePfM3NmJn0yCRBAEpqAgCAtIFWKBbxPkWsB4aLyxIIX\nC/K8ehURBLE8vDZE9ImKIupVmqAglqBSFILUJLSEBEICIT0zydRz3h8Tkkwyk1644/6sNWuF2WfO\n7Gwmvznlt/evpMJU5OzsbG677TbWrFnDhAkTmD9/PpMnT2b37t1N1t+KRDBvRlqtliNHjjB27Ngq\nbdnZ2XTs2LHGfYTFhnGNw/ci+Lnf5ZI0LYnzn573uU3nFzrXrsNeBHYNZENvDe8+09NnepyHvXvd\nh6yVndPCF2YoqhD9jEYKJ07kh6QkpNhYdHHboVcvmHw/SXvsaBY+j10XwTP3zaVV9jZOZw+mh3Ml\ncqhMoa2QFV9aaau0Zrd2AKuGXseBce2RFQU0Kg/wDqFXtEU6eCU7o/rSJtjFinbufj24+UGSC5LL\nlps8Y7USu2+fR3ddFhd/SS2mcLSOotZOxq1Jov9xz2Qu3X0deZ8wVNX3rHONBsKrJsEItZTndKI2\n4eRDqRaTdyZNclc/j4+PJz29fF3+devW0b9/fyZMmADAvHnzeO211zh+/Djdu3dvkv5WJIJ5Mxo4\ncMnUJtEAABrHSURBVCCbNm3C5fJ+dNzFR0X4yiSN79y5yAmRjMit/siiNhItFgq9HAHlO50odSno\nERnpPbFbD0hVF9PyZfbg2TDKgmvRIqbvfJq9AwfyyliV7/+Vh/biYXZ+Eb+9+QIfZN5IyLdJXPX9\nFL6Ld6ecpJ1YT17SenIGJnPXj91Rby7m+31fAjC+VTHvJ19Dt+mDsZ7pwt7482DqiyFrGwCSpGG2\n6e+0tbTGWdCHZ89GMv3tQLQVzkwyV2aSsaeAiWYrrFGYvapqzo8iSWyyRvHTLi1DhtT6V29UO/Lz\nKfTx+QOI0usZ2IglD305ffo0hd6+5HEXf2muSxMNUbmwTUJCAldddVXZv/V6Pd27d+fIkSMimPsb\nWZZbvLRUbYwwGpl36pTXttTCQjoHBBCgafopBrcNGcKxiAi4eJo6ahQlmzdzweHAZDCQs2cPeT/8\nQKtWrcpek67RwLtONArIxWYidO7cEu1l93A6PZ6QiHa0LzGRJRXxxDB3OqbD5aDgfCKFgb9TNDid\nTpEKqIlo27pnebpUF8GuOQQ8Fozj2Z9oo2p49dP/9fhjLtpXxJXbBzFSvZzMVBs3d0smSO+ZcG5L\ntaHpHcCOCyXkpHjePL1IBka2a0egl0yiA2MO8PxpG5kBh8ipdInriWQofiIIFvgeT4eiMOrAAcb7\nKCRgUxSSiovJGDbM904aSa9evYiJiSmrgHWRoiikp6f7DPSXksqzbC0WC1FRUR7PhYSEYDb7WM65\nkYlgLlTxcc+ePtvuiIjgti5dyibqNJjLBWvWlP9blsFkIve9r9gc1Qp18XoCnOV/NE5UbIoKGgmj\nLZW8ibOwq+Xr1OSez8ZR5L4he85mZ8mS8gVbbvkomuyw3nxYcjNZ12byyLr59CwcAEBxbi+OrJlB\n5sASNsy0Eqx18I+uG0HSMS9+H3vOnWWeXmVf2GO8ujvO83coBONJI72UPaRKbTlnz2VHoYWOJvdl\ns2suv4aRxy5Dyc2nf7+fWWLrQettlS64A9loyOnSkdi5r7Nn/ZtV2vN/yee9j/Ss6Hk50QEGj7al\nkxz8/WDNZzpaSeLbvn29tp2z2egXH1/jPhqDw+Fg//79GAyev0dJSQkRzVW1poEqH5mHhIRgsXje\nADebzY1a3L06IpgLLUfSuEsobd5c/pzJBOPG8eobMvbFocQUPkFMq/JT1AKngzSrjYJ9IegiUxg2\nzHPqvE1xYVMV7hpqoXV2KPt3lE+5H1+ioUjRUuLSoKqw+txObrnOXUBbVSSC9qTTOyWc0fvT2BPT\ni3Yr9yEXXMEquvJ7cRiTjyYRrl7AmNIBpz2TDjE6LLQipzCHAKOWkcOzGBaZxOmYEHq0zkSWD3Ho\nlIvNp9YzYoYem7UbAa57Cdu6lQ0Bnmv3hK7+El3vALo81pmcAt93UU+bCjjhOI5V61nZKY3OOF1O\nlMozmYQmU/nIvHfv3nz22Wdl/7bZbBw7dozevXs3S39EMBfqTFEUFB+51JVPm30JCACbXcOZkmcJ\n3lR+r0BBxfqBQqJTg6T7iSumfcm108tLFyVbrZgsFrb3709wcB+6du3q8Z75Tid5djv//iWTguho\nSMkvaztvD8fgcjCc02xB5uDn35O1172EgaqqPB2/mAT9ABIyr0SnFhBkuA/au/9EtEWJdLEl8eFI\nLcHaHBSXC4NBQevKwooTrWrj3I3F7Fr9EH+M1XNfYhL9Rwxn7bb9bNuVRPvBUylI/JzwthZSU+GK\nt24t61eBtYC4Pe/TSXcKp97MqdYptH7As/CBzh7DaiWKM4tfYdqxVC7v5HkXNSv9E4ocRZhnzoRb\nb8WbFe+8g+uDD7jWSwEGjUbDwtdfr+m/rc7mzYMK9wjLOJ0wcyZMnAj1qX/eklwuFw6HA6fTicvl\nwmazIcsykyZN4h//+Adbt27l+uuvZ/HixfTt27dZrpeDCOZCHbVq1YqpU6cydepUr+2rVq2ip5fL\nNLIs07dv37LAGxkJt992nl2bvuFo1otl25mdLl45cwanorD8rB2z08m5CguIBWs0PFS6aJjD4SA+\nPh59haWCv8rKYnVaGtuuuQYqL3h27RLYLbE2/D5CWMnq7DvQFZa/9pxhIkntOvGl2o5hmk8IX/0M\nlC4VYNz5K9ppOzkeNApneDRZGVsYNk5DgD2U3WYzVlWl+7axxJ3oza+EEpK3jO7pu0jKc5BSbOOz\ngnfondOWCwG/ga4VG37uyemz0Wz9Ribbko0j8wDR5gAcK95BTjuARj5JRPcOhLZvhU1jITPiIEhr\n6Gm1EhD8FK//zw0ev9qSJ10EF4aDw8njX75G1w7lR/dphzuQXjiG99a+i9qrL1cNi2JCtwker3/q\nqadITUmpttJOlt3ObQkJOKq5AX6tycSizuXZUsuWuacWBFVar+bTT90Ln23c6BnMtVotLper3msN\nNYdFixbx/PPPl/179erVLFiwgPnz5/PVV18xe/Zs0tPTiY2N5fPPfUw3bgIimAt1snz5cpYvX+61\nbf78+bzxxhte2xITE9mxYwcDBgwoe06rVTGbc1m50vP68MUETalLF8aEhvJw5UoVQFZWVpVrlhdp\nZBlVVavUZFSdKqpL5coOfVA1Gu6d5Hmpo9tBE28ljsd5ysX3qGhfeqn8tcCo8H6c+uJuiiK/ITH7\nd+5Z/B6gcPL0fjYl7yZk1wQcoZm4pFCOlTg4makjN9dJntnOI3tO8ZW1IwOGbOCH2yVQVE7uOcqZ\nwzB6NEgxIOFghOssaeecXBaQyuWKwuJOq8lQMti2cSgaVWFTyl6Q9iI95HmK/5k5kHhlAz/wDZqp\nnm1XIzGZZJ4MD4MRnVme8yqv3P8qWm35NrLRyP3HjmEZOJCIHVXL+0nA0q5dSbfZ+NTHPZU/zGa+\nzMqq8vzUqVXTMR94AEaMgLhKtx/0ej2ZmZmUlJQQHR1dZV8mWa5V+mB9mWqRbrtgwQIWLFjgtW3c\nuHEkJdU+S6sxiWAuNJrnn3/e44ilosGDB+OslOoY06oVhZMnM9fHJRtFknh/6VLeWbLE6+WbTp06\noa0YkUplqSqfnzyJq9L7ab8uIO/rU8w9/ADtDQZ+njXLo116O4WQM+0o+HQVmvUfkxsURLCufKWV\nlJ+v5IszTggIQOrQkdatbwFgcuu/Mnkg7PskgbXxYcj2eBY47uXOR99mzZo1bHZtZs1za9g3bB8/\nDjDwz+9fY8/SVwnc9w49Yo9y98IltProE+yWr0ke/gfmG1Q2b5Swl6TyRx/3KfqoGD3KE7ew1wq/\nxXUnJrRCoFMlOuV+x7bhKzhqCOdk3hg0+eVHti6nlqhUA+pXOlAkrDYXS7/YzaiR5bvIsxURpVXI\n0cC/Y/T0a3sVGql8zGccPUquw0GQRsNQo9Hr/5dNUfjSa0vdRFazRnFNE3r+zEQwF1rMi1dcwfxq\nridqJYlop5PExETaVCrm4UvP4GDCZJkVOVWn4/cstmG0qRS6XHSrlEUBEKnTIStarlgyjLRDf0Gb\nlYW2QkUnac5J+MkAY8dAku/i1JIk8eb777NxzRrS7HYyHA6mbNnCLUUvkvIvLWMNXVjx+FYSE0+S\nl5fJu0/sIPaoDeOBsTy6Yi7yG21wpK9FceZyKPEZAB7Oe5Uemqs5+tIy2k+IwBDgeQM0Ja8P7UwF\n3KJZy4D3DxCZX/5F9mPuNbycfwe5qMglp7gsqCcrjt9FhjMDXWm8LrIayF68CGOAjamKHb3GgKzV\no5dbI2u1dFq6FKrJchJangjmQouRJIkgL0fWDdE7ONhn6t35xPMkmsy01un4beDAKu0/tM0jTquh\nlU5PWgP6EGA08mhptZidBw7wx9Gj3DJlCqc+6UbkuTAiZRXNryGkqwnYVAttj/fBoAYQpQbSvqCI\nLv2/xNLqBGZzBpNu+RGA/MNBqB935mXdc9yj1dCvV1+QtGgk9/gdePZeIrQmmKjy26Dz4JCw284B\nKjbbCW4zf8XKHRHcJe/g1tEunBdPhlT366+aZ6ewQIceO/tSYVeqDXuUjeAUC0d/VDi7bxPtfviE\nwtsfYG3iWkbEjCAqxJ1TfWH9Bc6vPg92B3cUWzgSfqRsLJTiniTdfZx+r3cisHMdV+EU6kQEc0Fo\nTIqEWZJYPGYcAPl2B+a8PBaPGcf5XpCns3LrZZF83KMX777bjoSEHOa92QtOBfLHkGPcfGA/W416\nLjjs2BUDGwqSAXC2jyIWcHxsIT6jgDPt3IuFae3uYGw52Z9rOy7nwl6Vtlelg6oSKEnI2jAcNuiU\nU4Ah2QyGtgzq8zqBgZ2R5UgCAzuh2BTe/mk/HzoPM05ey7AeCbicRobGHmKHZgBpv5yge0Aa2o52\nev2xnfmHj5KdrLJ4+s2s/L97yEj8HS0qzkCJIsVFpKxDQiIoIADknVhTrBQfLRbBvImJYC4IPqxa\ntcpjUkvkkUhycjtz9NAhdF4WLddqQTXLaGfGclLvvjnrKjiMYjZycob7EkXnGeeYPMiIweCeH6XV\ngsEAXNEZjOd4pFcvYtcu599du1JcXMzdg8cAkJenR0Ji5sEMunXrij66B04sqLgPsXU9+jJ0eFei\n73qI8xcSCJVltFojOl04P35mxTB3CiUhBaQaRhJ/rltpjwuAg1gSijlttNG/XTv6p48nZpxKpzAX\nSnEmnSKN/KjRcrXlAh0iJIZat2Eae5bfcqJI276FY0e2cvvIK2jX9SC/ZxejSjIOu5OTaVpSDyoE\nR3/N49pXCHjJyYuFS7iyXR9Ai6qopPyRTPaZNuz5JgVtf61H3rZWatwztj8DEcwFwYs5c+awr9Ji\nW4MyB1FsaYPNZudvf5tc5TU6HQxbnEm/m8xludxxXznYs83Fk++5p+8/m1pAgMZ3+l9QcBB/OXKE\nQykpFCoK/5WcXNa2XV3KstwlSH//ECZWrZZksfRF5e/oAzoSUCErw3CZAUkvoVVVfh0JpwZVWjfm\nehiwV2HmMpns1uEY0u9DVRWs1jRUl4SceYbWb0+ns8nBaMMznJ2i0HXAOyCprNZL3NgxnvaRDlxD\nQZY1jG4DhQ4Xd90Bb7xwFxEmFZ2iYmMSB4q0aAOcqIqEPe5hOhPKzrkW1o86T3K0hnCN+8ZtSl5K\nDf9DQmUNCebjgf8FtMAq4OVG6ZEgNBFtoJbcLbnYXXZ2Ru2s0p5RlAF699Hh4sWLq7QnP5FM9LLz\nGE7FYloK8Us9p76XnCqh14QoPrJYOFI6rTsjN5cLxcW8XjpzprVOR7fqKjiNu9adr7dyJVgs8PDD\n5W2xhfDjD9DP+z0BWZZBoyG8ymnDML6jLaF2M6teXkTVryHIYTgHGI/u9HwuVEjpVBUdGlT2983m\nvDOcv025isEVUkXPSr+zxHw5u949TDedhMZgIEzVoygqhhILQ+4M5QoKOM4jZHATSAq88TiSepRx\niXPQY0BCpd8xmVn//RgnCt1jo9ITaJkUv/9U9Q3mBuAdYARwHtgNbAP2N1K//Mr27dsZ3YTLdv4n\nacmxiLw5koHxA9Ffryf2YGyV9pBjITDdd9G3js92ZOn+Nlx/PVx9nZcNJBjeO5gpuvKUvjUJCWw2\nmVhTYTW9i44fP151HzoZ+vd3V2YqLIQKefmw3d1WuVpzKYPBQNjWrZweOhRjhSPznTvhhekF2LNu\nZVrXO/i+n2fnJQn6mm1EHWnDI699Q9aE8glFFy5AavshDIvuSKsD4fRz/JMxannqYLxyF5GGucx+\nMBPzrs8pnDWLr7duRQuoW7/hOucP7PrbM3yzOoQ+U/Yz6K3BpKSEgeyCTTeBXkJVVQ4cgHf6gcph\nAJZvMrDW628p+FLfYD4ESICy2r5fAH9BBHOvRDAv15JjIUkS+lZ60IA+Sl+lXZejc8+O8UEOk8k2\nheLsDKH9G96fEydO1GoN+4aKjobwcIncMxrUvPGcSJnh0Z6UBDfPuEC0PZPCoDx0P/9c1qbm63Cp\nKr+FFTMorzXT3g0mVFs+LyDYLDH0Ow09rVezZXwftvcK4+pBgwDI++UXlKdyGT9yMbclZrDNpGXN\nuSgIXImLq1imfxFJtqM7Xozxib3c2ToXY8BB0v/q4rHRNtY2/uoCfq2+wbwDULH2VjowusG9EQSh\nzJYtW8ipkC+foWTw6YOfIkkSM2fOZPDgwbXaT0wMrHgXbr1BRTMjlV8XerZPmwaffw7XlEgMKRzl\n0Wa3Q7wk8e6UgXxi/5iSkhKP77u8ZBefBuUyo42Ffko0BwICeP3yywG4UavFtqYzz95h4tS5fSQf\nzOHQh78CoCoKpzZnoJFlTg4ezDj5IIao3gSaguhy2EWbNAuX6rGhr7JxDoeDO++8k3379pGWlkZc\nXFyzLnld32Beh+oEguB24cIFioqKyMjIqPVrfBXyaAiXy+W1D1mlU9FtNvDVxQpVwmqtuLjY6/tZ\nrVWLRtvP25FkiVvH3UqY1nMZg1BC6T6wO+vWr2Pjxo1e1y9RsrM5mJpKSKX8fVuGhRKnjdAiFVuG\n51rqSx6HU5c5YRcsXFD11OSRR8BcWMgiL7N7v/12JCNGjGdCkI6zVivGEw5kl/syk+SEsKN5tDmu\nojXnEalTiC1d73suMKdHD3Q6HS8bDDiNRu6fOJ0TV1bY+bpxVd5vR8QOnHlNVzZONsk1FnfxVTYO\nYNSoUcyZM4fbb7+9yqqK3jy57k2eHvcwRmPN2zaVkUCFdUt5Anim0jYncQd98RAP8RCPej0qiyOu\nynONqS77nzdvnnrPPfd4bevQoYP6888/V/v6an7vk9RDfY/M9wJXApcBWcAdwAOVtrm8nvsWBEEA\nd2C7ZKl1KZ/oW6Mdktc3mFuBWcB3gAb4BPijsTolCIJwqavNZZTm1JA88y2lD0EQhD+dRjoybzSN\nUchxPHAYSASe9NJuwJ26eBjYSfly1f6oprEYhfsMxgF4LwfjP2oaiydwp7ceAX4BOnvZxl/UNBYP\nAQeBQ0A8UHUVMP9R01hcdMn/fTTSkXl1Y3EPcAF3Ws9+4L8b4w19MQCncF87l3FfS6+cgTsXuJgx\neguwsSk71IJqMxYdgT64Z8xe8h/WBqjNWIws3Q7gQWB9s/WuedVmLCpW0bgJ+Bn/VJuxAAjF/QXf\noBuU9VGb/TudTrWkpER96qmn1OnTp6tWq1V1Op2qqqqq1WpVS0pK1A4dOqjbtm1TS0pKfO4H9z2B\n6sbibqBqZW8fGnpkXnHykJPyyUMV3Yj7mjrA18AwGvGi/yWkNmORhvub2Hs1Bv9Rm7H4FbiYI7cT\n94faH9VmLMwVfg4B/LUqc23GAmAR8JKX5y8JixYtIigoiJdffpnVq1cTGBjICy+8AECPHj0ICgoi\nIyODG264geDgYE6fPl3d7qobC4k6xMqGLrRVm8lDFbdRgBygDe5lAPyJmEhVrq5j8QD+e8ZW27F4\nCHgcCMZ9wOOPajMWA3B/sX/rbQeySWa7tL0p+la2/5pUVzYuNTW1vm/tbSxU4K/AWCAZeBh8L7Xf\n0GB+ad0BaFliLMrVZSym4f4DvqaJ+tLSajsWy0sfdwIfAGOarEctp6ax0AD/wn15wauaJvT4ma+B\nT3Efud9b+rPPAWjoZZZ0oGLV1Wg8v3kvbhNT4f0icV/U9ze1GYuK/Dn413YsrsU92exm3DeF/VFd\nPxdfAFVXAfMPNY1FKNAb2I772vqfibfPRR7uQA6wEqi6WlsjCgBScZ8W6XBfxB9QaZuKN0An4f62\n8Ue1GYuLPsK/b4DWZiz6457p1rVZe9b8ajMWnSr8fFPpNv6oLn8j4OUGqD+h/Aaor7FoXeHnm2iG\nuTwTcKeXJQL/LH1uYembg/sO9r9x3/jbhecH19/UNBaxuL99zUA2lK736Z98jcV/lf78Pe4bfRfT\nrjY0dwebUU2fi7dwpyUewZ3J4s+Vk2sai4paOt42KdzBvLqxeAn35yIB2IH7rMUnf8wqEQTBP5TG\nPP9UmqfeaDG4MSYNCYIgCC1MBHNBEAQ/IIK5IAiCHxDBXBAEwQ+IYC4IglAHy5YtY9CgQQQEBDBj\nRnk91d27dzNmzBjCw8MxGo1MnDiRs2fPVrOnxiWyWQRBuFRVyWbZsSMCpzOvyd5Qlk2MGJFb7Tbr\n169Ho9GUlY27WAN027Zt2O12rr/+elwuF48++ijHjx9n+/btXvfT2NksgiAIl6oqudlxcU2be16X\n/VdXNk5VVfXw4cOqwWDw2U4jzwIXl1kEQRDqQa0hBz4uLo6+ffs2U28avtCWIAjCn1J1xSkOHTrE\nc889x6ZNm5qtP+LIXBAEoR58HZmfPHmSG2+8kbfeeovhw4c3W39EMBcEQagHb0fmaWlpXHfddcyf\nP59p06Y1a3/EZRZBEIQ6cLlcOBwOnE4nLpcLm82GLMucO3eOsWPHMnv2bO6///6W7qYgCMIlo0HZ\nJvVRm/0/99xzqiRJHo8FCxaoCxcuVCVJUkNCQsoeoaGhPvdDI2eziBxHQRAuVaUxr9ylkGfeWBo7\nz1wEc0EQLlVVgrk/EUvgCoIgCFWIYC4IguAHRDAXBEHwAyKYC4Ig+AERzAVBEPyACOaCIAh+QARz\nQRAEPyCCuSAIgh8QwVwQBKEOfJWNS0xMZMCAAYSHhxMSEkJsbCw//fRTC/ZUEATh0lBlPROTyXRx\nTZMmeZhMphrXZlm3bp26YcMGddasWR6VhvLz89XU1FRVVVVVURT1zTffVCMiIpptbRaxaqIgCP8x\n8vLyaqzw0xDVFZy4aNKkSQDEx8eTnp5e9rzRaMRoNALulRU1Gg0xMTFN01EvRDAXBEGoB19fKuHh\n4VgsFtq3b9+sl1nENXNBEIR68HUUn5+fj9ls5u677+b2229v0jOJikQwFwRBqIfqgrTBYGDhwoWk\npKRw+PDhZumPCOaCIAj1UNP1dUVRUBSlmXojgrkgCEKduFwurFarR9k4p9NJXFwcCQkJABQXF/P0\n00/Tvn17+vTp08I9FgRBaFle0/maUm32761s3MKFC9UvvvhC7datmxocHKyGh4erEydOVFNSUqp9\nr8YcLFFpSBCES1VpzCsXERFBXl7TlY0zmUzk5oqycYIgCI2pSjD3J6JsnCAIglCFCOaCIAh+QARz\nQRAEPyCCuSAIgh8QwVwQBMEPiGAuCILgB8SqiYIgXJJkWS6SJCm0pfvRVGRZLnI6nS3dDUEQBEEQ\nBEEQBEEQBEEQBEEQBEEQBEEQBEFoAv8PggKbSF82fq0AAAAASUVORK5CYII=\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "log(Mtop_BJ1)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEnCAYAAAC9jGg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvnZZM+qRDQg0QegcLLWIDK4K4YsVeEMu6\ndvlRXUWxIrZdQAQVFBAUUVTcgEiTXhIIPYRAepvJ9Ht/f0xEQCAJJAwJ7+d55tk7d86cee/IvnNy\n7ikghBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIUacFAn8AG4EM4O2TlAkA5gBbgd+BJucsOiGEEGfE\nXPG/BmA1cNkJrz8NvFNxPAhYeI7iEkIIcZaC8LXe255wfinQreJYB+QByjmMSwghxDF0VSyzCcgB\n/geknfB6InCw4lgFCoDYmgpQCCFE9VQlsatAZ3wJvC+QUpsBCSGEODuGapQtAb4HLgZSjzmfBTQG\ncvH9UETh6445TlJSkrZnz54zDlQIIS5Qe4AW1XlDZS32KCC04tgMXIlv9MuxFgN3VBzfCKzC18o/\nPrI9e9A0rc4+Ro8efdrXFyxYwGWXXUZ6ejrp6encdtttTJ482e9xVyX28/0h8Uv8F3L8QFJ1kjpU\n3mJvCHyG72ZoIPAFvlb7WGAd8B3wPjCzIuGXAbdVN4j6IjQ0lNatWwNgsVj8HI0Q4kJVWWLfCnQ5\nyfnRxxw7gVtqLCIhhBBnpSo3TwWQkpLi7xDOWF2OHSR+f5P46x5J7FVUl/9x1OXYQeL3N4m/7qnO\nqBghhPCLyMhIioqK/B1GrbJYLBQWFtZIXZLYhRDnvaKioj9HiNRbilJzE/alK0YIIeoZSexCCFHP\nSGIXQoh6RhK7EELUM5LYhRDiLBUWFnLTTTcRFhZGs2bN+PLLL/0aj4yKEULUSZGRUJsjIC0WqOro\nwxEjRhAeHk5hYSFbt26lf//+dOrUibZtT9y+4tyQFrsQok4qKgJNq71HVX80bDYb8+fPZ9y4cRgM\nBrp06cLNN9/MzJkza/cLOA1J7EIIcRYyMjIwm800btz46LmOHTuyfft2v8UkiV0IIc6C1WolODj4\nuHPBwcGUlZX5KSJJ7EIIcVZCQkKw2WzHnbNarYSGhp7iHbVPErsQQpyFVq1aYbfbyczMPHpuy5Yt\ntG/f3m8xSWIXQoizEBwczODBgxk9ejRut5uNGzcyb9487rzzTr/FJIldCCHO0gcffEBxcTFRUVEM\nHjyYDz/8kDZt2vgtHhnHLoSokywWqMEFEU9af9XLWvjmm29qL5hqksQuhKiTamjp8npJumKEEKKe\nkcQuhBD1jCR2IYSoZySxCyFEPSOJXQgh6hlJ7EIIUc9IYhdCiHpGErsQQtQzktiFEOIsvP/++3Tv\n3p3AwEDuuecef4cDVD7ztBHwOWABTMBU4PUTyqQAC4G9Fc/nARNqLkQhhPi7yImRFDlqb288S6CF\nwucqn96akJDAqFGjWLJkCXa7vdbiqY7KErsLeBTYBoQAG4AlwOYTyi0Dbqjx6IQQ4hSKHEVoo7Va\nq18ZW7WFaG666SYA1q1bR1ZWVq3FUx2VdcXk4EvqAFZgC9DwJOVqcSkeIYQ4/2la7f3IVFd1+tib\nAj2AFSec14BLgK3AUqBTjUQmhBB1iFKbS01WU1VXdwwBvgaeAE7cyG89kAg4gKuABUCzmgpQCCHq\ngvOpxV6VxG7Ed0P0C3xJ+0TWY45/wtcvHw8cObHgmDFjjh6npKSQkpJS9UiFEOI8VlMt9tTUVFJT\nU8+qjsoSu4JvJEwa8PYpykQD+RXH3YBgIPdkBY9N7EIIUR94vV7cbjcejwev14vT6cRgMKDX68+o\nvhMbvWPHjq12HZX1sfcC7gAuAzZWPAYCD1U8AIbh61/fCnwC3Aao1Y5ECCHqoPHjxxMUFMTEiROZ\nNWsWZrOZV155xa8xVdZiX0HlyX9yxUMIIc4ZS6ClykMSz7T+qhgzZsx51xshW+MJIeqkqkweulDJ\nkgJCCFHPSGIXQoh6RhK7EELUM5LYhRCinpHELoQQ9YwkdiGEqGcksQshRD0jiV0IIeoZSexCCHEW\nXC4Xd999N4mJiQQHB9OuXTsWLDjZeonnjiR2IUTdFBkJilJ7j8jIKoXh8Xho27Yt69atw2azMWnS\nJG6//XZ2795dy1/AqcmSAkKIuqmoCGpzDfQqLsMbFBTEc889d/T5wIEDadu2LevXr6dFixa1Fd1p\nSYtdCCFqUE5ODunp6bRv395vMUhiF0KIGuJ2u7n99tu58847adeund/ikMQuhBA1QFVV7rzzTgID\nA3n//ff9Gov0sQshxFnSNI377ruPvLw8fvjhhzPePammSGIXQoiz9Mgjj7Bz505+/vlnTCaTv8OR\nrhghhDgbBw4c4JNPPmHTpk3Ex8cTGhpKaGgoX375pd9ikha7EKJusliqPCTxjOuvgiZNmqCq59c2\nz5LYhRB1U6FsjXcq0hUjhBD1jCR2IYSoZySxCyFEPSOJXQgh6hlJ7EIIUc9IYhdCiHpGErsQQtQz\nktiFEKKekcQuhBBn6bbbbiM+Pp6QkBAaNWrEqFGj0GpzE5BKVDbztBHwOWABTMBU4PWTlHsPuBxw\nAvcBG2swRiGE+JvIFSso8nhqrX6LwUBh795VKjtq1Cg+/fRTTCYTO3fupF+/fvTs2ZPrr7++1uI7\nncoSuwt4FNgGhAAbgCXA5mPKDAEaA+2ALsB0oHONRyqEEMco8njQUlJqrX4lNbXKZdu0aXPcc4PB\nQEJCQg1HVHWVdcXk4EvqAFZgC9DwhDLXADMrjjfi+7FIrKkAhRCiLnj00UcJDg6mXbt2vPzyy3Tt\n2tVvsVSnj70p0ANYccL5RODgMc+zkMQuhLjAfPDBB9hsNpYtW8bo0aNZu3at32KpamIPAb4GngDK\nTvL6iWtn+u+ugRBC+FGvXr245ZZbzvv12I3APOALYMFJXs/Cd5N1TcXzxIpzfzNmzJijxykpKaTU\nYv+YEEL4i8fjwWg0ntF7U1NTSa1G//7JVJbYFXwjYdKAt09RZjFwBzAX6Ap4gUMnK3hsYhdCiPog\nLy+PFStWcM0112AymUhNTWX27Nl8++23Z1TfiY3esWPHVruOyhJ7L3xJewt/DWF8Ed8oGICP8bXm\nLwO24xvueE+1oxBCiDpKURTeeusthg8fjqqqNG/enI8++og+ffr4LabKEvsKqtYP/1gNxCKEEFVm\nMRiqNSTxTOqviujoaH777bdai+NMyNZ4Qog6qaqThy5EsqSAEELUM5LYhRCinpHELoQQ9YwkdiGE\nqGcksQshRD0jiV0IIeoZGe54ntpdXs4eh+O4c5EGAz3CwvwUkRCirpDEfp56bNcu8txuoivWm1CB\n34qLcfTr59/AhBDnPemKOU+pwKvNm7OkUyeWdOrE9x06oPo7KCHEae3atYvAwEDuvPNOv8YhLXYh\nRJ20InIFnqLa2xrPYDHQu7B6s1tHjBhBz549UZQTVzI/tySxCyHqJE+RhxQtpdbqT1VSq1V+9uzZ\nWCwW2rZty+7du2snqCqSrhghhDhLpaWljB49mrfffhtN8/8+Q5LYhRDiLI0aNYr777+fhg0b+r0b\nBqQrRgghzsqmTZtYunQpGzf6tqw4H1rsF3xinzZtGjk5OUefd+zYkWuvvbbGPyctLY3s7Oyjz+Pj\n42nfvn2Nf44Q4txatmwZ+/fvp3Fj3/5DVqsVr9dLeno669at80tMF3xiHzlyJA8//DAmk4msrCy+\n++67kyb2vXY7RZ7j78A3MJloGBBQpc8ZMmQIERERBAcH43A4OHToEPv27auRaxBC+M+DDz7IsGHD\nAF9rfdKkSezfv5+PPvrIbzFdcIl91qxZ/Pzzz0efO51Oxo0bR3BwMCtXruRf//rXSd930YYNNDSZ\nMFT0n1m9XhqYTKR26VKlz1VVlU8//ZTk5GQOHz5M48aNadu27dHXH3jgAZ566qmzuDIhhD+YzWbM\nZvPR5yEhIZjNZqKiovwW0wWX2OfOnUvjxo3p1q0bADfeeCPBwcGVvs+jaaR27oylYiboiuJint+7\n94xiaNCgATt27MDpdAIwb948tm3bdkZ1CXGhMlgM1R6SWN36z8To0aNrOJLqu+ASO0D//v0ZNGiQ\nX2NISko6erxq1Sr279/vv2CEqIOqO3noQiLDHYUQop6RxC6EEPWMJHYhhKhnJLELIUQ9c0HePK11\nM2fC1KlgMMC4cXi8oBUXcvDhCWT8c+ZxRTt29FOMQoh6SxJ7bTh4EFq1gltvhfvuY8iNULi+E8Vb\nDjLjk7+KZWZCz55w8cX+C1UIUf9IYq8tBgOEhkJsLEVGCA3X06EdfPfdX0WmToWVK/0XohCifqp3\nid3r9TJnzhxcLtfRc5deeimtWrXyY1RCCHHuVCWxTwOuBXKBDid5PQVYCPw5DXMeMKEmgjsTe/bs\n4eGHH2bw4MEApKen88cffzBlypQzqm/tobUM/HwgJV1n0PTdZui8NgBaNB1EQMuRx5X1FHvInJQJ\nvzWkLCeUwqWFHAk/AsSf1TUJIc5vKSkprFmzBoPBl1ITExNJT0/3WzxVSezTgcnAZ6cpswy4oUYi\nqgHx8fF8+umnAEyZMoW0tLQzrivPlke3Bt1YGxDOxoc2EmEwsLdoLzcsfolmJ5R1HHBQtKSIYIcR\n1a3HU+Qh4+EM6CaJXYiatmJFJB5PUa3VbzBY6N27sEplFUVhypQp3HvvvbUWT3VUJbH/BjStpIz/\nV5avRUa9EUVRiAiMwGI0Em4P/1sZux3ycmF2aAytXQfIdRSzOSea3k7Ytg3C9X4IXIh6zOMpIiWl\n9tY+T02tXlo7H9Zh/1NNjGPXgEuArcBSoFMN1FnnlJSA0wkpKXDRxRAbA5f2AqMBvvgCjCZ/RyiE\nqE3PP/88FouFHj16sGTJEr/GUhOJfT2QiK//fSKwoAbqrJMUHXToAK2TITwc2rYBvR4GDIDzYLcs\nIUQtmTRpEgcPHqSgoICnn36aIUOGsHPnTr/FUxOjYqzHHP8EuPDdLTxyYsExY8YcPU5JSSElJaUG\nPr5ucAHpkZHYy8qOnss0QWlIvRuYJMQF589lwAFuvfVWvvjiC7777juSk5OrXVdqaiqpqalnFU9N\nZJVoIL/iuBsQjG8Ezd8cm9gvJIVuN/sVhef79iVwx46j5wtiIfuGcgbs919sQoiap2naGfe5n9jo\nHTt2bLXrqEpXzJfASiAZOAjcCzxU8QAYhq9/fSvwCXAboFY7knrMo2nogYULFrCpR4+jj9FZ3VH1\n588NFyFE9ZWUlPDrr7/idrtRVZW5c+eydOnSWtk7uaqq0mIfVsnrkyseQghxwXG73Tz77LNkZGSg\naRrJycl8/fXXx219ea5JB68Qok4yGCzVHpJY3fqrIjo6mnXr1tVaHGdCEvt54OefYf9+eOedv84d\nbg008ldEQpz/qjp56EIkid2P+vQGDkN+PpSV+ZI7gKrCNg/Q04/BCSHqLEnsftSqFXAYhg3zrfL4\nZ4vd64XJb/s1NCFEHSY7KNUgk6mcjIxHWHbxKA412sCePc/gVW188HM3VE1jc84WBn4+kGs+v4b0\nPP8tECSEqN8ksdcgneIlPOxS+qwZQ8OsLjRv/hoeVaF5WDSKopAYlsDjPR+nyFHEzgL/zUoTQtRv\n0hVzBoKNweTYjpB9cCWGRb6OcG2HRtuAZvyRvZ5l2amk5ZaycOWbTOM/xAbHobCbKHMUl7YcyMfr\nP/bvBQgh6jVJ7FXQKSiThz3XsG2N4egylovbmVikZDPuSQcA06d9y6ffvkpyZHvaRDVk64GfubTT\nIEw/mtCbgv0XvBDigiOJ/QSHDh3i9ddfP/o8rEMYIXoHPys3MKrrm0QYjZSXQ2xsKIrezVTFN8nW\n41Fp7Apl2sf/YMbT8zAbAokLiUM5gxWNlSnv01KLh6k/QUGB76TBAFdeWSPXKISo3ySxH6NNmzbc\nfvvt5OXm4cp1sWbzGpJaJXHRxU0JDm2AvqcFY8X6u8YAD8//+BC3xsYBsHDhbmaNKcHtNp91HMro\nUagvToWQEN8QGYD//heuuOKs6xZC1H+S2I9hsVj497//TVFqEdtu2IYj1IH9iJ1mm2+jdXYC1sRi\nIq+JrSit58fAp3i5RVcAQkIWUm5/DyWoZr7SA0pj+EcKREb6Tvz0U43UK4SoHbNnz2bcuHEcPHiQ\n6OhoPvvsM/r06eOXWGRUzEloHo3QnqE0fLAhnqEetr75b/Lb56F5Kl+wK1rNgawsKC+HgwdB1QhI\nr9i+6zzaYUWIui4yMhJFUWrtEflno6oKvv32W1566SXmzJlDWVkZa9eupUWLFrV49acnLfZjbDy8\nkY/Xf0zcpjja5Lfhu53fsWddM3bvGcdd+xrwnw905C/27ZR0Kv+0jYOFa6G4GObORXFdQczrm0FV\nuWvlQxyIh1LnVJYrHlByYB5kZIzkyBEP6eke2rSZce4uWIg6rKioqFa3o1OqsTvOmDFjGD9+PB06\ndAAgJiamtsKqEmmxH+N/+//HrsJdJFmSCDWFEhvUgOJdbejbzY0pyE7T5tC5M1x0Ebz4YflJ69Cj\nwsMPQ+vW8NRTaIFG/nhlCBoK77b+iE2b4M437+DDGXfw1VdBACQlTSQioh9OZ+YpYyvIbc2ts+DA\nvw8cfRQukbUyhPA3q9XK5s2b2b9/P61atSI2Npb7778fu93ut5gksZ+gU1wnrku+joSwBLo37I5O\npzDivt2ExBVy5QCVhx/25e2+17qrXbfFZCM+HoIthURGl9AgPhQAvT4IRTHgVb3YXDZfYcWLw+NA\n1Xyjbg7u70eDw+C1evFavdi22jg46WCNXbcQ4sz8+ZfDwoULWb16Nbt27SIjI4NRo0b5LSZJ7JXQ\ntMNs23aYfbZ9pO3bjqqeZg8RzQPA9zt3sr+khLS0NLxeldRlvwCw9ZotpP4WxdXhG9CUAHBX/Dh8\n8w1FW9aQtfk3Jl8dgdNaDI1+56Y5Q7jxg3+ycCF4vDD/Jth6UXNiXmhO/L3xtX3pQogqCAkJAeCx\nxx4jMjKS8PBwnnzySRYvXuy3mKSP/QSJujR2ZYzEVZZCELOI0Nw8/2AWzsKGvPKvCUz634tsX9aC\nvc2iWPtQDK/3G88Q+0w0zYpRDQMiGP0lHAgIYdsPOQxyK3w88ybgY76y3UdWwBD2Ow+TsPkt4g48\nAFfdw8rDf1DiKiPCbOH5/k+hXRdMrLs/gUfi2VK6lGk/wdMe373XESNg4kQYGFvZlQghzgWLxUJi\nYqK/wziOtNhPEK7kEhTUliBzMo82vodNqGzqfTkfhI6ifVAUwVt+Y4Tlc+aUPkHnTjCy/3aiX34E\n8/iXUQKMALQe8B6WhF7Exl8GioHE2KsBjfHL/uDzDr3Rm5sxrv+rDG49GIDQIcMIbtuZoJbtYNQo\nlKf/Sbv2Cjfe6Bu6vnAhBAaATg+XXeZb1lcIcf645557mDJlCsXFxZSWlvLee+9x3XXX+S0eabGf\nhMkUh9cQRpA5iSXKJQz9eg5bL1mGWpxA6sVjsAZHcs/PgzCZwGwGc+sGRJjNKDoFRdGYtTCMx55U\naNUMlHSNiy/7mrlf/FW/QW9kYMuBbM/MBjLoENeB/KAMjPqzu9my9+W9FHxbcNy50O6htJ7W+qzq\nFUKc3qhRo8jPzycpKQmAoUOHMn78eL/FI4kdWLNmDYsXB5O6swEm93XsK7fQKaOcbbPzCKjhzzLp\ndBx0OGixejXObAM0ghf27CHZ4Tjruq3rrTR8uCHhvcMBsO+1s++FfSct61RV1BOGigXqdNUa4iWE\nP1ksllr992qxVG1rPACDwcCUKVOYMmVKrcVTHRd8Yi8qKqJ37954PA5Co7ahowmaVyO+vJwVizbz\nQnIN9nuoKgkeD/s7dMCpquzOKWAAVi4KC+OQ6qUmesZ+CCnjbcchAOKcKg86nIxYv57lnTtj1usB\n2Ga10nndOoy6vz7Praq83aIFI8+zvkIhTqWwUIb7nsoFn9hVVSUsLIziYj3/t+AwFsdMeuc+in1a\nC9av/Jw2bQf8VbiggJSl4/glby8POnazvFs3VIA5c1CBGJJQTUY4VStiyxaIjeXP1NlU1eCHxTRP\nS+NQDV3PfoeTYbGx3BQTg0dvp9S0m13l5di83qOJ3er10j00lNXduh1930t791L657o0Qog67YJP\n7NVSVkpRUA9WOffwdtI4PMFJdPd6IDKSzUV/UJ72E0VX/h+WdDvuAjdOsxOjE677ogf/K5hNetgE\nHN2vIeHxBKKvj2bHUl8fu/6Eqazbtm0je9EidO4s7MW7meeZR2I1ZtglBATQLjgYWxBs1+kwSPeK\nEBcUSeyAXtOI044QVFCK2elGV2wDl4vwkyTToohmeHJNRE/rx7SQEF7s6lsEzL7QS+o9y7BusJF2\naxqFhwvJNeVS0AD+8G6mLAS2hB5hW853FE4sZP6a+bg8wIBP2bLze7IiIoCWAEyYMIFDGRl444Jw\n248w7INhfG/88Bx+I0KIukwSO/CEw8ETWguUe3Uomp1ydS42u44X3E7Upk2rXI8uVM+eR8PJGRZK\n9qggPEmhzLzcSPyWRJyvaGQnr6IFt3Cj4UYGNxnMvt127gJaZjbnN9Muvtxr5jfnZHYV7MKckkj8\nxRYoN1K0tQgcsoCYEKJqJLEDgZrGROV5whcGV/Sx3w3TutPqj1AyR48msIr1eDSN7wsKSHQFUK6q\nlHq9eDQNt15PkNNJSEgeYUGhNE5MoNnwJjT4PRvYx47SNrhzPLw781IUZRuu9GKCVCNqm42sPnKY\nEMJr8/KFEPWMJPYaFqo3MKlFCx4LD6d1TAw5JhPdt20jz+OBA5lQ9Dvs/QPemEFzgJ9/prfXSnaH\n1sz+v4vQNJURI7aRnn4bt7RYwNojh0AFVdUTmQ8hVgf6fHApLjSnC9as+evDi51QAliD/HT1Qojz\nwQWf2DNsNlyahobGZ+6mXK+Lo7yogK4nGSGiqkb0NpUktSkB2zUsiSp0reIHGY3w1FOwpBX5wV1w\ndvsXaPDsxCMEoNJ5xf/ofO9+ABL27GOQ/XUaz+6KkgCeUg9ONZxnJkKAcyOBv0GGw41RZ4VbHoH4\ninVjdt4LW9ygroLnnquZL0gIUedUJbFPA64FcoEOpyjzHnA54ATuAzbWSHTnQFp5ORqgAJ10xVg8\nVuxelbITEvuO9gretcGEHnIxjGF4J2kM0ax0jP8DgNJduwh0u2hbyQCUQ1cd4vp+1wOgaRpbdx6h\n3Y/tsJeWsWHb3QAc9k5jnxbKzfOLYSQYIgyYHYX8641ILvrfJVx1FVy0JoP8Gbvh6afh8cd9lQ/c\nAs2zwLupJr8iIUQdU5UZMdOBAad5fQjQGGiHL6lPr4G4zglVdaN48lHw3ZjspjtINMVEePQY05yo\n5Srbh21n641bablDQ1G8eI0KL3ecy4ejwawqzGrThllt2vBUYiIxRiNPJCSyeNdiVh5cyYIdCziy\nYzLrgn7HqllZdmAZjlgHDe5tcPTxwzWgmfXsvT6ebu4H6OZ+gOArmnAkLJLsyx2g0/B6rThDXdzH\nx/Trdzuhoa/6+ZsTQvwpJCSE0NDQow+DwcDjfza2/KQqLfbfgKanef0aYGbF8caKOhOBrLOK7BzY\ns+dpLPumUqC5AI3WrjdRdB72WcNRbCqKSSH+jnjCgsNYmlaE4Q8rRW3MuAMMGAGP6ua17b69SLMO\nbqLU7WBH4V4mr5yEzWWjsakxBlMEgWogOnSkNE3hjo53VBqX3W4noFxj58o9OFsqeMq95NpUvp5y\nhAiLnvvvX8+3C4fQxQ5TpsCC73zvG5EJ9Ky1r0uI80pkJBQV1V79FgtUZXKr1Wo9emyz2YiPj+eW\nW26pvcCqoCb62BOBY3d8yKKOJHZVtWOLeQ6P8m9Ax7aAMWTbDhLl6Q56K1ExUSTdnnTce9avuRel\nc1eCDQZwZJO6ZjwGvQn77hIinGbmp83GGm+lc3xn+jTvw+7mPWm/UiFT2cX9Xe8nOS650rjKy22E\ne81YmjRE0RcSEGAmwmWkuHVvClbOJC4ukJiuYPoJLr8cWt0EGzZA/hu19EUJcR4qKqrdbYTPZF7f\n3LlziYuLo3fv3jUfUDXU1M3TE7+CejHoet++vxbQsqxYQasBA7j0yo8p7nctpYG7URRYddePNIlo\nwsKFCxm76C0u6ziCmQ904NGND5KVNZknO5oJ7ZvLL/OLSUu7jfLyP0es6GjZ8tQLBik6hcgGMRhV\nDb1Bj1FTMCaFo+1wku2GhIRs9AbfDnytr/T9I9xfu1+HEKISM2bM4K677vJ3GDWS2LOARsCf4+5O\n2VofM2bM0eOUlBRSUlJq4OPPT6rqwOU6zHfGN0je/hNu91ISE/9Js2aNAdi793ns9j1wijHqpQTT\n55vFlGgqDbwlBOJg5SsfEKod4ednFF7o9AKv6GXkixDniwMHDrB8+XKmTz+724ypqamkpqaeVR01\nkdgXA3cAc/EN/vPCyde0Ojaxn9c0zbdt3bXX/nVu5EhwudCUqq/AqCgm9ui70MC+j7y8b7jqqsfQ\nVyzE9dxzpcBQHu1xI/TaS5g9j1WrfP3vBkMaZV168+L7H1J6ZBncuxhNB/3+9RIX//d5Xgu1EaPE\noNWPP4yEqBdmzpxJnz59aNKkyVnVc2Kjd+zYsdWuoyqJ/UugHxCNry99NGCseO1jYB5wGbAd33DH\ne6odxbnyzTewdStMnQrLlhFTtJpujm0kezx8e2w5TQOvFx59FKvXTue0xynZeAcbG2hsjRgJdKRh\nzu3cOWgx+zYPZz+wbZuKuYlKs4u6smyZQk6Oh5YtGwLwyAsv8MvcucyaNYsWLVoAYLOtYnvaN6zF\nTGJxDgXWHcye/SsA5eWl3HTT1/Sxf48W5uFLjxv7h8/zWqyCob2dLYEa4QtseBwBrH+rBXy+Hn0p\nJBaXE/PfAAJ0HShJKcFgueCnKQhxznz22We8+OKL/g4DqFpiH1aFMo+dbSDnxPTp4PFATAy7Q9wU\nOwvIUjR+jIrkmy7XEXn4MxpHNKKJyUOyRceMbt1orHdRtMNJaLepNF8wgVbaKDTa4YjJIzJ2Cc2a\nv0pCwkgPJgTlAAAgAElEQVQKC79l3ofvsm/tuwx/tj1fffUEjRq1AUCv16PX67FYLERHRwMQHX09\njRtfx7XLlvH09hCMV8by7rtzAbjqqlt5Y+pArNcZKTm8FINhAUEPTOTRl0LoNeUJHp6UR0CIRpCl\njJaDS+EfvVm7FvJf3k32ABvtV3gozygn7KIwv33VQlxIVq5cSXZ2NkOHDvV3KMCFOPO0QQO44QYm\nGX6kvc5EjrUF/ylrjXqjk5Sd4Rh15eRZ8ykLDWLG4cOE6FT0ih41IBqT3kQQ0UA0Xl0xiqKgKAZ0\nOhM6nRE0HWhGdDoTiqJHqWK3jVfTsHo9LMjLAyBPc+JNKOdU/e8AKJAZWMi82DlQtJ3MAOgXdglr\nA38nIqYFXbiY0hLfyAH7vAb8d52OkIr/2vvsJqxxQdDt1NULIarus88+Y8iQIQQHB/s7FKAeJfZD\nTieLCwrIycmhxOPhP9nZ6BQF5wkzSD1W2D9uP32VvsQYu9LCE8747HImxobxxaO3oNfDK9MKaJLr\nZWRiItOzM2s17nvi41E1jRKPl0+PHAGgoLSc62yH6TSqKaq9N/Os83B6wkD5azenW7q1Qtuwj0uL\nYmAntCmG6DZpxEat4UCTYmAo69dDaQF4M83sciiU5K1h/vxeaJqvHt1wmDp1Kvfcc/72nglxKhbL\nmQ1JrE79VfXRRx/VXiBnoN4k9q9yc5l6+DBtbTYcqsrasjK+Lyjg5hM2sfDYFTS9xq6bdhEWsh+H\nrSXNX29PtNULbdqDHjCvB6wn/ZyapCgK01q35l86HQkBASzo4Fux4UpbIGGlkN3Liac4C91GHU2b\nLSGzQQq9gIhtesw3ZlF+zSFCDQYIKSDGDKVXQ+/kHbii/4o9IBBCntrLxJ7RrP9fMaWl/en9j/m8\nM9vBPR1fpaCg4BTRCXF+k53xTq3eJHaAKyMjeSQigk0mE/9JTubyTSdfM8UQZeBw98N4InbhKAnH\nZXDVyOfrFFhUUMizK1ZgPXwYvdGIs337o1vSVUdhOGRe7cB1ZD/KDIWomAxUfQoADX42Ef7KIpj1\nOLRoAXc9zi+/wOTXIDEumcuUU4+WURQFnU6HosjG1ULUV/UqsZ+O3b4HnesIqteBx1VAQ/1+jNqp\nf/JVzbci7hEjOJ3gdfn6qw8cgCadTv6ecL2B15o3I7JnPM/FxtKySRMe7tWLCKPx5G+oLk3zBYYG\nBQVgtx/38uHDEOcGVYWVK2GTE9q7weWqJzPGhBBVUvVB2XXcvn0vYy/PwOMpw+k8RAt9Opqqx6ue\nfMypywU//QRZWeBw+J7n5/kG1bRvf4oPUSDEYCDaZMKs1xNiMNRcUm/UyDcEMz/fl9BbtYL586Gh\nb0hl69bQvTt4Pb7cv30bpKeBxwtlZVDRfS+EuABcMC12TdMwO6MwHbISnF3E0OsOoSjZzLh4AYoy\n8riyCoBBw3XrfrxeK+R60MxeWrWCV18FTztY+es5voB338X744+UR0XhCbTxn61bAegaGko3IDER\nZsyA4bPA4IAHHoT1NnA+DzrdX2tq2PfYuXjEej5za8xclkW5rpw/PvsDFkSd4wsSQtSWCyKxHyo9\nREZBJrHlRbjNIWS1SaLfoz25q9NdGENS4OLtx5W/PiqKg24b1wXFMqnYhnbRVxiAtWVl9Nu4Edxu\nbjdE1Hrcxaoety4UFThgt3NTfDzFUVHgKcCwqSeqomczGmnOPCa/BqEBPQm5+iCByS7m7OmIQUug\n+ZMxvGD0Ys2N48CBI7gCdpF5UzyjsyMY2r4hMeExON511Pq1CCHOnQsisf+e/jvJ60BvdVLoNWD3\n2OnRsAf9mvRj5TGDQmwuGzq9hlnnQdNUhodEcZP6IBsO/Y9LEi/lXn0mjwdPpXN4OKrRi7XrTqBP\n7QRtN/D1wQTQbsbrmk7K0h0QHIbr3Q/Ive9O7r4pBxVQAT0at7i8eBP30pnmbF4RwCVNe5PviqV8\ntY01HWzc2KgrYWFpeM3LUM0uyo16dAE69Obq39gVQpzf6mQf+wsvvIDBYDj6CA4OxnqKsU9NkpNx\nlbhY9KmLV/O8GPQGLm96Oe8OfJc2MW3+KhiUj+WNMOInxXP3hrvJaLyRHnPicZb+xLLipjRrOoaA\ngEY0iL+XZk3HkBDyIqZpY4iPv7vGry8oCMKMOm4utTJg/3LCdAa+ie/G82nN0A7ruX1CD3RONwuz\nshm2fiMHD66muQ6C3G68ITE49lxC9/DniQl6kvKlV7LU2peAkGFYLP1R/rYQpxCivqmTiT0vL48p\nU6bgcDhwOBxERUXhKi8/adnOffrQ9eWuvP/fbqS2jufbpv+glaXV3wvq3FydNADri1a+6vEVrQ90\nJ+0O33jwr+7MwGJJwWAIJyysKxZLCmEBfdFndMNgCK35C1RAH6LSsGM++0O/wKWVs8j2f/zhnHba\nt5U6S7G6yrB77MzcPJNvdiyo+diEEOe9OtsVo9frMRh84VdlPHZJsYtNmYVs1BWirVzJqPvfBGBf\nWRkjdP+o1VjPVLeG3WnYeTijldHEBsdSHODr13+0+6PHlYsy+258GnUasaYivu02lzBzINqBOPqG\nvYiWM5a7F7/FFVx6ys/SKwr/yc5myTF/+RgVhS/atiXOZKqFqxOi/jhw4AAPPPAAq1atwmQycfPN\nNzN58mRMfvr/Tp1N7NV1ONvBD5cPJDvhTjpv1fHTsKYAeDQN/tBDice/AZ5ETFA0t1/6L141vMpj\nPR9jSZGNL7376d2413HlTKYYFEXBqFO4q3kj9MWhhAd72GZojlIejil8KB3sm8gozzjlZz2VmMgV\nJ8yhvmfHDo64XJLYxXkpcmIkRY7a2xvPEmih8LmqTW99+OGHSUhIoKCggKKiIq688kreffddnnnm\nmVqL73QumMQO4DGbGbB3D/0b9GX85W0oXVvK0gP56F1ZKL/bcfd0U/hzIeXpJ+/WAd8vc1RUFOV7\ny8nz5J3D6E9NpwsAdBj0YaTFvs5NvxwkfLOR4tsWgTuAj59ux6YOhcxvPIPWXoXEId2Yrvcw/ROV\nolKFHl8Es32NAR2QlPQWDRoMByDkDGbMCnGuFDmK0EbX3tQ7ZWzV70ft3r2bJ554ApPJRFxcHAMG\nDGDXrl21Fltl6lVib/y1jXUTtmO32/kt9DeeVb3oQqwYxhvgJI3ODZdsILhXMBSpEA32vXYOLjqI\nu8CNVff3iUVdunRh3LhxAHgdXo4cPEIZZbV9WSiKwl133UVurhdNK+fjPf15+2Sblng8xBUW4n4l\njosDA0h/rwQTHiZNKOCrBTtIvGosnz/+GVunj+YdnZcua58gN9iLa9579L5kCgd678P1679h5I3V\nWwFJiAvcwIED+eKLL+jXrx+FhYX88MMPTJgwwW/x1KvEHpjrJfof0eiX6omeH81DGTsZ/VAE7iw3\nOeaTjNVWoXxaGqEbX+TfmooxshT7sMGodpXwwx4OHjShKH/9Irz//vtHj/O35pPYMZF1XdYBsLtk\nN65sF4qx5kedLFiwgNzcXH77LY91RzazZMECOCGx540YQetLL8VbWMj8oiJeAmI6DOKRBgrv/3cy\nhBix6koxeIyEOdrjsEfR6uBhtne/EfaFYXxyFDrdNJj7PeTmVprYbTtsHJp8/EZZilGh2fhmGELr\n1T8rISo1ZswYrrjiCsLCwvB6vQwfPpwbb7zRb/HUyVExp5OZnUnmwUwG3TaI9S88id1mI+3jNKZ+\ntJcAo55MaxTLl8Gtt8I42rLi81zsWzrz1hsT+Dq/B506/UQz71z2v/QB8fE/cfHFB076OebmZnSB\nOpKnJZM8LZmEkQmEXRpG3G1xZxS34tHw2D147B407/F/Xvbu3ZvBgwfTo8dAaNuVXKebZ9P3MTMz\nl62F5bywMxNXr1683K8f7Tt2ZPgllzD32svpk78Wt9fAjsaNKCwvYMmeJXg1L2WuitUfFYWy8ARA\ngSuugKbNwFS1JRBKfy/FusFKcNvgo4+8OXk4M52Vv1mIekTTNK6++mqGDh1KeXk5+fn5lJSU8Nxz\n/tuTuN41rVSvSlCQkS9nhJBm1xN8I0x+20xUvI2liwM54gylTwIMGgRpc/KJbuNBWR/M0Jsb8Ksa\njNmchJ1C3If1GI1JBASc/HMURQEFQrv4hjuaM80Ywg3oAqr/W2mOiGDb4vkYg3xJVUHh7qsu+1u5\niAgVvoulME9h8jsKXoLwambe0xRwhnH94GiWFhfTICCA1kGBxLrLK1b/UmgW3oQxKaN58fW/b92l\novLUj0/RxvA73oY2Mja8Cvss5BQ5oM0bp4w7qG0QCSMSjj4/9MFJt7oVol7Lyclh/fr1/PrrrxiN\nRiIjI7n33nt55plnmDhxol9iqnctdoBIh5uO123nhsEHMFhV+o700PEfRgLybXgUPU2a+Frs/cml\nWQcPOqNGmzaV11tbYtfeyWMZGWiahqZpqJrKodf7/61cixYuGh15jM6NTdg/bsqXE0IY9Hg5Cwc3\nQpllINxQ/d/pUOIx6U00Dm9MWEA4wRHBlEfGYAsKIUbdzbcHvufDjHl8mDGPDXnra+JyhahXoqOj\niY6O5sMPP8Tr9VJcXMz06dNp27at32Kqdy12AKOqYRvcnfC4y1Amh/PCE614KOUBtNA25D1VcyM9\nVFVlx44dAGRlZdVYveeSXjFh0pl46pKnyM1txO/5T3Jp4BJCDUY6RmcTUzwRo6Jg9zrJPZILMbn+\nDlmI84rBYGDevHk8/fTTjB07FoPBwGWXXebXXZXqZWIHUCPMEBUFOh05UYE4GjUAIoAy9jscbM3J\noSGw127nJPNQK2UymejYsSODBg06eq62N7LV6/Xk5ORQWFhI3759yXe7yXW52OnsA1x/1vXHxt7M\nH6v/IOSWW3i2SyeMEwLZ9M9ddAoJYfL+TURn/v2vCCH8xRJoqdaQxDOpv6r69OnD2rVray2W6qq3\nif1Pqkul/7z+sAFKuxei03s5vPUAq8f+SJO2LqyFabTWFNYd2QghVa/XYDBU+h8yPz+fvXv3AuBy\nnf0uTc2bN+eTTz7hlVdeYcKECSwrLuaXwkJuKOjK3LnNzrp+IeqSqk4euhDV+cT+3nu+nY2WvB1G\nyi49noIoNE3H5OU38eJQN6pD9d1AjAdDuBHC95FXsIsjCSvIHa7jIvtBVDWRzJJMbuh6Q43F1apV\nK9555x0+++wzAAICArCc5dhwRVHo0KEDISEh9O3bl7y8PDbl5NDxcHt+/PHE0jpU1fdjonfZecm0\nnoyJd1BuCGPfiq3ocXBY64xxVS5uu8rnHdNxBZso7w6bVkDcFkBTmbbmTRoEBLDeG0RzzcNrK17D\noDMw1Fu7f50IIc5cnU/skyb5NpKwNPQSmKvgLfctDfDl+st55LpUANJ7pNP9/u6EK2EwD5rGNuel\nl3yjQw4efIcD69fw5tVvEtKxGk32Sjz++OM8/vjjNVZfdRkMITRq/C8cunwW9k2hrLwNxaoO74Zl\nWC+KoiCuhPx5hUQ0MUMG2JPCab5oF1t6+HZhevXfeuLHP0qZswSzZsKh6PDoFKa6mpNZksmhzAMk\nFRl5dutWhsTEcHd8vN+uVQhxvHoxKiYkBHr+w0aDLg4KAv4HiopeZ+WtVW/h1byk56Vj0tff9U4C\nA2H5ct/ueV9dlsTT3WJp1AgmjG9KoNtEYkEh7Y1RtGyQhFGvEBLpwZyiUhqvw9x/P5i8DJluRq8H\nsxk6dvINuYxNupsn+o7jtSteY+oldxBqMPJmx/4k2DbRJchAK7OZJLOZX4pqb70OIUT11fkW+4nK\nHGUogM5k4NYud1O0RM+HN/yXNgmt+Tkz87iybjfs3g24YfVqoGLAh7IBvOq5jvzM9e4Ne/f6NrF+\nevcBLgoN5Za4OFy7IO9RPZdmZHDTmjUsTUhgfGk5d/2wgKzEJGxAzrY1OL23sShjEY21xni8Aag2\nFYvHQWCOihrmwhHsIDRYIUCn0D86mtG27SQH6AkPDKRrSAg/SWIX4rxS7xI7QGFoGHvnF9FDuYS5\n78EQfR5lK/IBuML11yqOK1fCtGlwazR8PhVyK5ZWb1YIvcN8g2rqAkWBhIp5QsE2D5HhKo0agM0K\nBQo8+uKL9B8zBp5/HtedD7Pl2tF8Z9zDRabPSWncC/1qAzmqSmg3A7s9lxC9yMYLmetR7nVTYkhj\nnQuCeqp4nivm999jGZdUhF0biLOdQsNdCrepGr8XGtC1HA208+dXIYSgniZ2Vacj4T9B3JGnEGC1\nM3J+V/RJvv7zVXs+gkTfuuaq6kuI4YEwpms2xjjfzE/HXgfOSF8XT32ly9OzuUULNjld9EHPMweD\n4KlsACbOcRCuWtAKAcWLR9MoXQKXzDmCEuDl8s/684btDUIzwtj0QjipJcU8ob1FaXjB6T9UCHFO\nVCWxDwDeAPTADODEObLDK17/c4bOZOD0W/1UU3l5OStWrEDTfGuoVGUyUO+kLRgLOwDgcWmodl/f\nSrtkBZ39+LJhPUMxrv1rjZTA5oHE3BJTQ9Gfn8L3d+SeXxYRO/xBjHhplv0c0UHRNHl8AwWNH+GL\nHmH8/GYK33a5hCabPGxK2YReDcdgMmD1GlE8kegd4aiGCBw6PTot0N+XJISoUFliDwA+BHoDOcAq\n4Cdg4zFlNOBLoNaGgHz//feMHDmSTp06HT3XoUOH076nU8JeXoixsvy3rlyROAwS9/mCTdRwRbrY\nsOFdAC6++DBBrW6m2TX1fBz47t0w6mXf8apVYPlrN6UAQwCzb54NwOR/9qd5WDJ5JXA4z8Hw4dA2\nA+7zwj+75eI16nHc7sG614ppn4mS1Tq8CR4I9sM1CSFOqrLEfhGwHfhzdac5wLUcn9iViketUVWV\nfv36MWfOnGq/N7h9MM5rt9Ky7VuYTA2ZuvG/ANyXdD8bNsC8eXDttck1HfL5xWDw3UxYsxrlvU/x\nttxJR5sORxw4Fk2D8hvpcd8rKIqOZ+wO2LuXsHZNWRACTzwBSQVmvEMVBicUsH6zjp9KPJTvKCf4\nSDCF3zso76uHbv6+SCH8Z/PmzTzyyCNs27aNuLg43njjjeNmpZ9rlSX2RODgMc+zgJQTymjAYKA/\nsAcYCZx8rVs/CgnpitncjFKWABAefgkAWVlgrNpKtXVbSgqKpmEK+Al91HC2OMPoes09BHgU1Dmg\nPvYQer2ZX5Yto79OR6y9DKMRunSBTiEB/Bak45Jv2/DSNQaU+EACrw/ElG5C6+XAjh27245X86Jq\nKg/v3Mns3OPXlIkxmdh10UV+unhRL0VG+mYn1haLBQorn93qdru5/vrreeaZZxg5ciQrVqxgwIAB\nbNy4kZYtW9ZefKdRWWKvyr5T3wKfAx7gvorj3mcZ1wVnm83Gx9nZR58fdJ7ZuuaZv/7KN7t2sS80\nFFe+C1ehC9/v7jEU8JbrKSISXWQsqk7HjmZXYzAEs8EQQW+z+bSf0Tg4melrptPyQEvevnQ7roiO\n/LjnR1pZ41i0cxGZLdvxSXIyV1XMtPUCsb//fkbXI8QpFRWBVntb46FUrSNiy5YtFBUVMXLkSMC3\nf0KvXr2YOXPm0R3XzrXKEnsW0OiY5404vgUPcOxP5lTgnVNVNuaYXX9SUlJISUmpSowntX79embM\nmEFR0Rg0rYQf33qLy3ZdjCfXAwqsUQvobZ2N9dJP+T9nDrd8PZQiTyCZJZk80PWBM/7c2tA3IoJt\nNhsbyv7aZi8lIoL2wdXvuE6fOZNmjRphaN8ej+Lhndx3iDwhsYdZNJyHAliQDgE66O80M3iwmZIS\nCHf8G98fXqc2tsNsmhsPU7KyhDKlnMXFpbhaLwddAC/v2cH+qAa86HYTceQIAN5qLqWQvyifgm+P\nH2ETkBBA09FNq1WPEOeCdpIfF1VV2bZt2xnVl5qaSmpq6lnFVFli/wNoDyTgm75zC/DQCWVigD93\ndb4eOOUOrmNO2M7tbPz888/s2LaNQJ0Lp+ahqSWb6OBS7DEaSgFkaXZuMbYjKn0QlkEv8WyvZ1GM\nDQHoEHv6G6/nWqeQED5Orrl+/ktvvpn/u+UWyraX8doHr/3t9YRmKp3mbaf3lxBrAfMrNrZvL2fW\nrBAmPGiksKQEg7WY/uN+ZFXUDHYYDERa7+L2iAiO4CQlRWGgNoC2alve2b8O3TPPEqTXo+iDCTe2\npXluLvfm5jJoyxZenzvXN670k0+qHH/+gnw0p0Z4n3AAVLvKvlH7JLGL81LHjh0JDw/n7bff5okn\nnmD58uUsX76cfv36nVF9JzZ6x44dW+06KkvsDuARYAm+5QdmAhuAscA64DvgaeAafMMhi4A7qx3F\nGdC73Sz67TfwNKYlbiZOW4WiJbFHVZkVAapioJ0unviizjh1AXRp2AOzuZ6PfDkL6em3kZV1JfFJ\nEZQ5vTQocHLbnr0kHsohMDeXXPUOPgFC8OD1wOdksyTGQeu9peTcPYJNVym0cidz+/pvuP6haSwv\nLmZucjLcfz9c9vfdoCoT3i+chvf7fog9pR72jdpXw1csRM0wmUwsXLiQESNGMH78eLp27crQoUPx\neDyVv7mWVGUc+w8Vj2ONPub4+YrHOaVXVTSdjqbxmShKZ6bPm0/DrwJYteYd1OwwHEYD2Gux/60e\n0emDiI8fTnh4Yw5lRXEgoTU7Y7J5o8XzpEQ3IXLFCu6yKwS/OZkfxy0nYv40frytFw6rnZjIhngz\ny/ju693cNPVDOkXqyE5dRDM9PGmA5QUKyhQboxkNLPP3pQpRK7p168bq1auPPu/fvz+DBw8+zTtq\nV71YBEzzaoT9YiNsp5v4vHg0t4bHaaBoTwjuAre/w/O72z7ycuTlAxyedhhPyd9bEQp6YmIGM2xY\nd/4v+BOSEgKJiTuIuWMOXXt58Wh63Kpy9GbS7DkKpWXQTmuLvVt/bF1bYDDGUPrsGxz4pD9dW+yi\nrME6Xs+aR9LWn2j7fiyxVL7zktXjYWd5OSUeLzkuFzvLyzngcNT49yFETUtLS8PpdOLxeHj//ffZ\nt28fw4cP91s89WJJAdXuJWZWKSEEElMUAzoNr9tA6YEgwi4No8RQq8Psz1vm5mZQwB6soA/TowvS\nYWpgQt8/DJzFfysfHQ33hM9nf9sh7CndSvjAUAb16MTK/+xEzUpm0ya4yLUc84K7ebO0GEUp4YUf\n5+CwZ/KIvRy33syhgDJW67eyXaewO1TjHede4ts3J0jN57t833o9TQMD6XCS9Rqe3buXeXl5jCxU\n2ZtVzO9bc9hjt5PdQYZJivPb9OnTmTp1Kl6vl969e7N06VJC/LgmSb1I7ABFN4Rg9wSxdc1WlGwd\nASEOmvS30/aZtqxefWEmdl2A7w+yb+7U8WrPROL+F4c524zSyAS7T/9eTdMo/W0ds9LzMJcvJVPr\nwZbNfbmi2YvodQZKc3aTp0bzR3AbGpi/wFyUg1E1sTfAxtqVkyjXR2DVX8a0aGgS1YUHtMV8cvgw\nxR4PTlVlbbe/z2hyqSqvNGtG79hSwpqH0fCihsT//jse/r+9+46PqkobOP67dyYzk0zqpIeEEKT3\n3pGioOKuWRQUK1YsLyyWtaMSRV3FsiDraxd9VcBFkOJSpArSpAgBUgghCSmkkD7J9Pv+cQMkECBA\nyiSc7+czn2Tu3Nx5cjJ55sy55z5HwVnh5M9Rf9bYP/LpSIL+GlRv7SU0MwEBdZ6SeNnHr6PZs2cz\ne/bshovlErWYxC5cJhlcdhdbfLao981zcB0rp/SuUk68sZh/9zLRP7eQPI5x3PoB/q/F8v2t3/N7\n60/xKPNkWdgtdHSuh6PHMDi8+DyjF8Z7vwbg8D2HMfV1sebPF6iYJLGie3d2l5Zy7++/s2zzmfH2\nI0d92H+wCzsLgkjBE/mPUk6mQOoecAzxQu6noc+2PjjNztM/c2L+Ccr2lInEfjWrw8VDV6uWkdhd\nCmRlgezimjwHks0OVivQchfXqC+yh8yw4mEo9qoTzX36wMJFrM7ZgHGZlntmX4/kcjF4XDQ/BSxm\nnc+NV/R8QR4epL/9NhPS05F91DrJtoQEdEs2IntoGbC/C6aj4BkJyw+CzegLt4PvAN8axynefO5Q\nkiAIqhaS2K0E9HqLoGAvPKNz8ZxfyNS269EbvNm//wYqKk5w443yOVcfl5dDu3ZNE7I70Rg0cKo4\no2wFb5k2beIwaJ7luTbdYeECvlLa0JpsMmTz5T2JYmd50nIA2toKGfrQjXQd2JVwr3Amjbybu3eE\ns2hsJiMnV9DpKPgOgt/2wP76+RUF4arSrBO7oriobL0aEq2U+RaRn3ATGcf2Y5bjWWbrw1Ot+xEV\nOZAFC17k+utbExt77jHEUp21Cwm5DVl+jbZtXoQ9e5EUGUXSMpkveWvpsxRo/fGSS7CW7aS4asaL\nooDNDscOqitSnUzxxdPuwp4/mF6ea9DkqH8Ab6CNxyF66AGnumatXDmd3iVd0RcmY4l0IBu9iIgw\nMdCQg63yWtB3abrGEIRmptkkdrMZdu48c/9YehB2p4vSkc9gTHJRaLOTftgLZ2EbrEoiZuMoukZP\nwOQXxYkTMHIk9OjRZOG3CF4+/TmgG8zLPW5nB9/ggQF/rYOKw2m4nA6KnCe5+/f9rOn5NS7XdQRL\nBfj+0ZYOrid50foNbfODmTCigKQ9HWgb+ylGW1viNs1EUdZw3bUOYgwb8SvfR+U1CnYfLW3bGggz\nppJ/fAOt/X9s6l9fEJqNZpPYt2yBRx5RF1sGKM68jsmR7ZFadcRo2Mxbz5aBay6goG8fw8SuE4ny\ni2zSmJutjz9WG7qiAmbNgsOHgfZoPYLZrv0LPa8ZjKdjKR4uPWGtjOh69CPjqx2E+hl5slUkIX2G\nkZWVw8mEx5lr/heuYgePHUzgJ5uVDl9l0sYVQ+pLqYR1DOPekvtY41zL/vTFvBOxinnt+9HhCzu+\ng3z5ak8E6e3m0ueaLU3dIoLQrLh9YrfZbBQVFeF0Krz22r8JDv4NgEVfHuC9qNuQ2kRwy1ut6OS/\nl7NL74cAACAASURBVKMrXycSHfunBzDY1/fCB76K6GSZQXv3Yk1MpLCkhDsOHybacJ4Vj15+GZKT\n1Y9IigIWC9x6K7xX++4arYR3x1AkWcaoNzA0MJA/2rdHUTIxmw0MmN+a451HMWrZ17y4rjWe3xeQ\nmZmJPlSP7msdn/zyCbwJha5jIENeaRqlFh8UiwJENFibCEJL5vaJ/R//+AdffPEFFssoHn74Yzw8\nMpAkDV5OFwMel/DMW819vxoo+5sGT78gbjD682LPtk0dtlvZ07cvJQ4HW3Nzme/tzRc9ehCs0/F2\nbTvfd5/6NS8Pvv9e7bEDvP9Kvcel3aVFMSsoKCwqewiMz/LJLw+gSX6Y3eW7CQv/qV6fLzc3l6Jq\nZ9ADAgIIDQ2t1+cQBHfgloldcSrk/ZiHYlMIPxDOIwMeYdmONN5/rwdjb/8OH5/elJ/M4cE5/0aS\nPMChaeqQ3Vq4Xk+4Xk+6wYBRo6HTZZQDvpA++mTW2+0oJ09gS9zO3cndsdl1WCxH0E59rNaf8Rvu\nh2GjgQ9LP2QAA5jw60K+6ryHj9d/T9A+F7sjdlO35QDqbuTIkVitVnQ6HTabDZ1OR2JiYr0+hyC4\nA7esFVN5tJLkR5Mp2lBEaHYouiwd4TYz+p1ibqI7kYCN6yfwzkc/UKQxkesKIc7+ClMrZrGg16N8\nGhWJtGkDEZpMNE4bRW/+G0facRSHg8qFs7h2bQcK7uoAQPCEEABy54ShVCX0Ek0KipSH2VpAUu52\nknK3k5K3C6s1B6cuH6cuH7u97ivo2Gw2tdxzYiLr1q3DZrPVe5sIV5958+bRr18/DAYDDzzwQI3H\n1q9fT6dOnfDx8WH06NFkZGQ0Skxu2WMH0IXp6PxNZ76983XabdjAXkLp+PMRvPbeBxovPB12lL+M\na+owr2ph3mXcOjudpWl/YHzfgD9abo86TNo/rOTkfMJHcUX8ywE3j5AYOusGfo35ii45HkgODW00\nOdwy1kJhpR6A0U/vZKwUgkQWKBAWEcaigFuIoYyTxSUUlqilf12KQqrOG48+EkiQ+XsxQ4fm4+Fx\naYt5CM2faetWihqwNG6AVkvhsIsvBteqVSteeeUV1qxZQ2Vl5entBQUFTJgwgR9++IGbbrqJV199\nlTvuuIPt27c3WMynuG1iP8XfbEZjt1MkB3F8SAQRfx+H0dgRq72CdWmb4PJWkGvWsrKyeP7550mq\nqCDBbGbno48ysAnWE9VICpG9KqggAYujADN5uCp+5kuHieDIsXz6+XiYPJm1v7twKQ4U12MkuN6i\nl+REclgJtGXjCuqMS5bY8O4A3u2wlZsCQwn5upzoZ1+k/S8vEq8vZIK2jFuC1NIBv6X/RrTclTHz\nDeTpK7nrnkl8/rkVh0MtGzJpEgQHN3pTCE2gyOFAuYJV2C5GquMqRuPHjwdg9+7dZGZmnt6+ZMkS\nevfuzU033QTAjBkz+PDDD0lOTqZDhw71Hm91bjkUczanTodNNlARYsTVvztlfftyr5+JkuBuVLhc\nxIeEUAhYLZCXC/v317y1pJISnTp14rnnnsNkMuHt709xcjKLFi+mwumkwumsdZmu+mI7VMGETxyk\nvpyKpUTtaYd7h3Nz+5vx0ftg8DAQ7hvF9L7TWZK0hNvuuAOP0lKk4mLmruzPq/+zm7S2o5H69AVJ\nwuAoP31sX4ceFv8IstoTP02ReCsmhqXdurG0Wzc65X5P2CItxl0hSAo4nHDsGKSkwNy5sGFDg/36\ngnBBZ//vHTp0iJ49e56+r9Pp6NChw2UvmXcp3L7HXptcm42tpWVIllx0skR4eTnewNrvfMn1gv/u\nOvdnrrmm0cNsEF5eXjzzzDMAbC4u5sf8fD7KyuKTqsWirXY7/h4e9f68YfeEIe2QsRlA46XBw2jH\nr3UxSBIRPhFEt4rmnr2PIRW4UHqtwmlysqL3CgCcisJJqwO71oAiV6iXmgJGnwyystJQFEhOOIhm\n0QIG/bUvw5a2JeypGHIPQbKulJ98trG8ahGD+OSThFSUM6UHHNeArw9MnTofrdaPoCB1+n1W1pm4\nAwKux8uraVaKF64u0lmVJs1m8zmzrry9vSkvL6ehNZvErvUqRRN1mKLNaVSUGBgZHIK2NIlCQwaB\nwVkY8MBVruWR6S7entXU0TaOEf7+vBETQ2FhIe9cey0A1/n7M6gB5vD7j/BHV+rJ8vu1/HtwNN4/\nVeAVUEFF1eN79uxhV+v1dL3mO8p+fJuIERF89ulnOModpB1PI7StnZFhdjTWMxUa76l4ntLtlbyg\nOLlh5+u0s9uJ/c8MinrdTUZ3P3KkdnRRvuDIRz9gkgIBKJdTcI1OBM8OdP8TkvbcRkai+k4eGiQR\n76Uh6YiVkMws/H1yKCz8jqNH1fH5wsJC9u3bxzXV3uUdpQ7yfswDV7VfVoaQO0LQ+lzZv0fBsgKO\nf1hz7Xetj5auS7sia5vFh2XhEpzdY/f29sZsrllbqby8HJ+q4ncNqVkk9t86dcLLfABzp5Ostcs4\nA4x01xqQQ20oldko0aEYLX9t6jBbPFmSyLFaidq+ncLAQJZ36IArNZUHw8Nr7BcQEIDHXR58O+Rb\n4m+J52ffZaTsOkQfXSGyVo9skMHDA882OgK9eyFJS4mI7Enykf/SeosNU89VZPjlEmqcgsWcwvTB\n1/LSK3GU7HEQ9fowFLsdcz8f+nQIozLjidPPG/xhARnfdmZW0D4GrfiKyTcFEBSUgE6njs/IcjnJ\nya+SkvI7GRklOBwllGwrIW1mGoHjAk8f5+QvJzG0NmAaa7qi9irbU4ZnjCehk8/02uJvisdlcSF7\ni8Te0pzdY+/atSsLFiw4fd9qtZKUlETXrl0bPJZmkdj3xsQQEL+fgl2jyM3pTrGlNVbJkxtXu7BL\npTjM/pz09eBOjiMbopo63BbrWFISr+zciUNRWJaQwP0+Pkzs358QXe3lkRW7gt9QP6JuimLnlh/Y\nFB2KydQezXYNaDQUPNqFwPDbcH2wnB3Xv8Ibm9/hwWhvKlt3ZNWJB5DDOiHt1yJv2YD2oSPI5vbg\ncmELWMz8/LV0Ht+pxvPdPPdWetpMaJ1ORowYwR133EBBwfLTj2u1+7FYjOj1rdHpcnA41KmSxm5G\nOn7WEYBVJ09SmVDErhMnKDxWAoBJq2V6ZOQ5/7h1YYgxEDCy2owdcclFi+N0OrHb7TgcDpxOJ1ar\nFa1Wy/jx43nuuedYvXo1Y8eOZdasWfTo0aPBT5xCM0nsACgS4baT/PXgbFY9/QZfWPVMXKbhsWde\nZOWIlUR2iqR1jEzuC/U/vuzuEhISWLRoEaBeXVmdoig4nerwx6mvl2PIkCHs27eP0jy1kuOY6Ghi\nw8OJqqU0gUbWoNfoufG7G5l4dCLPrXme/l6tyM1bREmJg8LC1cS/6MJYvJTg4EkA2CzqR9YTeTb2\npZXyafYxvEvbUKH4kRU9At+HF+Obasb0VW8KKnoQYiinnenMdQ0/JfzEOGqW7/T0vIaoqKdO33c6\n3yQ9vQtRUU9hsRymtjoJH2dnc4fLiQYJbVUif+roUaZHirpDQu3eeOMNXn/99dP3v/vuO2bOnMmr\nr77K4sWLmTp1KpmZmfTv35+FCxc2SkzNIrErAJKTRFcRK3pnUaFfw1GzBac0hQzvDPyG++Fp9KQA\nkJvFb1R/hgwZwt69e1myZAkA3bt3P90jkCSJoKAgdNV61JMmTbqs54mJieG996olwlmz1DoytdDK\nWopfKKZwTSFZeVlobtDyzJYtHLT1xbFyFC7rdg4evA/ffw7HWFGJC9DHvUz3YQMpTd7B/swd6CKM\nFGf0xmarID//V3ZsTaBvsYyuXE+r7MHEFhVye4Q6zYzAQFKLUnFJdr7Jewpr2ChWVq4kd2U8LsWF\nv8GfAa0GYFNspHuk89Phn8jNOM75rmwN0+kYFxaKqY06FPNaWtpltZnQsAK02jpPSbzc49fFzJkz\nmTlzZq2PXXfddSQkJNRjVHXTLNKgggKSEx9JR9cymVJTZzbbSpAlmU9u/oRgr6t34vLw4cMZPnx4\nrY9JkkR+fn4jR6SSJRlZUseRNZLM6AATyu155Fz/fxz/KBv9qAM4enrSsWIbx56GJ4r+RXJmKp2m\n3cCDPi5u7t+azI25bMyXSE/VMbfiZUy/b2ahYuH1+GcZgoy1w7tonDbKgwYwcsjjyC4PonTdkNFQ\nGHUzKQFhFFuKKawsZOmxdMxaDUcN2fxw8AdOZubUc8ECobHV5eKhq5XbJXaLw0V6uRWLrYBtu8dT\nWLwHAkcDEtHWAHoe6MaTz99OeGwuDpuDD++fzIdVP1vHN1ihAWWn9cBjVhoAlUfOXIXXzWhkztjJ\nANy87GcGDu7F262C2O9xGw7m0HnvDgqBqUMj8Fmfgt+vewlLL2W/+TBGp5Mtq1fztVbLbpyMU6ai\nk47jsM1n213P0+vIPjr5diLdlcdo/4fIOPA+HlFRDIvqXyO2FzTv0VO6gZ9u/4h1f6zi3vfGcUQ3\nCvv9dnbvVutB31NZiWaKQrJWT8eiOQQEjGyMZhOEeuU+qXDzZnjpJQ4ecGEpD0bhPpT+udxDAIuj\nDThlF54p3cg5Opzb/POoWGTHODKQ+R+cOUQjzCISLiB6ghXzSisuizp3UB+lJ3hCMKSeu28fHx+S\nBwxAAdpJEht79UKn01ER2o2Vgw14+N/K4fnTSEubwdChBsbPmMF4wMOnH5q2fZmaFc132jwW75SQ\nynSsKfdigAKKS6FdVhZtdXqmtzpzIl3SSLyoKByMj2fatGlklGVw0iKx/YdhRCVHsWvQLkJDQ1h1\nspBHtvVHd/dizMoYJMmDFbLM1q1VZz1dClit+BWE0mPzTWd+oY4d4emnG65xBeESuE9iP3wYgoOZ\naZrOX54op8v8cvr+MJ05c74ny6TDV2cncFAoHXf9gzm37mfHQ8dJGdStqaMWqgkd6YCUbTDrhZoP\nzDl3X0mSapx4bW0woNPpSOLCM0+ioiBPC6FhEOUJPaIhKgMsTg9QYOnDOaQSQyL+FDyjjm1KCsTe\nISMjMyR6KKGFnpRbynEqEtpjnZGyI9Dqyigu1ZBeqGBLiyHnt0mkxndj27btJL43m6JBw9RZMStW\nUDE/jsQnytWFvwHy82HePJHYBbfhPokdIDycXUlD6NXuBJ3123EN7svRReuxy2KO2NVClvV01W1H\nshxgY24AxcWbSE/fx9atH6LV+mKQsmnvsZ+MUSco2LifXZUuYmxZdAmZipbHyTPkk+noRL6kw6y1\nYJM9SXZ0IDw/GxRoEzCQHnIMutKDuOTv+b7NOm7NvJ53dLORUHBFwAlNe/x6GPFtE0R2egnmrHV8\nti8djazhbqcvmqDW2Iz7SLkuSQ26pATMJyHlVGKXad362Stqh2+++Ya4uLhaH5syZQovvPBCrY81\ntNJSiIsDu/3cx/r2hcmTGz8m4VxukdiP7LoXz61LMGQ68TZPJ+rP2SiuURy/9TOKCovQ9w2r79Lc\nQiPLyclhR1VZgOqLXZytbdt3WZDh5PM/PqfkRCWOIhvJmTY27FR4tO9kPD3XofXqi6culTDDYoYH\nS7TKKCf9hhi0G518PeZzvj+4jRAvX27s3J+w5Z/i71FB5PQoPKdqWHytg+WRldiyDHisCiY08Clk\nH/h48yIGbMzkYJs2aEqK2f3TBhKDdmHxLIaKYxzMt7IiaQVLlCCCgizElPdBTvlTDdpuo6tPMOGu\nQMJ1OopyP8dkugFQp2M6XC5Sq2YQKUBKRSVyVWclTKfDt5aTQykpKcTGxjJt2rQa2//zn/80aQ35\n1FRYuBCef77m9mPH4JNPRGJ3F3VJ7DcCs1EvrfgGeOesx/XAt0AXoBS4C0i/lCDyzCtJ2+nEb5KN\nSfcPosDuIjIoiW/b/E57YGxyW/I1Tt4/4Mk9ke0oa1X7NDuhEXl7w+uvw5xq4ywOh7qM3lm6dOnC\nggULePLJJwGQZZk2bdrUeliNxpMZo+fx9PB3eTJFz/ZtqbTVjSOkbCwvz/kWR2oueGRRFrkXrT2X\nJGU9wxWJ6776mGTXKLxSlvK3sgr8rBr8N2ZyJOoWXk7/maP36NGZ7Ux6uAiHn51kSUNmDvjP9kDT\n0c6nWn8W6cLYkduXN60J3Np/JGs3bGZbjzWYSq/Hogukt2kAxUXp/NYlglWaSEIM6qyf/PJcpGvK\nKMzuhq9k50MMHIz/B8aoEDRaLQt/11DkdOKr0TBwupPZh/qzxetmypxORvj5sfA8VyKaTCbatq25\nGlhISEiTLw4SHAx//3vNbdu3Q9X7tuAGLpbY9cD/AsOAXGA7sBbYV22fqUAOcAfwN2AunHWlSB2U\neUoYR/ixR3oYU5FM5w0yfw4dBDoPMo8lUCxrcc6IZMaBh1C6FzAqoHHrb2/atImRDVgitCE1SOzT\np8NDD527/dRq49WMGTOGMWPG1PnQsiTjrfPm1r/B7l0akhKOExI0hPtMQ1iu2cegAd1598WHeeX9\nEt5cupL39OprYaEiMfAkVGol3nh2JNd9GUjJkWGMMu6lotITD5eNDkUSg0o/IJV8dij5zNS8ynr+\nzkz5Xcba9zB94kyMC4eQmmLlj7v0GA1DMWSm8WtONk4JcGpR0nKonPUvko4cBmDrjh9Z+O00iu97\ngjRNOGukMYRKOVxz3IAdJ8lmM0P7hxGsdaEx53K7diUPRdzICUN7vqt2QVleHpSVqd/nlAWh1enY\nnWzHywih6jok2C7j6tcr1Zxf+1eriyX2gcAh4FS9vEXAzdRM7OOA56q+Xw58jlp4tfbBk7g4+Oc/\na2wa5LLQLRJWEMzmX8z08xmMtLwt3269F31aMkty/sMvST+zaOBQuDkWEhOhqj53Y2nOL+66xr5t\n2zZSU9UpLCUlJRfeWZIafBrSuHGwbRts23aML79Utw0cCDNmQOfOMOXFKZSOKGXwsE+RJQnvHsdJ\nTD7OkuNLsDqs7MvV0+6zfWQtW82BvAM4p2pxUUzu1HzyotJxPOvi4BNlKCscxL715unnfTfRxeej\nK9nTN4jFb3zFiL3b2feXD0gc/BC905YSvW0t7VOPnd5/WEg/hv0CmMpQlNKqF74/e/Z3ZkOrCnYk\nfENpiHrC+NFtg9DGLqUgcRjeOl8eVGDdZvUnzGbw8yrlz/RRRMa6kBwSv2T8iKKALkVdW3xPQD/8\nDh6E998/01BhYXD33Q32d2jOr/2r1cUSeyRQvTxdJjDyAvu4gJNACGoPv4bjxz8gu/e/YKkv+PtT\nbq0gt7iYMG8oKYAKtGC3k5MJNgv4lhbjsXo1+j//hOxsWLkSxHJmDeaJJ56gVatWBFR9GpoyZUoT\nR3Rxh/MPU3jkFyQFhjg68tjKx1iUvogJXSbQufAaOhUrLCzohZ/nCLw9f8FbakOvTyMJ/+pzvLwe\nYciAVWRuy6SgexYJCXdz2BaIPeErJh7+gddC51N2rZ4F/qOZtPx5Oq6ei6OwBF+5jJ0uK0WaEOyS\njlLZhIczCvmzTSQ5jmLByhYgnwdw4iSBBJIWJ/FNxP8in2jPH28vZGnXDyg3BZPXOxYJCQmwuGTa\nWRK5JsYbr6wsemWmE3vDGB56shVzpqVS4FqHxvM3UvSF/L5PHd/XGcrx/G4V9PTAbH4bnc6b6gXt\n0y0W7FVVBxO8nyDPMBQAL42GUUePUlLLYgU6nY7Y2Fg0mrpNWnA6nZSVVeB0elJcXLMkra+vL7Lc\nsguezZs3j/nz53Pw4EHuvPNOvv76awDsdjt33nkne/bsIT09nY0bNzJixIhGieliib1eT1n+9tsh\nog90IC0xkDl9k7EqdhwuPaZAM/nZMvlD/47kSmJI216ER5rR9h+tnpHJzoYTJ9Tvb7wRGqAs7dWq\npKSE7OxsQF0T9K233qqxOEBjyc7OrlH64JSyU2MT1eTn55OdnU20HM20ztNYW+mBTZE5qRTSuqw7\n73QazcCwAZT55nJct5TpraYCsMS6BIfWQY5HCCfy7TgcCvknKrG6XFi8riW80zL+NzWJIbIBX2U8\nhvgiHFGJFI4w8N/wMDSShNHpjc5g4JNvgzBYXfgoCgoVp/+TNJ6R3DdYy8tbi0gx+iJV2PFTvBln\nkwgzz6TU9SUPb57KI7/ZgETQ/gZImMwl/MRtWLotJ6QsiHJ9DhpJJmfROiZndWH/7ASK+5owxfow\n7n9OkMsSnBLYNMBYLcQ/iJeHjcS13Sn10JNttGPWl3LkuicIOrCakWFH6BPwGJVOHQrg1BspqyhE\n56nBU3Ki1TkpPG5EUiQqnTZWfu+PVpYxG40cTMpl7rebKasMxFyp4bphZn54Qz0B/mdkGzL9PKmo\nlAmf7sntq8qxySDhgbR6LePa9eC+259Gozk31ThLnTgtNiTOrTekWFygk/CQzv/JfKtpK46ihlsa\nTxugZVjh5S+NB3Dttdfy1FNPMXHixMsqItdQhgMrq91/Fnj5rH3WA/2qvpeBfGpfmSkF9Y1C3MRN\n3MTtkm9n28jGc7bVp0s9/owZM5T777+/1sciIyOVzZs3X/DnL/C7p3CJLtZj/wPoBrQC8oDbgUfP\n2ue/wD3AbtSTptupuWzBKe1q2SYIglAXSlMHcDFK/SxLWS/d+osldgvwOLAGtRf+f8BeIA41ka8A\n5lVtjwfKUKc7CoIgXFXcaailLvPYV1Xdqnut2vdW1J68IAjCVaueeuz1oiFOV2tQp0OuqOWx+1HH\n4PdV3R5sgOe/EmnAAdTYalkSG1Dn6R9C/eTSu3HCqrM0Lhz/SKCEM+0/o7ECqyN/4D/AfiABGFzL\nPu7c/heLfyTu2/4dORPXPtQ4/17Lfu7c/k2qnnrsicBiwOus7XrU6ebxwO9A9IUO0hAlBaYDh4Ha\nJjkrwAJqf8G4AwX1n+/cOWCq24DWQFfUF/XXQK9GiaxuLhY/wGbglkaJ5tJ9DixBfY3IgPdZj7t7\n+18sfnDf9k/iTKKWUa9dWXrWPu7e/k3ifEvjaTQarFbr6Z681WrFYrFgqGXVsWo6oSbwO4Evq22v\nlwtBL1cksA4Yxfl77B81VjCX4RgQeIHHv0R9cZ9yEPV3dhcXi38ktf9d3EEgcOQi+7hz+9cl/pG4\nb/tXNxbYWsv2pmz/K561cqnqevzXXntNkSSpxi0uLk5RFEWJjo5WJElSZFk+/TU9Pb3W46B2zLSo\nr5Hrz/r91wN9q74/NfvwvB8R6rvH/iHqlMjzTTRXgFuB0cBRYBqXWFemgSnAr6jt8hnqieHqartg\nK7Lqqzu4WPwK6vBAPOosp6dRhw3cQXvUF+uPqHWH9gJPANWveHHn9q9L/O7c/tVNAn6oZbtbtb82\nQMsmaVODHr8uLrQ0XtqlL6uYjTpZZd1Z2+t8IWh9+wvw76rvR1J7zySAM28mD1F7r6ApVVXkIBjY\nw7nvmmtQyyycsvqs+03tYvF7w+mrQcai9vDdxRDADpxa9uhfnFtwzp3bvy7xu3P7n6JDfYOqbb3J\npmz/+uqIuy3O9NiXAmfXiEjizP83qGPxoedrrPo8eToEdezwGOoY42jUqo/VFQGnLhX7Emj8Sxwv\nLK/qaz7qCYz+Zz2eCURVu+8uvcVTLhZ/OeoUVlCLudmAsMYJ7aKOo47r/lF1fzHnjt+6c/vXJX53\nbv9TbkLtFNS2WK47t39L4UA9T3P2Ja+ZqOc3QM3bgdT+Nzq9Q315CfWPHoP6UW4DcN9Z+1TvBfyV\ni49JNiYvzpyJNqKWKz501j7/5cw7aR/AyZkCaU2tLvFXvz67b9V+ebiH40AB0KHq/vWoM0uqc+f2\nr0v87tz+p9yJ2jGrjTu3f0shob52zr7a9NSFoHDhC0Eb1EjUSo+gXsz016rv/4k6He8Q6jBM7YWo\nm0YM6njnn0Ay8HrV9kepebXtPM5M9+rTmAFeRF3in4Y6vhuP2iu7tpFjvJieqD3eQ6gv5ACaT/vD\nxeN39/Y3or45VZ/R5i7t39QjJQ0OdSgmCVgIeFIzd+pRz9/EA9uANhdqLPe5VEoQBOH8qnJfy1U1\nD75ecnLLrqcpCIJwFRKJXRAEoYURiV0QBKGFEYldEAShhRGJXRAE4QrMmzePfv36YTAYeOCBB05v\n3759O6NGjcLf3x8/Pz9iY2PJymqc2aFiVowgCM3BObNitm414XAUNdgTarUBDBt2oXp6qqVLlyLL\n8uml8U6tebp27VpsNhtjx47F6XQyffp0kpOT2bRpU63Hqc9ZMYIgCM3BOfO+N25s2Lntl3r8Cy2N\npyiKEh8fr+j1+vM+Tj2uEiWGYgRBEOqBcpF59hs3bqRHjx6NEktD1GMXBEG46lxooY0DBw7w2muv\nsWJF41RtFj12QRCEenC+HntKSgrjxo3jo48+YujQoY0Si0jsgiAI9aC2Hnt6ejpjxozh1Vdf5e67\nz67E23DEUIwgCMIVON/SeCdOnGD06NFMnTqVKVOmNHWYgiAIbueKZ61cqroev7al8WbOnKnExcUp\nkiQp3t7ep28+Pj7nPQ71OCtGzJkUBKE5qMp9Z7jLPPb6Up/z2EViFwShOTgnsbc0omyvIAiCcF4i\nsQuCILQwIrELgiC0MCKxC4IgtDAisQuCILQwIrELgiC0MCKxC4IgtDAisQuCILQwIrELgiBcgfMt\njXf48GH69OmDv78/3t7e9O/fnw0bNjRhpIIgCO7lnNoqAQEBp+qrNMgtICCgTrVilixZovz888/K\n448/XmMFpeLiYiUtLU1RFEVxuVzK3LlzFZPJ1Ci1YkR1R0EQmqWioqKLrlp0JS60cEZ148ePB2D3\n7t1kZmae3u7n54efnx+gVoCUZZnWrVvXf6C1EIldEAShHpzvTcbf3x+z2UxERESjDcWIMXZBEIR6\ncL4efnFxMeXl5UyePJmJEyc26KeMU0RiFwRBqAcXSth6vZ64uDhSU1OJj49v8FhEYhcEQagHFxuT\nd7lcuFyuRolFJHZBEIQr4HQ6sVgsNZbGczgcbNy4kUOHDgFQUVHBSy+9REREBN27d2/iiAVBt3QJ\n7QAAALpJREFUENxDrdMDG1Jdj1/b0nhxcXHKokWLlPbt2ytGo1Hx9/dXYmNjldTU1As+X301llhB\nSRCE5qAq951hMpkoKmq4pfECAgIoLBRL4wmCIDSUcxJ7SyOWxhMEQRDOSyR2QRCEFkYkdkEQhBZG\nJHZBEIQWRiR2QRCEFkYkdkEQhBZGVHcUBMHtabXaMkmSfJo6joak1WrLHA5HU4chCIIgCIIgCIIg\nCIIgCIIgCIIgCIIgCIIgCG7q/wGM1ICSuQ0fWAAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Eta_Lep\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEnCAYAAAC0Z8hNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VMX6wPHv2d1sNtkkpCfUUEILVUFEikSuXrHAtaCi\nFwV7Q68dr4qA9Spc9aeIgg2sqFdBRFGkhN5LCBBCAqT3bJLN9nLO74+N2WwSSIAUwPk8zz7mzM6e\nMxvJu7NzZt4BQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEZjcOSAEOAdNPUOdmYC+wH/i6\nldolCIIgNIE/cBzoCGiAncAFdeoMArYD+urj8FZrnSAIgoCqkecvBg4CeYAL+Ba4pk6dO4F5gLn6\n2NCcDRQEQRBOrrFA3gnIqXWcW11WW29gMLAL2A1MaLbWCYIgCI3SNPK80oRzqICueHrvnYEtwCZE\nz1wQBKFVNBbIc/EE5z91xreHTvXxJsANZOK5KdoL2Fa7Uo8ePZSjR4+eSVsFQRD+io4C8Ser0NjQ\nyk6gP56bnX54ZqesrFPnFyCx+udIoG/1hX1bcvQoiqKct4+ZM2e2eRvEexPvT7y/8+8B9GgkTjca\nyG3Ag8DvQDLwI7AHmA2Mr66zFCjDc1N0E/AsUNLYhQVBEITm0djQCnh64HV74TPrHD9Z/RAEQRBa\nWWM9cqGJEhMT27oJLeZ8fm8g3t+57nx/f00hteK1lOrxHkEQBKGJJEmCRmJ1U4ZWBEEQ2lR4eDjl\n5eVt3YwWFRYWhsFwerO2RY9cEISzniRJnO/x40TvsSk9cjFGLgiCcI4TgVwQBOEcJwK5IAjCOU4E\nckEQhHOcCOSCIAhnyGAwcP311xMSEkK3bt345ptvWvX6YvqhIAjnpPBwaMkZiWFh0NTZgA8//DDt\n2rXDYDCQkpLC2LFjGTRoEAkJCS3XwFrE9ENBEM56DU3NkyRoyZDS1PObzWbCw8NJT0+nS5cuANx7\n771ERkby+uuvn8L1xPRDQRCENnHkyBECAgJqgjjAwIEDOXjwYKu1QQRyQRCEM2AymdDr9T5ler2e\nqqqqVmuDCOSCIAhnICgoCLPZ7FNmMpkIDg5utTaIQC4IgnAGevXqhdVqJTs7u6Zs//799O/fv9Xa\nIG52CoJw1jubb3YC3Hrrreh0OhYuXMiBAwcYO3YsW7ZsoW/fvqdwPXGzUxAEoc3Mnz+fiooKIiIi\nuOGGG/jggw9OKYifKdEjF4Q2YNxppOironrlkloi7rk4/CL82qBVZ6+Geqtn0zzy5iB65IJwjjGs\nNGA5ZEHXVefzKP2xFHOqufETCBgMnqGPlnq0ZhA/U2JlpyC0kZDhIXR+rLNPWcn/xL7lwqkTPXJB\nEIRznAjkgiAI5zgRyAVBEM5xIpALgiCc40QgFwRBOMeJWSvnmbS0NCZOnIjb7a733Ny5c7n66qvb\noFWCILQkEcjPM/n5+QQEBLBo0SKf8ldffZWMjIy2aZQgCC1KDK00k40bNxIfH0+PHj18HvHx8Wzb\ntq1V26LX60lISPB5REREtGobBOGvYt68eQwdOhSdTsedd97ZJm1oSo98HDAHUAOLgTfqPD+1+vnc\n6uP3gE+bqX3njJycHPr27cs777zjUz5t2jRycnIYPnx4G7VMEM5P4W+EU25ruTX6YbowDNMbX97Z\nsWNHZsyYwe+//47Vam2x9pxMY4HcH/gAGAUUAVuBVcDeWnUU4Bvg0ZZo4LkkODiYHj16+JQFBQW1\nUWsE4fxWbitHmdly+Zuk2U1LRXX99dcDsGvXLnJzcxup3TIaG1q5GDgI5AEu4Fvgmjp1JFo3+ZYg\nCMJZpy2TAjbWI+8E5NQ6zgUS69RRgBuAscBR4BEgq5naJwgtQlEUCgoK6pVLkkRsbOyfGecEocna\n8t9MY4G8KR8xy4Gv8PTY767+edQZtksQWtR3333H1KlTCQsL8yk3GAwsW7aMcePGtVHLhHPV2dwj\nzwVqp2frjG8PHaD23YZPgHc4gVmzZtX8nJiYSGJiYlPaKLQys9nMggULcLlc9Z677rrr6NWrVxu0\nqnnZbDZuvvlmFi9e7FN+3XXXYbPZ2qhVwrmsuXrkSUlJJCUlndJrGgvkO4H+QEegGLgZuL9OnSjg\nz9yb44H0E52sdiAXzl6pqam88cYbTJkyxad8w4YNOJ1Onn/++TZq2bnhhx9+4JdffqlXHhwczNtv\nv41KJWb9nk/cbjdOpxOXy4Xb7cZut6PRaFCr1ad1vrqd3NmzZzf6msYCuQ14EPgdz43RL4A9wGxg\nF/Az8CRwNZ7pieXA7afccuGs07lzZ958802fsuYK4J8WFLClsrJeeYBazVs9euB3jge6pUuXEhAQ\nwCWXXOJT/sADD/Daa6+h1+vbqGVCS3j55Zd56aWXao6//PJLZs2axYsvvthqbWjKPPKV1Y/aZtb6\n+dnqhyA0yZdFRVwQFETfwECf8sePHmVGXBzRWm0btcwjOTmZ4OBgn7LQ0FCGDBnS5HOMGTOGyZMn\n+5Q98sgjzdI+wSNMF9bkKYKne/6mmDVrVpuPNogl+q3AaDRSWlrqU+bv718vWJxPSkpKuOKKK3A4\nHPWeUyZN4oVHHmFsnRuNzx0/3lrNO6HExER+/vlnNmzYUFOmKAobNmxo8J6B0Haasljnr0IE8hbW\ntWtXpk+fzvTp033KzWYzJpPptMfRznYGg4GKigp+/fVXn/KFCxeyNDOzbRrVBI899hiPPfaYT5mi\nKGJcWziriUDewubMmcOcOXPqlWs0mjadrtQa/P39SUhI8CmLiYkBo7GNWiQI5yfRzRAEQTjHiUAu\nCIJwjhOBXBAE4RwnxshbkEuWschyvXK1yOMhCEIzEoG8Bd135AjfFBfjVydwWxrYhk0QBOF0iUDe\ngkxuN4v79OHm6Gif8oQdOzjSRm0SBOH8I8bIBUEQzoDD4WDKlCl06tQJvV5Pv379WLZsWau2QfTI\nBaEZHDoEf6am2boVsrJg9WrP8f33Q520K0JzCA+H8pbb6o2wMDA0vnrU5XKRkJDAG2+8QWxsLCtX\nrmTixIkkJycTHx/fcu2rRfTIBaEZ7NoFR45AYiJER0Pfvp6fS0pg/fq2bt15qrwcFKXlHk38kAgM\nDGT69OnExsYCcNVVV5GQkMDu3btb8t37EIFcEJpJfDxMnQo9esCll3p+HjCgrVsltLaioiJSU1Pp\n379/q11TDK2ch8xm+PFH37KjR8Hh8HQ0xOxHQWgZTqeTf/7zn9x+++3069ev1a4rAvl5KD0d3n4b\noqK8ZYcPw++/w8sv+5YLgtA8ZFnm9ttvR6fTMW/evFa9tgjk5yFF8QTs2jvpPfoofPqp5zlBEJqX\noijcfffdlJSUsHLlylbPaioCuSCc5VaWlWFoIBd6V52Oke3atUGLhLoefPBB0tLS+OOPP9C2wcYo\nIpALwllufEoKN0VH+8xMqHS5OG6zcXDYsDZrl+CRlZXFwoUL0el0NTNXwJN7/9Zbb22VNohALghn\nOQX4sm9fnxw9h8xmJh482HaNOhuEhbXsnfuwpm31FhcXh9xATqXWJAK5IAjnpiYs1vmrEPPIBUEQ\nznGiR36eybXZcCgyy0tLScv3bnx80GzG8yVdEITzjQjk55mVBgMOWSHdYsFcZa0p32E0IpLnCsL5\nSQTyc5jFAvn5vmVVhWo0isSTXbqQ2NtbvsrPj8LWbZ4gCK1EBPJz2HPPwVdfQe2pxIVVEchuiVqz\noARBOM+Jm53nMIcDZs+GjAzvY8JbxXQabKdPn7ZunSAIrUUEckEQhHOcCOSCIAjnOBHIBUEQztBt\nt91GbGwsQUFBdO7cmRkzZqC0Yoa6ptzsHAfMAdTAYuCNE9S7EfgeGArsaZbWCYIgnED4pk2UN5BM\nrLmEaTQYRo1qUt0ZM2awaNEitFotaWlpjBkzhmHDhjF+/PgWa19tjQVyf+ADYBRQBGwFVgF769QL\nBv4FbGvuBgqCIDSk3OVCqZ2ruZlJSUlNrtu3b1+fY41GQ8eOHZu5RSfW2NDKxcBBIA9wAd8C1zRQ\n72XgP4AdEPvPCILwl/PQQw+h1+vp168fL7zwAhdeeGGrXbuxQN4JyKl1nFtdVtuFQEfg1+pjsQ5c\nEIS/nPnz52M2m1m/fj0zZ85kx44drXbtxoZWGgvKKuAtYEqtMtEjF85Km7I3UWjyrG/dmbeTrIos\n/nfof8ToYxgdN7qNWyecL0aOHMnNN9/MN998w7BWyhffWCDPBTrXOu6Mbw89GOgHJFUfxwLLgfE0\ncMNz1qxZNT8nJiaS2ILjW+eChx56CJXK90vRZZddxi233NJGLTq/3fDtDVzc6WL81f5k5WVRXFHM\n4uTFbM/dTvHTxW3dPOE84nK58PPzO63XJiUlkXQK4/PQeCDfCfTHM3RSDNwM3F/r+Uqg9la+64An\nOcGsldqB/K9uzmefEWA2+5QlJyfz1VdfiUDeQhQUPp3wKVH6KBZbF7PWtJa5E+aSMD+hrZvWIj76\n6CP+85//1CvXarVs3LiRyMjINmjV+aekpIRNmzZx9dVXo9VqSUpKYsmSJSxfvvy0zle3kzt79uxG\nX9NYILcBDwK/4xlG+QJPkJ4N7AJ+Pq2WClx5ww0k6PU+ZcuXL+fjjz9uoxadfVwuF3PmzMFms9V7\nbty4cVxyySVt0KpTo9d70ii8+aYnyVmnTp5NbW62wT8nQbcWvHZ6ejoTJ07kvvvu8ykfO3Ys5eXl\nIpA3E0mSeOutt5g6dSqyLNO9e3c+/PBDRo9uveG6pswjX1n9qG3mCepedmbNEQSvoqIiXnvtNZ56\n6imf8u3bt1NWVnZOBPLnnoOHH/b83Lkz7N/vCe7vDwOL+eSvbQ4RERH06NHDp6wtNgduCWEazSlN\nETyd8zdFZGQkGzdubLF2NIXIfiic1UJCQpg507ffMG/ePA4fPnxqJzIa+exzIyHrJoNaCzk5UFZG\nyE2TuUdrhadPv40uWSbLasfg1LCnyobB6STTamVPVRU9AwIID/f+mYWHewK5WvzlnbGmLtb5KxD/\nnM5A5eZKjDuMAJTtLsNy2ELO2zmog9W0v7t9G7dO8FFczEVZTmwv3o6/rh2sWQP79+MaNIC/LV3X\n5NMoChw8CLUXFG6uMPLKzgr0xiDuScsk02jkUEEB81NSuKd9e17q1pIDKIIgAvkZyflvDrJDJrBn\nIM4yJ26LG3u2nbx5eUTfEt3WzWsWskvGdtQzRu0sc+K0OLGkWUCCgPgAJNWJZ5saXS6G7d7tU5af\nl0exw4GmJXc/b4DTWQ4BUHBhFlX+QRgySrDkmTDEF+OvbvrSh/37Yfhw6F1r0w6jKwidy58Z9wfw\n+NBIJkdEMK57d3I6dsToFvsyCS1PBPIz1P6u9kTdEEXs17EErwgm/u14Cj4uaOtmNZuiL4rIeCwD\nbayW4tJidJKOlF9TsOfZSfgmgcjxJ75hZlMURrVrx6Ro74faoogIrP7+jKy9G0YzkmUnBQWfoCgO\nn3J79iai1QpF9iyscgAORwkuVxXmqq2E+8lNPr/TCf36wa5d3rIVpRV8mJ/P4wMHNtfbEIRTIgK5\ncFKKQyF6UjS9F/Rm+fPLCQwM5OLnL+bAjQdQHI33ZON0OoaFhNQcr9HpMDocqFuoR26zHePYsWeJ\njb3Dp9xPraPKJdE+7lWi9FHExi4mJGQtgXorVRxrkbYIQmsRgVw472i1MfTs+a5voZTBcfkrTm+J\nRuOuNL3I/v2ebwHl5clkZ6fQt/ATKjU9ADGlVGhZIpALp+TgQQgIgOcdkPQzbFZ7n/v0U7j11rZr\nW3PKyHiSvLz3AWrySq9fryMt7SJk+Q9A51O/j+M32rf/BpXKn8DAOYSFDaFMH0OH8nfrnloQmp0I\n5MIpMZvhtttgfBnceQuEX+cpf+opKG6hVe6KomC0G2uOrU4rDpeDSlslIf4hSC0wTONwFNGr13yi\no2+rDuSBjBpVQWbmXUDDNzDDw8ehVgfg7/81wcGDKdZ1pQPnVyCvdLmwyfXvKQSr1QSq1Q28QmgN\nIpCfB0wpJtIfSkdRFPqUlJNS4GDPKE+WhO6vdid0TGizXk+jAbUatFpP7/zPspayaN8i7l9xPwF+\nnos5tjhwl7hZNGcRn0z4hNsH3d7oOUpLwe2GmFiQLJ5phIoC/fNhnBvi4nzr338/dOyoZcoUXU2P\nXK3WtciHxrnCKctEb95MaJ3/2U5FoZ9ez8YLLmijlgkikJ8HrEetAHT/T3dyVyVj/1Hj+fm/uZgP\nmps9kLek0jKQqv9VlpWBLENRuYn7h9zPe1e/B3gXBLkvcGNymOqdw2qFFSt8y8zJMATIz4MoPXz+\nOaxbBzeNAvN82LDBt/6uXfDJJ/D0056ADxAdDQ88AEYjf0l/9sOLRo70Kd9lNPLAkSOt36CzUHp6\nOgMGDOCmm27iiy++aLXrikB+ntBEaAgdFYopS4srWEXoqFCKvz63MvqZTTB0COidnmO3Gyor4fkX\n4B93Nv08OTmwZIknp8mf2pthqOT5JqFWg0rlef7PafB1e+RmM7zzDoSGegJ5bCwcOACLFnmmIAq+\nHnjAyjZD/Q3Cwv4WRu+PejfwijO3KXwTrvKW2+pNE6ZhlOHUVo8+/PDDDBs2rNW/uYlALpw1FOC5\n5+GF6twkeXkwbBiE94U1a2HoAk95cTHYbKCyQvcTjKr8/LMnWNfIgOPDT609ISGeXnjtHrlKbFfe\noE6H3fTffAHqYO84uWmview52S12TVe5i0QlscXOnyQlnVL9JUuWEBYWRkJCAhkZGS3TqBMQgVw4\n6026FfbnwtNPeo6/+w4yM+FXs6fnfLb44w/Pf/PzPStArTEQr/EMD/35ATBt2jT8/PzYW1jFJif8\ncF8wo0aN4o477jjxic8Rum46NCHekOIodpyk9vnFaDQyc+ZM1q1bx8KFC1v9+iKQC2cNxSnx+XwN\nvy/xHNvtnpuUnz51I2G9Uxg61VO+bZsnJaymvM2aWo8iw8yZEBYGhw972q0PhxH9ISMDevWCr776\niuLqqT3Fy0uJCwMCivjyyy+bNZArigKK57+KoqDI3oVbJ0upIJy+GTNmcM8999ChQ4c2uSEuArlw\nVlAUBcUGx9MVPvrDc1utpETmwQdhyN/T2PBzrzM6/0+lpfTzC+O2I1lo1QXk5uRQVl7OlVVuBkn1\nx0u0GZUErVoC+hTv2Mr06Vy6Yy8rnOnA4HqvmTEDrr0WJk+GceOgeDiojsC990JQEMB1NXW7WTK5\nqoeC6pp0UlNTz+i91XV8xnGyX80mhxyMGFn/7/UASBqJi091fElo1L59+1izZg179+4FvOsOWpMI\n5MIZW2UwsKjQjkZl5/+2efbEdGRlUely4d/E3sm4ceOwr1oFSFxWK6v9gAED6NSrFOha7zXO/Gx+\nW5hGxR9p3jJnOcePl3DVVQYiI8NryrcbjfRX3NwZHU47XTvWhIWRHBhIlbsSBTVrjq3xOXeXdWlI\n25xw02hvIA8Pp9OxYkbakmgokDdEr4dnnqlf/t2v3tM2t4w9LhaoerJC0wWVKpJv/RMBeL9yOwff\nF0m8mtv69evJzMykS5cuAJhMJtxuN6mpqeyqnZSnBYlALpyxLJuNGD9/bukYwZ2DYgA4FhDAfTod\n97RvWjrf8vJytP/5GGnWXaTck0H56upxEwcUzTAyxJDHvssrGbzaG0Cf2redEX4y3bIMNWWybGd7\negVphw8TOWqE70UUF1eEBhOlj6A0KIgyf3+0kgp/jZbXNr3mU/UFYy55sQEkTp/uibj//jdMn07x\nso8hjSZTqeDqa+qXf9f0U5wypxMuuAB6jIXISO8Hya/hUGBtwQv/Rd13333cWr2kWVEU5s6dS2Zm\nJh9++GGrtUEEcqFZaFUqIv20dK9eIOTU6fCTJDQNTPMoLlG4/OlPcUneqHI4pxiHbMcPN1V7q+jy\nfBeChwQD8NV3a1j3f315e8NRnv6PjT1bnBhKXHxdpWLtwAu58tl7as5jt+fT547H2dzA6sOGSJJE\nlxyFNeu7+pQbt+9iY0czj/32WM1X5cd+e4zJkhUXf52beELjAgICCPhzZRwQFBREQEAAERERrdYG\nEciFVpeeaeZY8MMM1Xk3mVZLJqJMZVRgAUDXVYe+rx6D08l7F4TRLtGEa7nCouQKrHlWHEY7KHp+\nrJrMwzffXHMetyUN9x2PN7ktxwe1J+uRkfSK9e29V8btx9mzI11Du9YE8q6hXVFQcFF/D9HTUZAP\nudugpMS7gKld/fVNZ5Xrv1fYO2OvT5nF7cbPhmdX31akCdOc8hTBUz3/6ai7o1VrEIG8LVRVwYIF\nniWItWVmNvulyteUI9tlog+7iXRWUPZhDs4IFe3va4/Kr20mRXcyrGXtBzbcQZ/XlI2qUPi/uS/y\nvaID/lZT7lIU9CF2pkz+gIDfbqDkm1jmzQthdbIGss587qFDr6Xohv706nu3T3nVoXUMDx/HdbGT\nURSFJ3iCx4Y/xm7ePqXz9/qoEt6fVK98gjaRPceuZPUvkJsLH37omYlz62EYcEbvqGX1S4Gwy8MI\nTfSuFk4zm/lvaS5/C2rdcHKqi3XOZyKQt4XSUk/QDg72Lf/sM/j735vtMlEToyj7uQx7th0/i4yf\n7MKZZ+fYfwsIuzKMwPjAZrvWqVArFrYMDkH/fmZNmeWOy9kVWEVA8vk1iNtppRlmX+rZrPNPNhuD\nvttE0OgrGXM3zJ3r6ZFnb8tny6UVsHMXWGvdCdVoPAPfZ8mmyYEJgYRe6g3kaqOKvCMiYVZbEoG8\nGeytqmJJUREZJhPPHj3K5YrMzGPH2W8zMTEqquEX3XIL1MpZoSgKn6aksM9o5K46GwsPCgriX506\nnXK7wsaGETY2DIC8Ij8KcyOJfTkey5rSxl9cUAAPPgiHekBJGDz4DmzfDvaBEOtb1c9kYv13gwj+\n1grPVxfKMths5F96C7uf/rambmoqOB2QmTqO1yeH4VedIPz4cTXZqn5EROfXa0qIyUxUfrlnsnZa\nGhQVoamowF9xU2WEWbO8dQMC4Cmgym6k3OqdaO5wn3hc2yK7ybPbfcocStN3DWrUP/4BHTt6j81m\nuGsTCniWs+K5n9ruvVfo4rwQvt4Mobne+s8+Czt2gNhsWDgBEcibwc9lZRy12dBKEqEaDRLQTqPh\nzvbtGRPatIRVMvDTxRczaN06RtXaBi3bZuPTgoLTCuRNMWLECPbv3+9T5na7Ge50Qs+eUNkeZB0M\nHOhZ6bL1GNSJJ2qbDRUyH79cyEMPVRceOYLtyn+QszWP2gvdMjKgnwKKomL1am98GzYM+oZuoWsH\nF67UiVRWFOIqdVPlcvLl3JkM3p9Hiv2fMGEClJcT4XBgVuuo9Kvzrabajd/fgHaP9wZU+4BJPAQ1\nGRT/FKXRsLLMwF2VvnuL3uko4f7wZgzmdUmeFaqfVU9f8dwTns+77CHm+YmEXlfr383atZ4PRkE4\nARHIm0mvgAAC9HqejYtjo5TNE106owk+tV+vJMt00Wq5q9aUvWSTiaWlTehBn6acnBx27dpFpzof\nFP4dOsDdd4PeDHuq4MHrITUVecseduTt4GDlcVbvX01xaDHHK0IYB1SqVBBUPVyj14MkERTkyXvy\np9dfh7zfgOP122KQwumnysHhLKKsbCPGgjzsskxf1yF+uS+RLu/qPD3yefMoSk5myJZ4umjDfXrk\nFgvwLMy9Yi4P3jStpvy5VauICPyNIG2QzzVvjI7G7Q7ine6+NztnJknIpzjRu8yRS64xAIvTgsFq\noMrhGU5RFIW6s+k1apjxPEwa5RlaWbUKjLc9wFff3I2tee6lCn8hIpAL6PV6goJ8AxwnWMjjVtxU\n2MrRqDToNDqCtEH4q7UoikKhqRDoftrtOBLYi6c/O8weDHSfuoVQ6UD1yINC7DXpyIqD1NQpFBYe\nhqpyomiZDZxPhyLJPH54KIGZwRgyDCRpkogIvoqnFYVd+bu4qM4HpUt2sXDnBywxLMGQYyDh/QRm\nZBagSFNYuhSWHa1V+RLYvhNGXNq676m5uBv4QJQA1V84t3tzE4FcOGWdQ7rQW3JzacKlRI2O4ov9\n+4FXAMiek40j30GWIQvFBCb5KjIezyDowiBib4896XmXXHklade7eWfhSHhtMoxqR4nDwT+2zGNi\n1WqGoiIsbCyBgTL4ZRMmlTfTRMBT43bDBx94j1OC4B8dYVL7F5l/55NM3jOZcePGUTisDyq+xpE1\nkfVW7wwhlVWhA7dxdc+r6TmqJ4sOLOKjmz8idPPzLNuuYLeDbPG95rdLYMSTvmWyolBYZ2wfwGG3\ngE3lTej+5z2X5hz3b6I0i5WL1q+v941Eq1JRPGIEwS25I8lfiPgtCs0q66UsujzXBa1OCypQKZUo\nskL+/PxGAzkSKH8mdVJJnoFjlYoDqsFc7M7lIklDbOwUQkKqQKdDofUDk1rtaVrt2wpZ7YFO0KGD\nb12nOooKJRilw3xGX+Kd627IWUolvxIREIEj1IFeqychKgF7oGdcfNIk6FdrxuJ/1jbclkKHgz47\ndqCrvehKUbg1zElQWhEsXepp8IoVnhusps9O+t4KCgpwNpBsvX379vj5nd621S5F5k27nX51xvgn\n6XTklZTQp4krf4WTE4FcaHYdp3XElm9D+gRU0vd8HadnwKoBLF65mJ1pO4mzGBo/SS2upPV8s/Ab\nrrZdTe/evSkvL8ficOC03khc/9b9eq5SgZ8W3qrVI19RClIKhJ5opEfyQ6XyTh2UpIaDolI9kCTL\nbmTZG1DVuGjoT1UGPundm5uio72FhYW8YEpG7t0Tht/jXaO/di1ceeI8K+np6SQkJNC+TmCtrKzk\nmWee4fnnnz/BK0/O5XLx+uuvMyzA9yaz6aGH+Oyzz3jjuedO67yCr6YE8nHAHEANLAbeqPP8Q8D9\neIa9HNU/70ZoEmeFE/N+M7KiEJcJToOLig0VSGqJkOEhbd28M2bT5hAeEI6/xp/uYd05GnAUrVqL\nWtX0ecdybh4d+ndAW65l+fLlfPnll2w9fJguwZBaUn8ZtEUFd095Gu7xBp8XXS7MXbs2x1tqUPs/\nZGKP/Ag2Ii+vAAAgAElEQVSxx2HnTigq4u9//EGI2cZHez7iizJvt7qL8xiT6FDvHMXx6ag1cPjw\nHRg2rqop/01ys3PAbKDlBsntdju9e/fmwIEDPuUvv/wytjO8+3rBBRew8m3fhVSBf/zRJlkCW0pi\nYiLbt29HUz1U1KlTp2bPankyjQVyf+ADPBPOioCtwCqg9hrdz4H51T+PB94CxjRvM89fefPyKFhY\ngH9XHZdnSxwx2jj+wnFM+0wMXDUQ+p/iQgun07N9zrp1vuU22wnT7a1cCYF11gblBT9I7GYHPa1W\nZIcTo9FIvizjktR0/2MnUApbd8Bze2HIEFQn+Zu8vu/1FAcVc83wa7Css1CYmoaq3qjpyemCdagk\nFb179yYmJoagwkLCQxWk0vrnGdET/vX8K9wzwZuD5Zn0dAZFRHB3vdonZlmjY8u/t9QEnC2dtuAs\neZtEVyAFq3cQdLHnz0dlLafjSpnceAn69PHMt+/QgbIePfj6mccYMaybz9ZCIVUgSTb0Wr3P9dx+\nDhQZEhK+ol+tfVafWTsOY+kBfvnll5qybJsNl0pFQbt2nq2L/oI2bQrH5Wq5pPQaTRijRjXt26Mk\nSbz//vvcddddLdaek2kskF8MHATyqo+/Ba7BN5DXzg4RBBQ0W+vOQpUuV820NKcsY3K5sbrdnHbf\nwg2xd8bSZVZXPnllBdduDeKCXy9gz8g9cDoZR48d8+yF9tJLvuUul+cuXR2yDNOmQa10JbgUmW9j\nniboBT+mjiumY6XMD+npHDebMV84gJHB/QAnXDsWrgyADRuQvl/JqqOruNbVg/tX3E+ZoYwqdylD\ni90Y77gFuWQK9j7jcJVZ8LdYcUqjT+PN1WfMV/jkE29v1+Uqp8x0AwZ3GNSaj28NDkb29z+lc7vy\nNYSOCaXbf7pBF7hw24UcvGkspXueIGvPEjShnoFyf5cLKwEcHTOIgdOmeXa+uOIKdo8ejdHt5vXu\nvjN5yrJ/xMjyE84Mqquy0Mqi31dxqMK7Q7RLUeC6R/hsw1oeffu9U3pf5wuXq5zExJbr1SclnVpn\noy2/YTQWyDsBObWOc4HEBuo9BDwB6IERDTx/XlhfUcHlyckEqT295OnlbtanV7A6RqG7xcKQNm4f\n4Ol16/X1e+QnWfqv18OXX3qPTS6Zn95K54JlQ/l3XBxVZVU8O6Q3UyIiWCJZcAQFguSGjjHQO8pz\n50+SuLD9hahVJsZ0GUN+QD5b/JNYPaMdfZQrcC2MoOztSVi+3YXV4uD19W9w+Rm+1eIeeoJ2lLBk\nSe3B6XYUF7/J9qRCmHqGFwDUQWp0nXQA6DrpcAYE4QR69JhD1FDPqt0VpaVkMQYa2KCiQRLgVuD7\n72HtckhPhxtvJDo9g/ZyIZDgU/0neQJB/in873/v1pTl2m3ctiMXOav+rBWhbTz77LM89dRTxMfH\n88orr3DllVe22rUbC+RN/YiZX/24FfgUuOzk1c9NZrebK8LC+HXgQAAORBzg7r4x3B6aT8Z5NN53\nqlwuQIGsLcNwOzeye9FtlJiP4rK9S7b/aEYNfpzK747SYdyNhOx9HYxGqjadIHXBKVgTP4IX5qby\n4EUP+pRrQ99D4cIzPn+LCdRRfk0sIdp4XL2HoRjLcd58NdavtxKRUn+ooJgYgh0BREffVFNWajbj\nlubXqyu0jblz59KvXz+0Wi3fffcdN954I7t376Z3796tcv3GAnku0LnWcWd8e+h1fQt8dKInZ9Va\ngpeYmEhiYmKjDRTOfl8tWsAnbiPHj8fxtLsdytZ07C43wcFuEhJ09eo7ZRlH1ypSbFBU5SmzuN24\nFaiwWzA5TKSWpKLOU2NwKcinP3DVJKWlP2G3++723pcUOMVx/KbSamMwx5gwudeSFvUllToLOzo9\nh/7yCljePNfI61rKjtJS/N1ukg8dAkniumB1zcyY1tLOIHHR3u7kvpvrU96x4cwK56whQ7zfxydN\nmsTXX3/Nzz//fFqBPCkpiaSkpFN6TWOBfCfQH+gIFAM345mVUltXILP652uAE96qrR3IhTMjO2Qc\nxS6sx91YTVZc5S6M243o8zRIcutOyTuUksILKj9SJrxPn0UZ9H61I6oAidjYaL766mf+ODKHwccH\n89GDH7Fnzx5ygoMpezqZp4t1+FV3QI/bbFgVCXNIf44ajrJy60oySzNxqvXIcmei9Wd+Qy/7wAFW\nVc/KOHDgAPn5+aSkXIm//y106dLVp+6XxXG8o+/X5NsUkqKgqzBDfr4nPXF5uSddcQPzr4ODh9C5\nSwSKS8HWbwKhoXMZOXIV9jkT2KpWYZLdGGrN51YkCbcs8cUX3nPkaaCd1cU/j2TBRRd5n3A6ScyZ\nxAZlBKV9AwgODOTqiAgoLMQeKLVqGA/sFcjeUTJhx/RYM7xZLY3bjVzWUwV9W7ExrezPja9PR91O\n7uzZsxt9TWOB3AY8CPyOJ238F8AeYDawC/gZeBLPLBUVUAY033bgwgmV/VpG2QoXJbFO8rX5uEpc\npD+aTnxqEJtPc/HGmbhQpcLZ51ou1GzkkrGXoAnW4HQ6mTMnkU+f/JTA5EAGDhxIfn4+hU4nrGzH\nby8O8CbN0uvZJ0k8ccnTDIot5voJ1xM6KpRih4Nu2x9hQESXM27j25MmsWnQIPz8/MjPz8dgMDD3\ntXkcSk2leOlSn7pJdEZNAG6akFbXZCKwys7gN7+F93/zBPE1a2DiRIiP92QvbILlPXpQ1CeOL3N3\nkPqH9yPELzqaQTeOYZV3RiIVoaDrK5Mt6WB+rSGWsjIir95En0wDtqF6IoOD+WdMDBw8yJetPPrn\nF+7H9/e76bwyhWfe9s7myHwpE45UtG5jWlBlZSW7d+9m9OjRqNVqfvzxR9asWcMbb9Sdqd1ymjKP\nfGX1o7baW2A80nzNEZpKcSn4d9TS5cn29OgQQOGiQgYsG8DXl/0GyW3Tphkz4Fsz9Iz3rBAHDYqS\nw4ABQUibjnL1g1dTUVFB3uHDJx2faymKovDDDz8QHh7O4sWLWbt2Lf+VJPps3+6bCxdg+nTIzgKa\n8E3A6USRJH577S6uf/g9mDwZxo3zLPXcurXJ7bOHR6I1KkxP2Yte403nO8fWgQh/Nb3ufLmmrFgJ\npPwQlKsU3x55YSFumn7Ns0pODixbVq+4/lrTs4vT6eSZZ57hyJEjKIpC7969+f7770lISGj8xc1E\nrOw8BxS8+y6JOb6hz1niJLPwGUbJ49uoVb78tVbS0uBIT9i0CVRB4HS6iIs7Rnn5QMIbP8UJuQKO\nsEyzmTHuMVy35DqO7T5GSa4RQ3YlW+P/Roc62SHlngEnOFMDZNmTxLzumOTvv7d66lhJpcIlael1\nzUP0m+SdR/74/PlESiqfnOpOPN+63NJ5NGvlp59g4UKoc+9sZ1ZWg9U1mrBTniJ4KjSasCbVi4yM\nZNeuXS3WjqYQgfwsZko24TKr6JJUxj233eNJNRsEdIPy9eVMnFWAy+Vq62Z6SNC+PWRIEBMLmmDP\n2iSpOtDYsmwcffYoZVvLiDK4uVdtpvS1o4TcHU3whSe/8+X2zyVEiUKj0jB18FR+PfgryebjFMZN\nZZPLRGWBd+mCVZZxT4+DFc3/FsucTg64g9BJaqamprJ9UxoADllu8mbPp0stqXh5rLdHfshs5r7D\n77ToNU9JXh689Vb98muuObXzjBkD7/nOi5dffNE3F3K1pi7W+SsQgfwsFXpZKEVfF2Fxy9xZegNx\nq+LQ6/SYD5oZbRxNcWkxkrS08ROdBZSuejo90QnFpaAKUOH2kzD5qbDtr6L0J1WjgRwgVolFLam5\nrs915MbkUlyoAComuPfyzgDvaqY8u51OGcUt8j6qqj801Yqbd3v2pN2w6vQARUWE5GaT0SJXPUeU\nlnqCcO3tCysrPQ+hxYlA3oLWV1SwsqysXnmxXk/FCe5om81mjh07BndB6F2hFJjNPDHhVbZ8/D8G\n9RnE5ujNLd3sk1LMZoqyi8iWLBxefxirxYrNasPlUpBP1CsN1NDlKc/NyjAljOId+ayODODu9XaK\nvy/GfNCMNcNKtyMKzsITb8nWEjSSRIXVyuDBg33KrVVV/Bh2B9cO8d04Wap+hGg0RP65h6ZG41lp\n2QwUBVatWkVSWYm3sKTkxC84Q2a3m3+lp1N07Bi5dju318oPMraJu1vVuPFGT5KuPxUVwQ8/NFNL\nhZMRgbwFfVVURInTycV1Nlk2BgSQoSj1l8BGRpKVk8Pll3vXPDoUBUdWFqtWrWJwn8F1X3HGzLIb\n87RUrt3vXYjiUhQc8Q5c/vWHbZxZeRx3FpGKhe3Zx9j9SyZWiwObA7Kzs+vVb4jb6IJICOwdiF4n\nE31LNJp9GnDAnmIj/Z1OssorcBU7qHS5UGIuQC5umaGLUH9/Ds6ciXXCBJ/yi7/4gqwlrZ9twoVC\np590yH94A+IjmlgCA3o0WF92Q+2pypEueEfxZK1tikKHg+VlZTweEsJetZq/h3nGhfeZTPyvpITh\np/1OhNYkAnkLuyo8nPvqJKp+KS2twbpSr15k7NsHId6sh8kmE0M6dMDhaJmeql2RUWfreaBWG62y\nzO9F5TiCGpgvoEB0XCf6BLaj08XXctXQKJ7+9x+MfeU9XJmZ/OKGkI2bsP6ZhOtFFUcxEV2dkafA\nbsfmBwF+ZgL6BqHFRfAINepgibhcG5ZKOwaLk80VFRSUmLHLMvKAKVRtrz9G2lx6x8ZCnR65au1a\n4Ei9uhatjqGOwzDlU7h3W/XvREHtksl1l7OnYA8Gq4HMikwKQ0xYlULPVm+18qq4jC7KVpahuBRy\n9+ZiSbVw5OEjFJi78c61fvx60Qg6dfYu93/o51XcO79+tkQArRaW11pEpC4BwxgZWWvG7bbhdltx\nOisAE5Ku4QRswWo149u14yuNhttjPTnjw3fv5nB+vicBmNsN77/vyQ2j9EXsRXf2EYH8L05RQJUZ\nyCCrd7602eUCp8yJMjSEhUFcLMSMhagb4dkXJToUF7Nu7Fjy1HlUjhqOJljDjooKhmfsY44mlaDq\nb+zFJSVEh2Sw7MZLqUBLuUMmPxnMFht/vzyZfl/NwK/s77x+UU/0ffQUOxzEHN1F/V0v28bM6x/i\nhS0St8/7J0yozvFSWMhdMwaw3LqSuOWHyMzN5NCeQzhtfhS7M/lX8b0MjBlYcw5bpg3LAQvtRrVD\nF6dDnaFGn6BH2a4iL1yF/4gwwnt7g25a+knmsqt8e+S0g02PrqTnuDdZvxgsFhXbtr0NkosOC60Y\n1m9p2hv95ReIjfUM67jdcOiQJ4Oj0geOHQfOfF6/0HxEIP+Lc7vd2M0WRozwDvQoAK+/Q0lZKeC7\nxH64PYd7M+dD6Xj4YhXsKMK/ysyggL2YzWrky8spKjuM2qymo9tNzzfdvP/+A1xRPdX59dWrST68\nkR++v48ZM+bVLAgKnjmMinQ/Qu8LYtCEszfvmlutwSmpIDgIwqsnVdrtGP0lxvcez6LrFjF542TG\njR1HTocOxJrHYTh8MRvSaiXUkkGeH01w+loiR0Xif8Sfjg93RJ9eAcSdeSMDHBQseJBO8VoiIyMZ\nPdqzscTvx6dxJMNCeTl89BFERUGZP1T0AkNDX/g6dIBrrwWHA15+2TMdMzHpzNsnNDsRyP9qios9\nPazSMgiuAhQ0Gj+yMrLIfiMb2S7jkGXm/niM4KxySpf54d/Fm/71b/Zj2FUjPdvkBAVBuBPFD8a1\nW8HWnL3E941nzeGfkTUygZKRydMCgQfOuNlWXTAKcMRiodjhwOR2c6q5UJSQEIqcThx2O5VOJ1a3\nm0KdjgigpdbChvu7SdX+m67h3qEbW1YZ7SIehfQ6lSXPN6D0x9NxhXhXdnbt5ABFYU9f781HN9Du\n9sdwBDaQmhhw2E1s2HCAwMBAKioqIDOTMWMhIsKM2w0Gg+fbWEUgGI2w53BzvmuhtYlAfh6SXBLG\nHUafskCzFpwuuOwyKJ8B1zwImiJwuXArTu5acBeT3pzEnmv3IKPG5n8Baty0GxVJ2OW+CyO+7HAT\nozt1hutHw41ROObPxUAAbul2evzfKCxXHEHWyxRWrGNk/x9QSQFsqE6lffy4C1WMC3NQN5ZmfE14\n9VTgMmsZlf5qKtz1p6tJxhyOdLsEuyxzbUoKFfn5WCorwVbIutw/mPZrVU1dk6QD6qfsLXI4sH78\nMYnp6UiShDUzE0dZGSunTOH+qirmntmv/ITUqFmduRHLsR01ZWWGKl7p6eKLglx+OnqUzKoq/p6c\njOHiaDgAYZeHEVlrSDw/LQS3CtQzvAuqSxx2DuOk0lr/w0wG3LITrVaLVqslKCjIs+gJ6NF9C5GR\nnoWrPXvCUSt8s6reKYRzjAjk5xlrlBu1Q0X6NN/uXo9kf45ptHDwIIzYBr9tg/hACA0DGSaWTESr\n0zLgkgE4FJjZ3on+sJoFzzf9q/4dfe4gV5XLvUPvRROsYeuiSsZsS+aXZQO5VOuZNrnRaGZFYAjb\nbtlFVY6ewOpFmRW2CkoDrKS5VzKowjtrx+x0MjB/IT0qhqJTPcGRiy9m3s6drK6sZHX6G1yRcDVd\nQ7vW1K+QNUgWVb0kWy5FQZWaSurkyZ4l+hkZrM3JYdi+fRzq2fMUf8v1Zcf/DZf/QF7JzCTFZMJW\nUkJlhw4MVOn45sYlaLXe9jy+dDNwGRG2LLpYkil1GUioXMvnKjPXdF9DwOC+uGK8QzGDnbug51AG\n3fZ4TZmf2Yxp5f9REermgRW1vvFYLNykcSP52+nfuz/hEeFMfWQq2vWb2F24tcmJnOzmACrSA8j9\nv1ycipPt321HAYbkSJQGKE1JXPCXs2TJEl566SVycnKIjIzk888/Z/To5tlApTEikJ/TJBYsWMCx\ngHT65/XnmaueITk9HXNAGUN2+G5zYeyu8u7zVIuCCklR03lnZyqtlXTb0A2XoqC9PgfOMIuiK6sU\np6zCMPFtSvpYADCvWohrz0qknL68/9TX3qRZbwzDVmQjbFghx4+/WHMOp6Lw6pACft1dZxWfoqBy\ny9yUGcjF/t7pnXlqNTMDwU91ZoMlsp+bsr4xbC45zns7PRkTZ+77GZu2BNlvQL36B4fdTZyqDJss\nI1e32y5JONVqjLuM+Ene4amwDBfq/mpkZzl2czZulxlLZSqd3RXcE/cLLtftmM3e3/0FoTtQTzyO\nJ3+dV4zKSi9rGdKRbTVlVrsDoky4/I0syC5FqghizrofCbXIfA4UmIua9P6ddj8kCWL+GYPD6WDA\nvwbgkGWWXbWTDidYb2WwleM21/qgsJbiVoHnN9L8wsPDKS9vua3ewsLCMBiatnp0+fLlPP/88yxb\ntowBAwZQUlLSqquuRSBvCwr8b3kM+5ZCr62eodFUI8g5Pfk2W8Mtd3qrurPsBFRB5qxMNs7eCAok\nqZNAgb/FjSV+rJ1rwnuhWa3h0UcfZfaHH7Lr11/rXbLCrxjHgM+487eN3Gu6gwW/LKAythJZJUNo\nNr3mjyf58mT6/9Afk8vFI789Q+dpRaxY4Q1Appwsyi9zgxlQlOrd3qt3lWhAxXE9aKEqVcFQ4flj\ntmYrSCfY4DM9pwsbMi/npmu8S72LHQ62rmhHVEglSsJ+KipUWCxHwZJDd42RnNRUwmvt21hoMsE1\nt53wV+9weB4ul+fenVpbyoUBy9mdvNin3jPx2ZSPvoqs7XaWGzznX11pxNGxE+6IEhrKwdrflsIr\n3R8kMyiIcdHRHHNK4AeZN61EVemdUtqnsw7Vf1Vc2+taeg/vzdxNc1k4fiGjVrxOkXszfdu9T69e\n3lkrL295lJ4cqHe9K9vt4qIhx9HaO9WUGR12yNSiFIRxU+T/aIeKSVISBCo4TB0pcRRjcVrYfGwz\nWXIW+S5wSxpkJbDe+VGBX6QfikMhsHcgalnGoW3496opyCbmkwRCVLU2DFcUygfMxl5Y92ZAw2Q3\nyHYNVPoGQMXV8M5L5eXlLbq9mtTErfjAk6L75ZdfZsAAz4d8VNSZb5xyKkQgbwOKW8Wq9ZEkTvJM\nGZcU6NQJyFCx4DOtTyDH5EZRQdwLcYx6chRb2m9htNHzde3badCvn8SFHaIpTClkwFUDWPDbbw1e\ns9KvDFAzsddkgrXB/KP3P5DjZJZKa5FCcj07v9tk2LgRFIWLAnby+eZHmHbr/9Wcw09twR6n8Pi4\nqZSqZEoDLaRusKCTwEX7etfUyGqIzuSV+GsICvKUlVSVYAosA3lgvfonklwWwOWxuSh3LuTYsRDK\nygpQO6qYM6CEx/pcgiN0ZE3dUosFxdBwFnHZ3ZdOncJQqTxBXJYht3sIN0sZvLorxWcLzQGxMXTT\nbeTazrcz68oJqLiXzWP+Sfc/luLZk7wJOneCQhi4tBdayZs27N0je5lyst2qm0itljnul8D0q7w9\n8u+OHIEHPsYcpCE24S4iwsO5aNBDLNz5O/2YS4rpAMWGYl5Y8AJ+IX44g6OwXfU4WVVntvipV4oG\nZ/QAvrJ+7S20WhnROQWns2n5Cw8siKMivQ8Hv/4IO9XJwBRwy6eQBK0NmEwmkpOTyczMpFevXlRU\nVDBhwgTee+89AgJap+0ikLcRf383TzwBmVWgyNDlCXhGKYblsfXqKgASKNUdE0UFVutxhg17ibAw\nhdxAG7a/W0lNDaN/zErS+rhY8ofvDcre3SsZFaWjjzIbx6sW2gfrUJlUhKlMBAQVw9y5YJgKz73t\nWWXyHLgOxdBvyWc159DvX0xM5k98WfoSs2LaE3ltBGEXhWNVxvKWfSpT8vI8byY7B4JUJBgiYOUH\nPPfRMP6c3fhx3sfkLF3GT/vqbA59Ep9nRFCRMYDH3nuMCy2XsmXLPMzFu7HaF/FJ314M73pxTd2X\n1vxGfOidRFzrYPNmb09umsvN8G796fP1cG6+OZjFi2HtWhgYt5dieyRvX55CXK3bAbevuJWLHA2P\nISiKwq9HfsW43XNDObC0EujVQM3qT4bBF0CtMXJyG14QdjIqBQ7f6Z1aYnS56N8rFGOUncWR3m8T\ne8sUxgNuReJoXjDFxnas2NKRNHsw/YCQqnaoXYWEF4Sjq9RhCwonT1ZzLKf+4qdT5Rehoc+sPt6C\noiJUv+5r8uvddhXtr1/K35YuZOTICwBQZIWq3VWNvLJt/fnN4KeffmLbtm2o1WrGjx/PjBkzmDu3\npW6j+xKBvAUpioLVaaXS5jsTQ5FdyG6ZtLQ0qkqrQAZrmh2lpKTeVlxWpwPL34Yz22LhzQ0b+UEG\nTVISl0hbuK/DFsylzxPkZ8SVU0lYWGeOVO6lwFSCPvY5n/OU5nzBwQPDeXXmw+T+ez895vdE1yUA\nGEK4vhK+/RYuT/b0yF0uVEkxPOH4kKhV3t5teEUhxSqJ3/o/ykXLXyTJlMTmlM1YbS6Q9XDLLWD5\n2JOLW2VDqhqJVH4X3fT96V8dx2KCYjC5/ZHs7ajL4bbxc8ZSjj3nDXR2WUa25YOu/rh0QyRchKvK\nWbVqM6+/7l208mjKMoaa34AzXCArISFJEvmmfPLLPDnDQ8rNKKEJdFkXx+GfDmPcaiQ/J59uPxua\nY+YlLg0c6VFOn27e35nZbsddoRCbF85PmWtryosdHRgPSIqajAwnWq3nm4d5EBAFo/rfyL4On/PD\nB5/TMz6e1Pwq+qVtbHJbVPpKLDcsJi1tSU2ZzelgxKUpaOQz3ywi8/KlBP4uM3eupxevyGDe7+Ky\ne8/41C0mqPrr5rRp0wivXlvw2GOP8cILL4hAfj7YlruNRZnLebF0jU+5vc/L2ANUTJjwCNeWXYuk\nSPy8+mfI7E5p/CDA2yt3GCvBrTBr3z5eCI1ls3sQ8u69bFLtZVuvSAIrpxCqL8GWWkhs7ACOV32L\n0XKA8QOe9rnmfyt3cDCvLzrdIFS5VgK1AwkMCjzpisn/6u/iin2P1hwXP/YkX+x+j/6f/49RthAu\ndV2KKlvFRNNtFBs1lCxdijLWRtG6taiD1BR/lQtPNf2P278oEEOEgcI+hTVlTkVBTSem/n0qvHfi\n19amIOFwRKDVescpbVL9D47abPm26s0wPNQnuU+lUWm4+8J7iLq6+vwFBfx313ZCO4XSLrwdfql+\nBPYKxNhHR8N5HSXQ2inu/wCZmSZMpgwOHLiB23RpKCe4L1jWzkz7b5+oOS4PDcVwsZ2Yw8G8uMV7\nc/iwwQB8T2CAivHjPTmsnnkGXlkHHIUbPlvAvGMFMGIEqFT4xcTS9eWX0NS5MafNDuKRb1WsdXtm\nrez4cQcK0EWdT9XgraQ6vPvJVLhcuKLTidf58Xmh9/8dlZXYgoJxB1cyddnUmuJBqYNwq/uRj3fz\njD8pKgW1OoihQ/cC4La62TgyCbi8Xt2zRVhYmCfFdBsSgbwFOWUnt/afxOfDf/Qpl374AE2Am7S0\nNDJnZ6LICm/MmoNm8BMojhOMnY4cCf/6F7y6GZ56Cv6YDfb6fwgtSiOhSODsJRERHkHMbTFE3RiF\n3MUPNRomTJjAZ5bPGDliJDaVDdkqE6A5cardsrIytFpP5HK5XISWhXJJxih+/+qXmjrFDgf9d+7k\nmguGs5n6mR8XJS/mpwxv+ba8PIZ2UZCbuNumzaSHKDh4w0EMGm93veO/JZQGTiGh4IzQM/3oUVJ2\nVycJczpxBAbRboiJ9pe1J2BtAKFjQv+/vfMOj6pKG/jv3inpZVKBEFroXRDUlW4DxI8uFlRwBbu4\nNhSVsuiurq7sWrEtFlQQxYINpbeAIjUECARCSCC9J9Pv/f64MZMhEzKBdM/veeZh5sy55753mLzz\n3ve8heQrA4nx0BPBjj9lKx8nqnd7QqPPYjSWEh09nbWntpNYWkrr4P1YMlybnQ7JrKXHVy7spdcj\nFy9HVe042x9yyResbcxKctUfaAlYN+FGKPsOfvgBunTBnl6Euvk7ZMX9YnWFPpQN2UNQRAF2u4M2\n96XgUFW+3bOfLj4mkgNurph71mrF6sihu34H6ypHkVgsdD6QiXm7TOxmVw/3kOMhMEjllM1zw4jm\nyNzwOM8AACAASURBVMyZM3njjTe44YYbkGWZV199lXHjxjXY+YUiF9AqMIdS216UdscoLjZS5nSg\nl2oXOmUyhJORkcHWoK0cTz6OPkjP2WVnmfx0cJW5vjodiqoyYsQIdDrNgisoKECvJnFL3+lenzPQ\nLtHZ1Bm75DqHr04LF7NJ7n5VY772g3H6P6c5tFol/WQ6BVkFWLrGoAcG7hzo5iNf8dFrRHmI1DOe\n2okhexSzWndB36V8HyInhydeeY6IycMoKzuGw1GM1ZqBn/0kMk6eOXECm87lXvvdz4/Lsi6jZ3Z/\nQrsdw2jcSWTkJPYoMmmlx5m7ayY+lVzLrU1t8ZX84WaX8qS0FOWTlahGK8WXP1cxbLBYUF8ZA7WI\nuPCIbynt75nL9lVtsasKJ53ZKKpKRKsyzmYP4h/XdqqYuruoiO8/OUtQnxQ+6lEpmiczk88+eZaD\nk7ow61bX/Lxf8kgvPsYppaqfy4YTh+Jg9eFy48cCIVT9DjU1nn32WXJycoiL06pUTp06lcWLF9dw\nVN0hFHktST4OUeV3eY8Wwtb1sHFiKM5sX7o3jbpOtcKu6rgqLp4TucewzzRz9GgAiqqS5YjGbPYQ\nklYHBBmNtAoJ4deDB11x5IMHM9hxJ9OzLiVhkivUzqooPFzswP5R1cgHX6fEg5c9iI+PKw3SYfsO\n+LDKXEO2BSLMPHntJcyTwWlzolpVijpeygjVc3ibf3ARNtsBioo095C15De6G0/jNB7lyz3bOG4o\nbyVhsTB5xHqipB0cPPguBQUZnD69i8uy/CjWtaKtnwlFdtWskYDkgIAq55NkAyQP5Zvb/ka3SkWz\nZnz0LOHqTk4uPFkxVmKzQ0QgeqfEwIGuPpefJyURrHxUbfWCA5Em8h0OlqanE2E0klVUXas4FYfN\nlx/O2ECBxH1mVBUSpMHoDQE8Vc1R5xJ4TSkDrzhKic8vFWP2DqVc4reTsyeqVnTMVmxYbBZee0Xz\no+kdeh5X53pc22Qy1SpEsLaYTN61egPQ6/W88cYbvPHGG/Umz3nP3yhnbcaYLZrP8fbb4fRMmDwF\nZnUrJP5lFWsDbq4XSlbshlKeT4xi+/c9uOzwtdz60ACOFXsuVVodZaofT/3yKGXX3sP+2/Zz6YnL\nKXE4mLpyJdHGdL476uqZllZwsqIeyLlICuR8m4PqUMn9Phedv46SvSVQC2tq7USZh7vFEKJ3fS0L\nHQ66PJTHkduOoNgUEqYkcOb4GXILSnGM8/c6jlhBu8P4oHs6U6YE8fFHH7Np4yauLlNJk6s2bjhT\nFsuQqG0UdVjMsWNauGFuyiMsjDtGbvc4+heHMySnvJxraSk6RzRdeiylfa9xRERMp3Pn0eyLHUqR\n08k/23dyW3vt3r2cW4zsfOSGaan+52I3qkhGzz9CntA5nTgkGUVVKXE6MTqdGCSJxz9bzvqwgR6P\nuWvAXahOlcWzFmNVFHov/Z5046Yq85xOHb0iCoiP7+AaVJwE/J+NxITuTJ7sCktM+SKFhDYzGRBz\nkKSk+yvGzbeewj/IjI/eh+8e1r53ikVh98e/eZTN22SdPwNCkV8AwcEQFQVZPhASAj7mbLBb4ddf\n4YoroGwhXHUVzBqqNbA8B0kFFChJKMGWZUNVVEoOlnDL8N9pZ36CEw+6uqooIW1pozfw9pG3Wfu/\ntSx0LOTSdy6lbbDE4HCJGa1WM7GzBatZZsRdP/Dyq+9yPGtVeWC6ix4ZeSi4/uiLthdhSbFgsEt0\nyzJyZNW/sdv7ceTIndgVBVW+Gmu/T5i8yhXyZj+ugiUAvwB3S0XVg2qQOPveWRS7QuZHmUh6zVIy\nhFXzFbPaYOV3YNIyPsnJIcdkI9jyC5FGV9aJKsu8Mj+Cr0JaUbi9kKibogj6MQj/EwYU1QfVUbt4\nbIPsg4/eB4POgE7WoUMBtapVtz9/EH4fRvF033F0XdoVkGnTeys/r5lAnM2PwSesRCrlsiPx9UCV\nh+Y+xMnUeZw+fZrNmzfjCAykrLCQ9vPnM2DAgIq1C1JTcTrjKn6EUlJSeOmllyg6fBhOBfC+bROR\nkTLTpk2jXbt2lAWCMcBIx4UdK9Ywl5ZiXqki6Tz5wiXyffby7/hvkfwlnrU9i1NRWBfZniuyS/jJ\nYOCxdu3o0qkTtmwb1rU/sf5mz4q86toyFslCvxf6VYxZFYV8Ry57dvVj1d8q7QflZLNmxigODO5e\nZZ3EA5NRumcxJsDVaT7vjML+vF4gHyOgl3bH4jQ7kaoxHgQuhCKvC0pKQJKha1d45Vm42gr/+Cf6\n1NUcSfiFGavd2121HjecLGcHEm9KxJ5lR0Ulf2suf311K9+vuQLdrIcr5ipnUui0+xt6xN7KrDGz\nKJ1bytJxSzmWt5H0M98SGjaE9m2yyQjOoE/fPkQ5P2W/JMHOnW7nzO4xlOCSLHoP7c2M/LHE3q9t\nPvlZZcYfDSKnqCNKPztHjgzBLmkbX6GHZ2J92yXLHQWP8en/DtLq8naAy+er6iSsETJ9vu3D1qCt\n9FzZE32Q9tUyXuPh8+rcWav8t3MnBJRHtRQXa92a163TUi//wNeX5PHjibzchySdRNSUKIIygvBT\njFSXUQrwoWkoq15wWbGtwjowMKKWt+EK2DJtFMZr12rZVUxAqaTF2c+8ByZXiop5M4r+vS9j8T8W\n8tRTT3HllVeSMWAAWz74gNdee42ASq6Uo0FBdA24l7y8PPr378/EiRPJyspCKSyEMhu5uUbWrl1H\nYGAg9957bxWxakLvDKRD0XQevroT4RHhPPrYo/xz85dISfNp43NxdWUKIny5IfVabj0yvGKs2OHk\nUEYGs+8fgp9fB9dkox/OLBlFqXrXkJfTlaOnOxAT47LIszZ+z5aYA5QUl1S4TIwY+Vaqv6YiLQWh\nyOsKCQgN1SxyeStcNpg7rXfQrvUZTJeFuU2dLm9hZvgnDF47piJqJebJNmzdIbH2l0f495LoirmJ\nuT8B3xATEMOA1gPYLm3n0jaXYnEc4/RpCUVx4nQ6carav4qqokhSFYvcggqoTJo1CUdwCSfR/K1F\nTzl4flg+xw23axNXgl3vgLErsIUZSa3UDabU6UStxa18tXTpAvEmWLIEyn3kDB6slcV97z1NUf6B\nzaZFWNQyFXtG/nb+9ZQrjnze119iUp/Ax//fnDrlQ07OHkpKkgkyqWCrWgKqJFBFdUJRfBHJjyQD\nkD83lbirDJQonmUJDw2nb9++mEwm2rVrh9SjB2P+8Q/+2cndtTJmzRrk92woK1YQtfVnXiwfX/ns\nsxTvb8cTt13Kf/7zQM0XqUJ+gcTUqa6h08WtWWD2RUaHTtahl/X46H3Ql9eesdm1uPKiIigoAEfh\n+fJUJb7JzQOHk9OHD+MEciJlOkeFcONjIypm7S4q4q1Vq3hlaMdqV/IWB058/Xwxl2jNNJxmJ1uD\nN0HDlS1plghFXgfYFCuKby7Z+el8l/QdAUoAPx37CVl28OHRK1nzsHud0BXrIzHoPKctHz4cSeU9\nluhuIUSGwtatwfBYpXPacnhh5q/kZ+qZI6G5B4wqqHD5eQzP+6Y9TUQlvfXfef9DlmU++8w1VuKA\nca+ksOv2QQzZu7diPDc3F+fo1lA/TeovAJVdcTuR8lyWcfdoHXwsYdmqkvN0TsV4qLkd3w8dy+Tg\nYpxOK4piRlXt2G2R/JI2idvOWTkrWkUXCBETIjTXigytN/Ui+RX1fDcC3hEbC/JJnCNHYn3S1dxZ\nLSo6z0FVURUZm8XJjT/fVTG2o3NnjH4S/frDXg/HrN1QQGqqg/HjMzEYAghSbXy4SGWI/9vs21bE\nb79ppRNMt2VT5oT2Pj6gVxgRGopdVfnszBnu0wu10dQQ/yN1QLo1GXtIEmnJx1m6eykPKQ/x/t73\nGdFGwsdemyp8Ku+99zUTJkyqGNnwaxnvLDHTpfsL7D74NspSM7t2+SHZ8jCXOPjXv3K4I85O5odZ\n9PqqB6vn34jh5W+rrJxvCiR9YBsuP/Ib0klX1oki6fFkY7+wZDHPh/2dNYdcEQO3f/EFHxcWsmdC\nBjtX2TmaaiU5IZMih8Pb6iN1ilFXSN8Dl1L8k0+Fcj1yZA8hTuhSakcfrEcXqLlX8pzBLDs7k9G6\nQXTqFERU1IcEBW0gK603e3KGeH1OxaGn9Yz/ciz4Q07scrluIjrnkvG7lxvNkoSs0/G/r75mxJqP\nKoZtI0fCoL97H4mh0yHrJaYmPV8xpBYVob96DSEe9piltFZMmv8Cn9+Rz8svTyI2Vo+qgOUU7Fp3\nAz4+m+nRYzkAqfNX8os1l/7DAlCdKjNat8aqKDyQmEicB/lUh4Mvvl2LzbdSpFNhITtsOlQPexCC\nukUo8jpAVVV05iguMQ3nu1s+ZevdW1l14yo+3NATX6tnRT64004yMw2URGaDqpKdq5nh/v52N4vc\nz78dW9XLsSaMpGfnW9hzxx567xnEjuz9WNU7kSQdkqxoykE2oHpUy5AbGYolwMD82I4EVUo3nOM0\nI5/2rpmuJEnIW7NoExBIO58yokNCuSI6mE06Hf2DPOcw1jfFu0o4+fQZQkdo3XNCc0E3CvpnWTBE\nGYi5V/PdpB7Ih/VetpY/D4c/f4jSD+7kL9fp8O/sKoj0v9eXEHtTzHmOdCfQFMbDT8/j3b+/WzHW\nLj6e3M0ByHIt3VfRLlecFj/uSXHKGF66h9DwlcjyBvz9uxMYGIBiU4ibmUHqRAmronK0SLtTLM4J\nwuK0k5R5AJyw/MBy7CpANIlZifRkmNvqhYllTH31r8iye2KRqtzCkDMtJ/GnqSIUeW1QzHQ0HMLH\nx0ZREdijkjHrztLZcpbTioPivcUcuP4ATrOTQ1MO4Zxt8JgduN5yBT3aJJKTk0tZRKlmTeb7s/vb\nGDqc265SkjDjR1lZNP5+3ZFSc9Hld4CcAiRVQl9gwZ7jXb1nU0YZd4bFEFXJtfKE3cKokHnMvGWB\n29ynrTYkZ9UQOTnbSqtjgbTxcxIdEkxkZCQPyDJhhvpqlnZ+VFUl6NIgei7Xoh++XH+CYBky2/tx\n6u+nSH9dK8J+p8XKjaUSJr9E7FcNON+SFSiKH/n5Wi8OgKREiXVxQdz6czi6HB26CJf1KcXGoA9u\nnM/AG2yYUFQbYWFj0en2EB19OzExMRRm7gZlPSdZS35eNne8eQcAVwQOpMPZOE7kn0B1qvx0/Cec\nyCi+NzH4zgfR3/VkxdpOoLSsI/5+4yktq7QfkJnJqq5P83n0ew18tX8+vFXko4GXAB1atsWL57z/\nODADTSXlAXcAJ2lh6PM+4dGwFzEGdSIpCSwjzVgDDDwRsp/e7fXs7mXC+sj9cG0p1h7+tOUUTnu3\nKut8Ujoe6Yf2LLj7alK+0DY7245vx/2vXc195+k7LBklfDv6sufyPeidNnwt0P61/aQEBRF9S3T1\nB1Jee1uGhx8uwM/P5eQNtsLd67px7QRX9T6HqvC1MYmE0z2ZPt2Vabljzx6cJe4bt3XNVzk5hOhc\nLopCp3ep9ufyt4QvaWv8CsqDYqxdu6JOnsN7y5zY82ouq6oqMgXFw/jlIHx6UPu87p9u4FRxFx5q\nlUr0zVp5gj8ImRviMRSw6SCBKhEUPBCdzh+TaTjh4V2QJD04DQw9/AT79a/zUyutDHJ+6i8cKs1i\naq+p2Gw2Fk/S4si//P57rGYnadkpFSvvLSri3qVbkb+MrebcgvrGG0XuA7wFDAEygXjgZ9z3UnYC\nrwJWtHpvrwAT61TSJoGDePNYOp5ZzujRkPCPBKKnRzPp1KucyfqdjgYrnQc8zcH5B+j0eS/+/enP\nHDnqYP/o/e7LzPS8ek3IBpnBiYMB+OXMLsq6wJQrVqMf8oE24Tl4MqsD/VUVq8OKj97luVb1FlBU\nJk8ehMnk2gT8cbnKCv0Mxn3h2km1ORzM/PsmOn7eh9GjR1eMn8rLI1ONoFWrVlBYtbfmxfJ/ERFs\n9NDx5a/r1sHgYR6O8IwEzHtuAQ899HTF2KTERLYd1CEZvauNLRkMgJPCgmUcK9AaXaQc0eOQJHQd\nPwIP9debNEajFvkzdSooqdCzp+aGuUQBDKgdfTAoBto+oEU7KSszSTuUy3ffbUFRFPLz83GqKs6U\nFGQJQkNdjaCDZBmdr2+tywKctp5m0UuLKl73L+uGLfAiy1M2AoGBgW77Gmazmfvuu49XX321wWTw\nRpFfBhzC1ShsJXA97oq8ch3M7cCddSJdM6HEEUSquQ2dpDJMplFIBwyEBl9BhnIIfWgKbf/qHgpo\nN/+Gpyi+9ImDWR4YyO7k5IqxE458DE64bd+zEOO6EfLr3BFZVbh74N0sedL1hfl6wU1AEjanzU2R\na0j0dv5KpNNlkav2GDBW/QOUIyOJiop2s8h/2bePQ2UShnI3StpraeR8m4Muw0H/fxdz+PPDOM0X\nZkED3B8Tw+Bevaq+sXw5znne1y9XgfxgB6mVxsx6fa0SS6TQUHQ6HbNuuYWX/vEQcocOHDt+nEvf\ne4+yDy2kpqaSmeAqxpKdnV1RwrRJsG8fBGwHf38wmxmRn48sXQaffgrz7oBvvtHCQD+aA79+QNbZ\neHJz03nlFc3K6BMqk1tsIjAwEIPBQPfu3XGoKpIkMWJ01R+xMH022UoJubmVCpsV51MS6zluUEYi\nsDSQE7knKsa6qXGE5PkiV7PPU+WcYVCPnd4wmcCb5NGSkpKK56WlpbRq1Yobb7yx/gTzgDeKvC1w\nutLrNGDEeebfDXxzETI1WRSHiupUMSeXURhvx55np+xoGVI1u/Ky3om+IJ3wl6e5r/PgNI/zU6cP\no7+qElXJ31ymylx2+DCrez7Kg9//tWLcumct0rQ96CSdm8K2mGWMwPTbwFDJdf7H0zNvnMFidP1x\nqdKF1VfqML8DJfu0L7C6ViKnnwFTfxMR4yMqkoEaA1+0zNkPOx1ijasoIGetVnwzoqjwtXiFpMW2\ntyuPR2/TBn1sLCUlJSxZsoR977s3Tfi/ytUJ6xAbRsLLfmbHDtdmqkNVuaJdATm7q97epcXF0dk3\nAwpUzQpXFCRFwRIUBF27af/hRiMYjYRY4igDTOFR+GYHMHCgdudj+H0LkcDA8Eh8/Hx4oG9fbIrC\nGrudQbaqeydXh33HR45rSE9/0zVotZI60YTy9QFYXEklbGqH1CqG69tdz7+edt017V31Pd1S/dkt\neafI8/NrnV5QKy7k7+KLL74gOjqaIUO8j4SqC7z5i6vNR3UrMAAYXtPE5og5qQzFqpC9KpvkLbmU\nHS3DdtaG7hbJU5Y3dOwIGRlw993nLHQK5HNC1cqP7zb/MKOMLosntzSH4rNnORITSkWFKUA96bmG\nSVmZVt1kymTwq3SK/a8AVpVeq3q5bXY6fAEPJU9rIrBfIIH9tIL6yvM60q72pdX1VcsRNDS+gOSA\nJxIH8+ijrvFZR48S/0t7aqfIPax/ySVcfU0Qt95yq5uPvD7ZxhB+jdnMI7GuO7uksjJeeSOBYd9X\ntY7zoqNgyEA4dbyiIPnGkye5Yk06BLgXQtOpmhEQERlHwOlQhg/XfhgOvbybMQ5YsWM7iizByZPo\ngf+kpWG3nMTnOZfxoAR24RmfdhTbdTgiK1X8czqRlP+gKE73bN3cHIhq/O9KffDhhx9y++23N/h5\nvVHkaUDlXYxY3C30P7gaeBoYBnh0RC5cuLDi+YgRIxgxYoSXYjYRVJAMEu2ebM+A2e1JmKT5yAut\n6+G4h/lGo1aY5epziuKveb/KVNkoYzdA1LQoOg/vXDFuzvWDG2ovasSAbfgbKkVVSPXTybypY7PZ\nGDZsGEl5eZSdMfBXqwW/630oLC1kzJgxFfPOnoVKe6yo5toVH6trJEli6dKlrF27FnJy+NDfn13+\n/vj5+bFs2TJ0xlCKrZmg1NPdjwoWoPjGmwgI8IXFi7ErCo8sWcLajz+i6MlfK6b+XlzCupW3Y3fa\nuOvbu9yWuVruTEq0D1Qu6Zq2EczNzxdeE6dOnWLLli0sW7as5snnYdOmTWzatKlWx3jzLfgN6I2W\nTJ0F3IjmPqnMJcBS4Dogh2qorMhbGqqPgQJsbCsowIlKfEEhhTodtQpIk1Ss7WyU9SqrGCrMrH3s\nswzEJ7jX6FDVYKqtbdqMKTasxdpFIitLK+4VIv3u9r7FYuHgwYOMXrGC/Yvb8FTKUfou6YJfez9i\nY2NZ/s47hAVYmTLFfV3nrREEh1y4v/9imTt3LnvLs2q/SUigf1QUN0VFMWPGDAoKCqCO4/YtFjNO\np5PsbK0SZKnViQHthtLXV6sH90fPE7tNdnPnGXVaKdxWga3Yc/cet3WfXjAdpbq2Ry2Mjz/+mKFD\nh9K+cmH7C+BcI3fRokXVTy7HG0VuAe4F1qLpiI+BPcAiNCX/HfAvIAD4ovyYU8AEryVv5gRa8lB9\njBxTSnjyxAmeVRReTEmhVJZpX1CLW3m9g8Wpi1nyjqt1l2xXuKoWzq08Zwdao2Nmf/fbu1W6n7xf\npJkQvdWPwtFbsHWxkJ2ttXILlrLY9ft4AiqVa9HpdIR17YpvYHs6Ghz06toL/y6uu5VxfVN5I809\nttywKYORoRGQUj+yO1SV0xYrZypF/1gVl8Jr3769SyGEhtKjQwcmdOiAr6/35W+9RQJ++m4tBbZj\n9OypxeNPKPwL99GFTZu0DzIhARQdhE6G5GToec4aHY/k8PWpv0Bfd//2g5mnKYq6As0WbNl89NFH\nzJs3r+aJ9YC392U/lj8qUzmDxFONuz8N4aXp+OzOZVBwBL8MGMBWeSs/9+/Him9W8FOmhzYz1SHB\n3cbZ3HmdK0U/qaCA1Xi/cWJRQnGqBjp2dI/ykHVbqM4ucigq75xxtY2zKM3DgopbEUz2sPfJ+CGD\nXrO15szrMtbz9Y/B3Dq+kYU7D76yjK8ssy4/j/XJrruvEqcTY3LVvQ8JWJySwgupqVjsdjrEx0NY\nGJf6qEgeKgvWFgmY8/gcVn6ZSkKC1tTj0Lj74We4915fLY58MVgVGLfE8wajKbuMFGMc3Za7d8U5\ne9sEOpSmXLSMTZ0dO3Zw5swZplauYNaAiMzOWlCmlGEz5vNF0eMc+xkGZg1k7b61HAvYC7Sr8Xhv\n+PKr1fzwrqsIv+pwMAgodhTz9RFXJ5i03MN1cj69JKEAu4vdu2LcFBVFsudDGof4eFACYMsWOH5c\nu+evI3RWSLovCcXq+gF75Cz4nC3gSO8Atp49C8DK7KoNKC4Ef52O4aEh9PEN4O8DXBUD+/32G/kb\nYsBDQ5yCIUPQSRIdDAZ2Dh5MfnAwi79OQl9Sf9mkDoeRN97QFPe332pNrcOze1DgqNrdCKBADoO+\nfd3GSv19UEqhuFJz5+p6EjVnPvroIyZPnuxWrrghEYq8FuSouTh1FoLkKKICwEfnQ4hvCF0DB5Cf\n3QmCT9S8SDmqzobFYcGhOFAVFYvDApLEt19/Q58w197ygdxcXo6IJK3sNB/sc3VKCS/QNuPC/EOr\nrF0b9JKEjyTzTjf3DNQtmfDMRa1ch4wbB6+8Ava58MxzcOaMFp4zduxFLx1it/OFM4SrPjnD+5V2\nfpxhYB1kQB5koKDc/ZFUVsa9MTFA7aoUXiwS4KfToZOkiudmWcbuI9GzKI9tYdsq5kaoCuGlCvJ1\nF2+pq6rMyJGaO/7++8GmqDz5cQr2Jd6pjS+zs4lAJkf1pU18fMX4FEBXm9i+auaaTBffmvR81KLT\nG0uXLq0/QbxAKPJaIql6rgt8nNlXQkJ4AkO6D+GMxZ/fSwsALxW5bMB82dOEvpDArVtvRVIllr+4\nHAavwM/g5/GQtsGxfH2T68uy6tsv+JAf+eKTEPZW6iERboP+5zn1bbeBT6U8IZsVJM+nrBf8/f1Z\nvHgxVuv79OunNYcHrW2Xn181gixfDmVOiNiuWeSvvw5Hjmj/fu2llZycDIdKIesMWT3fwShpexej\nHA62Te1DZlgEX7xwmdshxnLhVFVlGfB+d63TTQIJNAUSext5ptdf2LLFNfZ1dg7f5ubw0RWtPFr2\ntSUyUuuC1a+f5lqR1mt1widMmMCGDRsALUdBMZeC4yhvDj/B5s2bAc0Kj0QlSrJQPHRoxZpv/28j\nnpu3VYNO5zEOTnR6cyEUeSNg9O2Icc3PFG4KI8Wp1Vp5++l30W/eTLCPdz0uc3K1f/9juZvuxa6d\nvcKzB0mqxhjz8cnl/vvdx3b/DHf91fP8+uDBBx/k5ptvpm9fWLsWWpeHQev1+vrNjDSbwWTCcb0J\nq9TV/fZer6ftA/4Virs5YdYbMFT62FSHDqtD9roUbrEsI0sS+U4nNlUl2awparOsQw/k5HyLxZLP\ngQO/o6gqs6VjhBLIiQOH+eTx6+nTMYpMqxXz8m/57bfBvHFq3/lPKKgXhCJvppij2qAgUTp4JLFj\nXX65DUfb8/bb6UzycIy/aub//H5xG7sfJx061K+slZFlmaioKHQ6LVclqmpznotDkjS3y5tvwprP\nweHQXh86BNJAnFM70G1Mzcv8WZgVE8O7koxz3ScUZWSw6vHHAWiVFUF/HAQG9iU4uIyYmNuwqwor\not8jgiLkzEOEffYLUQEGTKpCdqHEKr/BgPeKPDU11T1e2mKmwNry4ssbAqHImymqXocqSawfMpbW\n411+8jX795OwalWV+YqPDwaLBf71r6qLde1aday5EhcHnWSIiIEbe0JpKdx4IwwbBusiGlu6JodV\nkvhvyEyGGXJYL0k8We7eWml1sl/XE19fH/z8bISHj8WqKLwS7cuLXI3eNoDxWe9hMAzA3qmIiFt+\nIXNJP5zWF3j4Ya3Pa2JpKcEpmYRkL2XLgPUMK3c6X5o4iP3DR2I7tJN581xlmmbnP4QSaEena9xk\nrOaIUOTNlPDymgDfRJ3g12Ou5JDDTieWaVVruTgCAkgEzZ9RmdjYKpEGdYlOB488UnXjKDvbPZOy\nTk8YGABxsTCis9acUqfTfDiiRZlHPgi5iROBi1B1uRiD/wvA5MEr6XioLXiIXZJlFaNRu5sK9k30\nTwAAHrZJREFUCIAyqz9JH12F7KNn9JwnOFaejp/p44OueyzbiqzsUpO5vLfmA+pvuQYJlcemhRB6\nlavsRPZUA8dufYTCF+9CLrfUjVb4pnlEwzYq4pvdCOgUhQhnFpwu1crBKsDp00i1iN+OVmX0NpWH\nTvXnsakui3zUli1sa0K+3rffhlMeGsT4+kKrllluo9kR7h/BPde8yLLT6eydp2WT3vPQBnz0PpSc\nM1eSYN97vzPlBXjsMejWDUodsHzJ+6xvcwPho26pmBsNxPhlc+xsBy4ZfIw5854AYPNjyeCAEr9r\n+EvPZyvm77CvRq/aCNPryR6ulWtymp3Eyzvq9fpbAkKR1xJVVfn+++/JytpL9yPd2bpqK5sdG7BZ\nr/B6jW6nj7Cg+BnMl+7EXjodVBnbZx8RsfRz7OnHoeO5eXPNl/bttYegZmRJIttmZ9aRkwSUuXzF\n9VjgD9DCG/WyAQkJo854zjtV6RNXRkAA9O8PAwYA6Bk14Z+Mbn8H+3a6u68ir5EozPUlwj+CPtFa\n0tYufRp4rm5bgVy+WavWZ3xhC0Io8lrgdDpQVAW73Y7FYkFRFGx2G/k52ZhLz18TxVnqJOODDFSn\nyvD4ELYUPMPZv8qEb5Up6qNy8sGpkGTGaXaPqfqjQU5REaxc6Ro/7qlIVwPgVFXy7HYSSlxxH/b6\nrCX6J+LD7t0Zrddzc1QUbdq47s7mtmtXu7jrWqCzwejMIny/ysKWYePYw8cAGLRNT1Yt1tHrYN06\n4JxtiGef9ThdUMcIRX4BTJgwgdmzJ5CQmMDIW0aSeKiIA9vPf0zJgRJSFqcQdWMUEdlGitsY0KUF\nUdARTo/yp1BvpNivahx6ennmfHExrF7tGo9smAqqbgTKMqCwPj+fw4kpFePFDgddq4sBF3hN38BA\n/HUwKiyMzg20LxuQLzE4v4yTYT5IBgnfDlotl/2DHBxND6dPw4ghuEiEIm9A/Dr60eXVLvScdjeL\noucy8x9aEHV4+ePlD15nZtxPHAhw+bh1hliuBdrH6t0s8qIieOedBhWfUIOBEaH+tIqK4u3BrrjB\nnn5+TBcO72aLRSdjH94KwzEDsQ9rWcXr1+zD+YM/3RUFu6JQ5nS6FfW6OLS7i44ffAM/VGo0VnA9\nWu295sepU6eYNWsW8fHxGI1GpkyZwmuvvYbRaKz54DpAKPJGYGhyIl2O23noE/cWcGUbfmJyuoJU\nSZErzlSeBHydUeypVCG0pMQftZrORALBxRJjNrPFYODds2eRis28ul275WxbVKQlAFwMgYFgKSFv\nQA8YUam171E9yGavlwl7MYx8S/31ejP5msib61366D333ENMTAy5ubnk5+dzzTXX8N///pfHy+Py\n6xuhyJsQ3z05E/V0KtN6u8IH96YVcir5ObKy4K5KNfudzvYoikyXLo0g6J8c2Ucm6d4kkh9zD83T\nBeoYuHtgI0lVt2zauJEe1mu4JiaGkBAbi4eVN7++6io4eVLrxDFtGvzhUiso8D68s9zfn5T8K4ct\nRyuGWxXcA3Y/VFRUVdsc+uNfT+Rb8lEX1N/+jLTIe0Pp+PHjzJkzB6PRSHR0NKNHj+bYsWP1Jtu5\nCEXehDg1qAtZPUOYdq2rD+PphEyM2x9j4TSYWak9Y1HRYWJiyhh+blM9ScJhtTJu3Di34TPZ2QTU\npgqQoFq6vdsNW1bVDMTf+vzmVkGxvrEpChbFyeFSS8VYmrWeawt+9plWeXLaNFi4EHr00Mb9/CDU\n+wJuqgxdwrtgKnBZ4Jl2HTqbitOaz+bN5S4JqxGUr6tZpekwZswYPv30U4YPH05eXh4//vgjzz33\nXIOdXyjyFoZvcDCdhwzhniuvdBs/8t57tOvcuZqjBLVBF6DDr2PVzV3pAnqfXijhBgP+OpkUi4VJ\nhw65vXdrndc9qERUlPbw84MuXbxOJlNVpZJ1rYJO5YGHFmKolPMw61gJkIqsC2LECK3CpNPsZJu8\nuY4vou5ZuHAhV199NcHBwTidTmbMmMH48Q1XFF8o8iaEomjhhpWNKrvH7qfnQZIIjo5m3KWXug0v\nWLWKoDpuDyZoPKKNRj7v1ZsZ/rBv8ODGFqdaFCWY4OBE0tM/ZPPm1wGIK74Nk9yO27o86jbX5pfE\nE5+8RwPWcKsTVFXluuuuY+rUqezatYvi4mJmzZrF3LlzefHFFxtEBqHIa8Ef3rhUi4W9xXZKHQ7K\nzGZy9Ho8ZTh03rCB53/4QcucKO0AZyZA/zsJScrFrIc3f3vTtbYKz7y9AyW3M29UapJn7A5XVG2U\nLhBcMDqdjttuuw1/f38On8lhj0OP5flS/I0l8Npr2qSDB+vkXNnZS0hPX0JQ0MN8+eUSAPxz9+Bj\nk4k7GUL/SjWX9+r0GHNzq+QhOZp4nkJmZia///47GzZswGAwEBYWxp133snjjz8uFHlTpLQ8O+fD\njAy+P5rDzGIzu9Mt5ISX4nToWLduHTqdzBrlO0JDQnhBLaNtN1/K5irYkhTMy1UOz1VIOxvNuoUD\nic36oWJtVQVHQWs2vTWO4R1c59xXCE/c1MAXKmjRfPXVV5wt73r0wuaDXPm8Cp1Oc1OXTEhK0iZd\ncgmc9T/PKt4xcKDWXcjf31Xp0nZKojhPZu1a3BR5BaoKKSnac4sCStNW5BEREURERPDWW2/x6KOP\nUlxczLJlyyr6nzYEQpFfAM926MDsSzuQYErg5s7R2IuSuKJ1H9p37sWKFXdyrKsvR/a8Teg/PkDt\nHocydgalEQrW7x20Gfs2e/buR5V9ePN6l0WuKPD2/+GmxC8ECUg2m5mc4N78INlspq3nQwQXSHJy\nMs8//zxqucWYac4k8r5IduzYwejRoxtZuurp0aMHPco3KT+0hdPHWAZzH6bbubWP1138uXr3BosF\nDhxw1dwZWxiCs1TinUO4hdROOAKK0hW5LBH+6CKvGNDbX794QeoRvV7Pl19+yaOPPsqiRYvQ6/WM\nHDmyQbsGCUVeR8iKjI9Pa9q0uY1kaSutWt+EPnAnBHaHkCsgsBC9LpmQkAGohlLUaupYeFwbhdzc\nH0hNdXXDsVpPe5zb1d+fUL2eSeekfppDQhgsfOR1yv79+9m3bx8PPvggAEkrkoj7Sxwjrx7J2LFj\nebu4mC0FBTx78qT7cSUlTOPird3mwJVXwoIFkJoKSzTPCm/PKSDtoJ6JbeCGG1xzTfvh8bx7sLDR\nZZGbndhDN4GHMuUmX1OtQgRri8nX+yivoUOH8uuvv9abLDUhFHlTR/YnTe6C01mC3Z7jGpb9kGWf\nKtN9ZZneAQFMPkeRb/bzI0iUca1zOnTowMzyuNCtc7ZyxfQr0Adrn/MEHx+P/t2boqLo4FtD1agW\njs5XoX9/LYrxD/a+DjpbLpR5t4a3yTp/BsRfdhNHkiTOyF2JippEXNzMc95r4Bx9Qa3oERDAs9V0\nVU/Rp6A6mrbvt7GwWiXuuEN7rnPATQ7RaKImhCKvBX4WM631diY+PxDeBpLvgH17iFB+YaDZTiHu\nscUWh4V/bJzPu9bn6ZLShelnp3P9v6+nLD8YiZ2eTyKoFlVRMaeYseXacBQ5MKeYsWdVjc/U+ynM\nnw///Ke291BSAh9fHoe9RIf/gkYQXFAFCa1W0C+VOg9OTwDnpd9jyFAZNap8ng2kz1WtZr+gWoQi\nrwVGmw2bBFunv8OkScDjZhgzGNuGeFptPsvhYl+W7V1Ge6U9y/cvp292Ioqqsmf2Hsy7zGTtymLP\n7D1kZcpc+573WXACkAwS/l392TdiH+lF6eQ4cti3ResPGXWTewLMZQ/m8cOicECrGtm3L0z4MYWB\nQQEM7/XnjuVMfz0dQ7ih4nX/Y97XNqlL2reH1+a4jxkeBYLT0OnUCovcaYaNDwgtXhNCkdcSBchp\nPxAGAqEJEBeNIyGQS8z7SNurMmbcXpLMK7hm6pOYivK48v5xtA5qTWFAIQW6AloHtUYqra5kf/3y\nxRdfVKn/kJ9ff0WH6hLZIDPowCAAfn/9d6xHrFzxuudmHrLOVdfJaNRKe/ianAQE/bldGaceDKV7\ngd7NpWMLkFjXJYarG1gWoxGuu859bO9zntv/yY6m0/GqqSIUeR1QNrQjb/3Un6SsTEZmvMIS9SzX\nZ27CKslkLe1IahO4nZ89ezYbN26sMr5kyRLatGnTCBIJGpqsSYF07NDBbWxnQilnT0c1uCL3Fp2f\njk3P7oFFjS1J00Yo8rpAL3PlqGV0VKby2SddiTdlsjO1M/ogPZGRWsp9Y2/X9O7dm969ezeyFIIL\nQVVh8WKtwGBxsRbOFxAAWbVo4WOQJN5IT2d1drbb+EmLhV4SvPSSVg+rMmlpdSD8BWCzwVNPuV4f\nH5XROII0I7xV5KOBl9D00YfAuXmnw4D/AH2Am4Av60rApkX5LenRo7DpLOQACTngl4Ukq8iqq5Kn\nXq89PHXocpRHnllcReuos5r9ghaH3Q6LFmnKVqeD1q0hOBjatoWbb/ZujUdiY7khPLzKuCRJyC8a\nOJJY9Zjp02HfPtf3tSHw99euMTjYNaYiXCs14Y0i9wHeAoYAmUA88DNQqbUHp4A7gMfqWsAmxR/f\n6DVr4Pfv4PA0yD0A152l2Icq8a/PPKN18hk+HOKsMCEd/nqJ9scBVat+Cg9Hy8OabuXIX49UCTW0\nnLDQ6g7vuyrpdPDII/Cvf8E990BtGzIF6HT0ry4hrBf06eX5rQMHaneei8VgAKOPws33plSMvX1w\nOPCvhhWkmeGNIr8MOASkl79eCVxPVUUOLT1I6I+/xcceg9mPwaQEmD4FLh9I9j9n43eOIv/tN/Dx\n0eoQBaSA5RX43/805T5tmlbW2RvKFIWVWVkkJrs3MmjqxYQEYDltwXrKSufXqpYQDrrEs2JNSnK/\nW6t1BcxmTEdTR7bYtjDigxEVY2k9lzSeQF6yf/9+7r33XhISEoiOjuall15iwoQJNR9YR3ijyNsC\nlfPB04AR9SJNM2He+nm8YF7B/cn3E/9dPAGlm1FRPYaiyLIW/qbzgeQArRaRtwocoKufH/0CAgjW\n6YgyuMLG9pSUYBOKvFmgC9ERdnWYV3MvvxyeeKLq+NChdSxUE+WZYc/wzfvfkPJwSsVYzI4dnPE0\nOSwM6jPqymSCvJqzR+12OzfccAOPP/44Dz74INu2bWP06NHs3buXLg3UwssbRS60xTnc2OtGHrv9\nLrLXZXPdiOsoG7CGb49/x55kHQcPglOBxEPaxhRAdjb45GmWVVYW5OScf/3K+Ol09AwIYFh4ODPb\ntasY/yQzs143IoKCYPt2Vycv0ORXVe0WX1A/LF/e2BLUDyUlJaSnazf1+SVZ2JHJyMig1cU07c7P\n176Q9YWnDS4PHDhwgPz8/IqaO0OGDOHKK6/k448/5u9//3v9yVcJbxR5GhBb6XUs7hb6uVT7yS5c\nuLDi+YgRIxjxR4WzZobJ10QnU3vKDGVEB0az/OdIEg8a2bEDbrkFXrLAnXeC3QCdOmnWVBc73FEC\nN5QHjnTv3rjXUBOXXAKlpe5/JwsWaJtR8+c3nlyC5ke7du14+eWX+eEHrWxzaaEdGXjk4wK2bdvG\n4PLGGCcsZl47fJYCh4MO8fEVx2faPFTMakKoHn5MFEUh4ZwKpN6yadMmNm3aVKtjvFHkvwG9gRgg\nC7gRuLuauRLnyXWprMhbEk6nlqk2dix8+ilsDYKdu0BfyQVaGA/Jj0BWfPXrNDV8fd1fGwzaQ/4T\nBhHodDoGDBjgNpafn1+hhATVM3nyZCZPnlzx+u05ewhCZuneh7BU2gwocyrcGh3Nfr2eTZUKlfvI\nMk05DqBv376EhISwZMkS5syZw5YtW9iyZQvDqzTU9Y5zjdxFi2oOovdGkVuAe4G1gAx8DOxBC9Hf\nDawBBgGrARMwDliIForYspC0xhKOki2cPJlMaWkvsjI30abNz6Sn13BsHROs02FXFFpv345UKRrB\npij8t4H8cn8WJEni8OHDFP/hK6tEbGyshyMEF0qoXo8MdPCr2hO1qWI0Gvnmm2+4//77Wbx4MQMG\nDGDq1Kk4GjBu09s48h/LH5WpnK/4G+7ul5aJzo6n1J78/AGUlanAsSrv1Rc3REQQoteTePnlhJ4T\nx+j3ZzSZ6xlvN62sZ6w4i50Vrz0V9RK0PAYOHMjOna5CeKNGjWLSpHM7ddQfIrPzAtAHDqNjx9so\nDUggKnoEiesjsVo/pSEV+R/463T4eypQIWhwAnoHsP+q/VXGTdd436DAG7Zv305YmHsUTGxsLJ07\nVw1xFDQMiYmJxMXFodPpWLp0KSdPnmTGjBkNdn6hyAWCOmLAjgE1T7pIbrjhBl5/3b31WWFhIf7+\n/mzbtq3ezy/wzLJly3j//fdxOp0MGTKE9evXExgY2GDnF4pc0OJYl5/PrKNHAbCVlGBRFLYUFLSI\nVnfvvvtulbH4+Hge+TPGhJpMXocIXvD6XvLSSy/x0ksv1Z8sNSAUuaBFMTUyEv9KewRm4HNJ4rHY\nWMb/UdtW0DLwIlnnz4JQ5IJmya5du1iwwL0+sCzLPPDAA8yqVLSmqKiIZyTJbUwgaGkIRV5PnHji\nBJLRddtnO9u0kxqaE2PGjCE3N7fK+AcffMCQIUO46qqrGkEqgaDxEIq8FjjLo8refBNWvA33ZcDO\nHbC2TCuC9UcCWtd3u2LPdA878+vkh38v/waWuGUSFxdXxRoH2LJlSyNIIxA0PkKR1wK1vLbjzTfD\no3dBzn1w7Xh44TrYsQN+LI+0j74puvGEFAjqmLVr11JUVOQ2dvr0+ap0CBoaocgvAJMJ4uLAHADR\nrSAyDnbtamypBIK65+abbya4cpeHchYtWkTPnj0bQSKBJ4QiFwgE1dK5c2fmzJlT80RBoyJyuQUC\ngaCZIyzyWuJ0KLz+zyt585+lOEudyD/LSH+VsNls3HLLLY0tnkDQ5FFlCPumlNLCUpKfSsYUriXe\nRCQ7KRGm5QUhPrZaoigqpSXZnDhxgh+v/ZHf3vyNEydOkJaWxltvvdXY4tUr/v7+PP/880RGRro9\nkpKS8GtG1eoEjUvqTQGcfjoMYysj4ePCaX1Xa1rf1ZrvngtA7eNb8wJNjNdff51LL70UX19fZs6c\n6fbe+vXr6d69O0FBQYwaNYrU1NR6kUFY5BeAhITJZCLEGEJoYCimWqTyNmeefPJJZs+eXWVcr9f/\naT4DwcVjC9dReI0fhg8NhF4ZSsQwLeM2eX86w43e25Zh27aRX4+lYk16PXlDhtQ4LyYmhmeffZa1\na9diNpsrxnNycpgyZQqffvopY8aMYf78+UybNo34+LpvSiAUeTPh4MGDrF271m3M3sBdeXU6HZGR\nkQ16ToGgOvIdDtR67DImedmlZ+LEiQDs3r2btLS0ivHVq1dzySWXMGbMGACeeeYZlixZQlJSEl27\ndq1TWYUibwYMHz6czz77jEOHDrmNjx49moCAgEaSSiAQVObclm+HDh2iX79+Fa+NRiNdu3YlISFB\nKPI/IzNmzGjQ2sYCgaD2SOdUYiwtLSU62j05MDAwkJKSkjo/t1DkAoGgQQnV63nixAnUwkJG7duH\nVG7JKqrKwx6Sj5oL51rkgYGBlJaWuo2VlJQQVA/llIUiFwgEDcrT7dszt107RoWEsKhvX4YOHVrx\nXlF+fiNKdnGca5H36tWLzz77rOK11Wrl6NGj9OrVq87PLcIPBQJBgyJJEgZZRgL0soyh0qM54nQ6\nsVgsOBwOnE4nVqsVp9PJxIkT2bt3Lz/99BOKovDcc8/Rt2/fOvePg1DkAoFAcFEsXrwYf39/Xnzx\nRZYvX46fnx/PP/88ERERfPHFF/ztb38jJCSE7du3s2LFinqRQbhWBAJBs8Sk13sdInih63vDwoUL\nWbhwocf3rrrqKg4fPlyHUnlGKHKBQNAs8SZZ58+CcK0IBAJBM0cocoFAIGjmCEUuEAgEzRyhyAUC\ngaCZIxS5QCAQNHO8UeSjgYNAIjDXw/s+wMryOduB9nUmnUAgEAhqpCZF7gO8habM+wJTgEvOmfMA\ncBboA7wEvFrHMjYLNtVjPGtj05KvDcT1CZo/NSnyy4BDQDrgQLO8rz9nzljg4/Ln3wJ/AST+ZLTk\nP5aWfG0grk/Q/KlJkbcFTld6nVY+Vt0cBcgFoupEOoFAIGjiVNfqzW63M2XKFDp27Igsy2zevLne\nZKgps1Ot4X2BoEmRk5PDmTNnKl4XFxc3ojQNh81mc7tu0EqmRkRENJJE3nHu/1deXp7Xx24L24Yj\nv/5avelNeobkXXirN4Bhw4bxt7/9jalTp1apjtiQDAW+q/T6ceDpc+asBy4tfy4D2Xi29I+j/TCI\nh3iIh3jU+nEuG9lYZawuqe36zzzzjDpjxgyP77Vt21bdvHnzeY8/z7UfpwZqssh/A3oDMUAWcCNw\n9zlzfgCmA7uB8UA8movlXDrXJIxAIBBUg9rYAtSEqtaJiBdkttekyC3AvcBaNCv7Y2APsAhNca8B\nXi8fPwgUA7dciCACgUDQnGlM14k31Q9/LH9UZkGl51Y0S10gEAj+tNSRRX5BNGRm53PAfiAB2AJ0\nasBzNwSvoCVNJaLtK4Q3rjh1zlS0UFQnMKCRZalLakp4a878D8hEuz5BPVPHFrkvmmt7L5AELDnf\n5IZU5C8A/dB87qtwt+pbAmvQrq0n2o/VM40rTp1zEJiI9iPcUvAm4a05swzt2gT1SHWt3kDr02mx\nWKo89wILMAzt+9gTuAIYWefCXyRPoSn2lsoNwOeNLUQ9sZGWY5EPwz0q6zFa3g9wB1qGRX7RUSW1\nxdv1FyxYoEqS5PZYtGiRqqqq2r59e1WSJFWW5Yp/T5065XEdqt/Q9UezzntW9+E0dIeg54HbgDLg\n8gY+d0MyG6if5nyCusRTwtuIxhFFUFv0Jj2bpE31ur43nK/VW0pKysWIIKMFl8Sh3TkmVjexrhX5\nL0ArD+Pz0FwPT5c/nkTz+cz0MLcpU9P1gXZ9NuCThhKqDvHm+loSTT6kTVA93iTrNHMUoD8QghY5\nOALY5GliXSvya7yc9ynwcx2fuyGo6fruQKtFM6oBZKkPvP3/aymkAbGVXsfibqELBE2BQuB7NC/G\nJk8TGnKzs2Ol5+NpGX67yowGngD+D22joiXTUoqiVU54M6CF0Z4baisQNAbhQFD5cz80I6tJ6MzV\naOGHiWi/Lq0bV5w65xhwCi1caC/wZuOKU+dMRLNWzUAGLUfhjUGLMkpE24RvSXwGnEHL9ThN83Nl\nVqau9jCbLLi7+vqg6ZF9wBFg/vk+nJZiWQkEgpZNua5ruZTHoV+QThat3gQCgaCZIxS5QCAQNHOE\nIhcIBIJmjlDkAoFA0MwRilwgEAgugupavcXHxzNy5EhCQ0MJCQlh/PjxpKen14sMImpFIBA0B6pE\nrWzbFobDkV9vJ9TrTQwZUnPrua+++gpZlitavS1btgyAn3/+GZvNxrXXXovT6WTOnDkkJSVV2wz7\nYqJWBAKBoDlQJe5648b6jS2v7frna/Wmqqp68OBB1cfHp9r3uYiSEcK1IhAIBHWAWkOc+8aNG+nb\nt2+9nLuhqx8KBAJBi+R8jSUOHDjAggULWLOmfmrPCYtcIBAI6oDqLPLjx48zduxYXnvtNa688sp6\nObdQ5AKBQFAHeLLIT506xTXXXMP8+fO59dZb6+3cwrUiEAgEF4HT6cRut7u1etPr9WRkZDBq1Cge\neOABZs+e3dhiCgQCQaNz0VEltcXb9T21elu4cKG6aNEiVZIkNTAwsOIRFBRU7TpcRNSKiFkUCATN\ngXJd56KpxJHXFRcTRy4UuUAgaA5UUeQtDVHGViAQCP7ECEUuEAgEzRyhyAUCgaCZIxS5QCAQNHOE\nIhcIBIJmjlDkAoFA0MwRilwgEAiaOUKRCwQCQTNHKHKBQCC4CKpr9ZaYmMiAAQMIDQ0lMDCQQYMG\nsWHDhkaUVCAQCBqXKrVJTCbTH/VJ6uVhMpm8qrWyevVq9euvv1bvvfdetw5BBQUFakpKiqqqqqoo\nivrqq6+qYWFh9VJrRVQ/FAgEzZL8/Pwau/JcDOdrFFGZiRMnArB7927S0tIqxkNCQggJCQG0Comy\nLNOuXbu6FxShyAUCgaBOqO5HJTQ0lNLSUtq0aVNvrhXhIxcIBII6oDoLvqCggJKSEu644w6mTp1a\nL3cRQpELBAJBHXA+Be3j48OiRYs4ceIEBw8erPNzC0UuEAgEdUBNPnVFUVAUpV7OLRS5QCAQXARO\npxOLxeLW6s3hcLBx40YOHToEQFlZGfPmzaNNmzb06dOnkSUWCASCxsFjuF594u36nlq9LVq0SF25\ncqXapUsXNSAgQA0NDVXHjx+vnjhx4rznu9APR3QIEggEzYFyXeciLCyM/Pz6a/VmMpnIyxOt3gQC\ngaCuqKLIWxqi1ZtAIBD8iRGKXCAQCJo5QpELBAJBM0cocoFAIGjmCEUuEAgEzRyhyAUCgaCZI6of\nCgSCJo9ery+WJCmoseWoT/R6fbHD4WhsMQQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAi/5\nf8ZGClhMKk/lAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "N_BJ\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEnCAYAAABbpaNzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VPWB//H3hDEkISHMEJGHmyIVJSjUC64roGP6eAF1\nLQJWVCxYL7VSrdtarDUmWWRbfrpiKSjrrxarLOKvaFFaES0wKArrYpF7uVQB0ZWLGcDEBDKT8/vj\nDCEJSebMmTlzMsPn9TzzMHMyOfMBkk9OvvM95wsiIiIiIiIiIiIiIiIiIiIiIiIiIinXAVgLLIo+\nfgH4JLptLTDInVgiIgLgtfi8B4DNQEH0sQH8DHjNiVAiIhKfLAvP6QWMBH4HeBpt97T8dBERSTUr\nZT4deAiob7Z9KrAFmAl0THIuERGJQ6wyvw7Yhzku3vhIfDJwDjAYyAVKHUknIiJJ8e/AZ8CnwP8C\n1cCLzZ5zKbCkpU/u16+fgTm+rptuuummm7XbDmyIdWT+CNAb6AvcDCwDbge6RT/uAW4ENrX0yf/4\nxz8wDKNd38rKylzPoJzKqZzKeewG9LNT5lZnsxwrbiN6fz7gxxxiWQvcbefFRUQkOeIp82D0BlCS\n9CQiImKbldksGS0QCLgdwRLlTC7lTC7ldJ/Tc8WN6BiQiIhY4PF4wEY3xzPMIiKSMn6/n1Ao5HYM\nx/h8PiorK5O2Px2Zi0i75PF4yOT+aO3vZ/fI/KQfMxcRyQQqcxGRDKAyFxHJACpzEZEMoDIXEbGh\nsrKSUaNG0blzZ/r27cvLL7/sah5NTRSRtOH3g5OzFX0+sDpb8L777qOwsJDKyko2bNhASUkJgwcP\npri42LmAbdDURBFpl1qauufxgJOVYnX/1dXV+P1+tm/fTp8+fQC46667KCoq4le/+pXF19LURBER\nV23bto3c3NyGIgcYNGgQmza1eAHZlFCZi4jEqaqqik6dOjXZ1qlTJ77++muXEqnMRUTilp+fT3V1\ndZNtVVVVFBQUtPIZzlOZi4jEqX///tTU1LB79+6GbevXr+fcc891LZPeABWRdqk9vwEKMG7cOHJy\ncnjuuefYuHEjJSUlfPDBBwwYMMDia7nzBmgHzBWFFkUf9wVWARswVx06Jd4XFhFJZ8888wwHDx6k\na9eu3HjjjTz77LOWi9wJVtv/X4ELgQLgXzBL/XlgIfA0sAuY3sLn6chcRGxp6ci1Pc0zT5QbR+a9\ngJHA76Iv0AG4BLPIAeYC18b7wiIi8aqsNIdBnLqlqsidYKXMpwMPAfXRx92AA40+/jlm4YuIiEti\nnc5/HbAPc7w8EN3m9JumkqZWL97GnyZuAqPpl4ine5hfrxvjUiqRk0OsMr8Uc4x8JJADdAamAUWN\nntML2NPaDsrLyxvuBwKBjF5Q9WS38N8WM6jDuXxw6dGGbR2PwBXL3Jt7K9LeBYNBgsFgwvuJ5yj7\ncuBnwPU0fQP0N5hvgD7VwufoDdCTyITzf8Ibm+bhKahv2BY5GqZPzZmsD//NxWSSjrRsXHziPWno\n2CvfD0zGnJp4GvDbeF9YMk/VkcOclt2TtWv/1nB7+J5fsKv+E7ejiWS8eC6BuyJ6A/gU+Ofkx5F0\nl+3p2OTiQ127dHUxjcjJQ6fzi4hkAJW5iEgGUJmLiMRp5syZXHTRReTk5DBx4kS34wBaNk5E0oh/\nmp9QrXPn8/tyfFROjn0aaM+ePSktLWXJkiXU1NQ4liceKnMRSRuh2hBGmXPTFT0V1mYEjho1CoA1\na9awZ0+rp9mklMpckiY7/zA5fXawefNtDdsKeu6AjrUuphJxTnuaB68yl6Tp6KskK1LD2kPHv6x2\nhjrgyT7axmeJpK/oCT7tgspckqY+qw6jLpv3K/Matu37MtfFRCLO0pG5ZC4Dnrn2mYaHM9ZO5a8s\nczGQiHPa05G5piaKiMQpEolQW1tLOBwmEolw5MgRIpGIq5lU5iIicZoyZQp5eXlMmzaNuXPnkpub\ny9SpU13NpGEWEUkbvhyf5emDdvdvRXl5eZPLe7cHKnMRSRtWTug5WWmYRUQkA6jMRUQygMpcRCQD\nWCnzHOB/MBd13gZMj25/Afgkun0tMMiBfCIiYoGVN0BrgcuAmujzVwJXYC4h9zPgNcfSiYiIJVaH\nWY5d4zEb6ADsiz5uP6c/iYicxKyWeRbwMbAXWA5sim6fCmwBZgIdk55OREQssVrm9cC3gV6YQy4B\nYDJwDjAYyAVKHcgnIiIWxHvS0CHgL8AlQDC67SjwPFDW0ic0PksqEAgQCATifEkRkfbl6NGj3HXX\nXSxdupRQKMQZZ5zB1KlT+e53vxv3voLBIMFgMOFMVsq8K2Zhf415BH4lMA3ohjl27gFu5PjQSxPt\n7ZRXEUljfj+EnFs2Dp8PKmOfZRoOhykuLmbatGl0796dxYsXM2bMGNatW8e3vvWtuF6y+UFuRUVF\nvKkBa2XeA3gRs7RzgHmYR+fLAD9mwa8F7raVQETEqlAInLyGuMVL2ubl5TF58uSGxyNGjKC4uJiP\nPvoo7jJPFitlvgE4v4XtJUnOIiKSlvbu3cuWLVs499xzXcugM0BFRBJQV1fHrbfeyvjx4xk4cKBr\nOVTmIiI21dfXM378eHJycpg5c6arWXQJXBERGwzD4Ac/+AH79+9n8eLFdOjQwdU8KnMRERvuvfde\ntm7dyjvvvEN2drbbcVTmkjzHJhkUFh7fdlF/d7KIOGnXrl0899xz5OTk0L1794btzz33HOPGjXMl\nk8pckm737uP3n/k1fLTNvSySYXw+y9MHbe/fgtNPP536+nrnctigMpeka3xk7tVXmCSThRN6Tlaa\nzSIikgFU5iIiGUBlLiKSAVTmIiIZQGUuIpIBVOYiIhlAZS4ikgFU5iIiGUBlLiJiwy233EL37t3J\nz8+nd+/elJaWYji5cEYMsc7PywHeiz6vE+YKQw8CfTFXHMrHXC5uPFDnXEwREfCvXEkoHHZs/z6v\nl8phwyw9t7S0lBdeeIHs7Gy2bt3K5ZdfzsUXX8z111/vWL62xCrzWuAyoCb63JXAFcC/Yq4DuhB4\nGpgETHcupogIhMJhDAcXhffEsbDygAEDmjz2er307NkzyYmsszLMUhP9MxvogLmI8yWYRQ4wF7g2\n+dFERNq3H/3oR3Tq1ImBAwfy6KOPcsEFF7iWxUqZZwEfA3uB5UAIONDo458DvZIfTUSkfXvmmWeo\nrq5mxYoVlJWV8eGHH7qWxUqZ1wPfxizsy4CAk4FERNLN0KFDuemmm3j55ZddyxDPBUoPYb4BeiZQ\n1Gh7L2BPa59UXl7ecD8QCBBwcLxLRMQt4XCYU045Je7PCwaDBOMYq29NrDLvChwFvgZygSuB/wOs\nBr6LOW5+G/BmaztoXOYiIplg//79rFy5kpEjR5KdnU0wGGT+/Pm88cYbce+r+UFuRUWFrUyxyrwH\n8CLgwZymOA/4M+Z0xHnAlOj9n9l6dRGRNOTxeHjqqaeYMGEC9fX1nHnmmcyePZvhw4e7lilWmW8A\nzm9h+6fAPyc/johI63xeb1zTB+3s34qioiLee+89x3LYoUW9RCRtWD2h52Sk0/lFRDKAylxEJAOo\nzEVEMoDKXEQkA6jMRUQygMpcRCQDqMxFRDKAylxEJAOozEVEErB9+3ZycnIYP368qzl0BqiIpI2V\n/pWEQ84tG+f1eRlWGd9Zpvfddx8XX3wxHo/HoVTWqMxFJG2EQ2ECRsCx/Qc9wbieP3/+fHw+H8XF\nxezYscOZUBZpmEVExIbDhw9TVlbG9OnTMQzD7TgqcxERO0pLS7nzzjvp0aOH60MsoGEWEZG4ffzx\nxyxdupS1a9cCtIsjcytl3hv4L8AHZAPPY642VA7cCeyPPu8XwFvJjygi0r6sWLGCnTt30qdPHwCq\nqqqIRCJs2bKFNWvWuJLJSpkfBX4EbATygb8BSwADeCp6ExE5adx9992MGzcOMI/Kn3zySXbu3Mns\n2bNdy2SlzPdGbwBVwHqgZ/Sx+wNFIiIplpubS25ubsPj/Px8cnNz6dq1q2uZ4h0zPwMYAkyM/nkf\n5lDLR8D9QGUyw4mINOb1eeOePhjv/u0oKytLcpL4xZM8H/gj8ADwNTAL+Lfox8qBGcBtyQwnItJY\nvCf0nEyslvkpwKvAPGBhdNuBRh//T2B5S59YXl7ecD8QCBAIBOLNKCKSsYLBIMEkLFJtpcw9mDNY\nNgPTG23vBuyL3h8NbGrpkxuXuYiINNX8ILeiosLWfqyU+VDM4ZP1wNrotkeAW4BBmNMVdwE/sJVA\nREQSZqXMV9LymaKLk5xFRERs0un8IiIZQGUuIpIBVOYiIhlAZS4ikgFU5iIiNgQCAXJzcykoKKCg\noIABAwa4mkeXwBWRtLFypZ9wOOTY/r1eH8OGWbsqicfjYdasWdxxxx2O5YmHylxE0kY4HCIQcO7a\n4cFgfNcObA/XMT9GwywiIjY9/PDD+Hw+hgwZwpIlS1zNojIXEbHhySef5LPPPuOrr77ipz/9KaNH\nj2br1q2u5VGZi4jYcOGFF5KTk0NWVhY333wzJSUlLFq0yLU8KnMRkSQwDMPVMXSVuYhInA4dOsSy\nZcuoq6ujvr6eBQsWsHTpUq699lrXMmk2i4hInOrq6vj5z3/Otm3bMAyDs88+mz/+8Y8UFxe7lkll\nLiJpw+v1xT19MN79W1FUVMSaNWscy2GHylxE0obVE3pORhozFxHJALHKvDfwLrAB2Ar8PLrdD7yD\nufrQEqCLUwFFRCS2WGV+FPgRcB5wIXAnMBioAP6CuWzc4uhjERFxSawy3wtsjN6vwjwS7wmMBF6K\nbp8LuDcfR0RE4hozPwMYgrkm6KnAV9HtB4BuyY0lIiLxsFrm+cAC4AHgsHNxRETEDitTE08BXgX+\nC1gY3bYfKMI8Kj8V2NfaJ5eXlzfcDwQCBAIBe0lFRDJQMBgkGAwmvJ9YZe4Bngc2A9MbbX8TuA14\nOvrnm63toHGZi4hIU80Pcisq7M0niTXMMhSzrK8A1kZv1wBlmG96rgdGAI/ZenURkTQ2f/58iouL\nKSgooG/fvrz33nuuZYl1ZL6S1gv/yiRnERFpk9/vJxRybtk4n89HZaW1s0zfeOMNfvnLX7Jw4ULO\nO+889u/fTzgcdixbLDqdX0TSRigUcvQysx6P9eu+lJeXM2XKFM477zwATj31VKdiWaLT+UVE4lRV\nVcW6devYuXMn/fv3p1u3btx5553U1NS4lkllLiISp2O/Ibz++uusXr2a7du3s23bNkpLS13LpDIX\nEYlTfn4+AJMmTcLv91NYWMhPfvIT3nyz1Yl9jlOZi4jEyefz0atXL7djNKEyFxGxYeLEicyaNYuD\nBw9y+PBhZsyYwXXXXedaHs1mERGxobS0lAMHDtCvXz8Axo4dy5QpU1zLozIXkbTh8/nimj5oZ/9W\neb1eZs2axaxZsxzLEw+VuYikDasn9JyMNGYuIpIBVOYiIhlAZS4ikgFU5iIiGUBlLiKSAVTmIiIZ\nQGUuIpIBrJT574G9wIZG28qBPTRdfUhERFxipczncGJZG8BTwPnR21tJziUi0m7l5+dTUFDQcPN6\nvdx///2uZrJyBuh7wBktbHfunFoRkRb4/eDgqnH4fGDlJNOqqqqG+9XV1XTv3p2bbrrJuWAWJDJm\nfh+wBZgL+JMTR0SkdaEQGIZzNzs/KBYsWMBpp53GsGHDkv8XjoPdMp8F9AOKgX8AM5KWSEQkjfzh\nD3/g9ttvdzuG7QttHWh0/z+B5a09sby8vOF+IBAgEAjYfEkRkfZl165dvPvuu8yZM8f2PoLBIMFg\nMOEsdsu8G7Aven80sKm1JzYucxGRTPLSSy8xfPhwTj/9dNv7aH6QW1FRYWs/Vsr8ZeByoAj4DCgD\nrgAGAdnALuAHtl5dRCSNvfjiizzyyCNuxwCslfm4Frb9PtlBRETSyQcffMAXX3zB2LFj3Y4C6AxQ\nERFbXnzxRUaPHk2nTp3cjgJopSERSSM+Hzi4ahxxrBrH7NmznQtig8pcRNKGVo1rnYZZREQygMpc\nRCQDqMxFRDKAylxEJAOozEVEMoDKXEQkA6jMRUQygMpcRCQDqMxFRGzYtWsXV111FQUFBXTt2pV7\n7rmHo0ePupZHZ4CKSNrwT/MTqnVu3Thfjo/KydZOM/3hD39Iz549+eqrrwiFQlx55ZX85je/4aGH\nHnIsX1tU5iKSNkK1IYwyw7H9eyqsX/hlx44dPPDAA2RnZ3PaaadxzTXXsH37dseyxaJhFhERG0aM\nGMG8efOoqanh888/Z/HixVx77bWu5VGZi4jYUF5ezsaNG+ncuTO9e/dmyJAh3HDDDa7lsVLmvwf2\nAhsabfMD7wDrgSVAl+RHExFpnwzD4Oqrr2bs2LF88803HDhwgEOHDjF58mTXMlkp8znANc22VQB/\nwVw6bnH0sYjISWHv3r189NFHTJo0iVNOOQW/388dd9zBokWLXMtkpczfA5q/fTwSeCl6fy7g3kCR\niEiKFRUVUVRUxLPPPkskEuHgwYPMmTOH4uJi1zLZHTM/Ffgqev8A0C05cURE2j+v18urr77KggUL\n6Ny5M6effjrhcJiZM2e6l8m1VxYRiZMvxxfX9EE7+7dq+PDhfPjhh45liZfdMt8PFGEelZ8K7Gvt\nieXl5Q33A4EAgUDA5kuKyMnO6gk96SQYDBIMBhPej90yfxO4DXg6+uebrT2xcZmLiEhTzQ9yKyrs\nzSexUuYvA5djHol/BjwGlAGvAHcAXwI32Xp1ERFJCitlPq6V7VcmM4iIiNinM0BFRDKAylxEJAOo\nzEVEMoDKXEQkA6jMRUQygMpcRMSGdevWcemll9K5c2fOOussFi5c6GoelbmIpA+/Hzwe525+v6UY\ndXV1XH/99YwbN47Dhw8zZ84cbrvtNq00JCJiSSgEhuHcLWRtfdH169cTCoX48Y9/DMCwYcMYOnQo\nL730UozPdI7KXEQkToZx4jqk9fX1bNy40YU0JpW5iEicBg0aRGFhIdOnT6e+vp5gMMi7775LVVWV\na5lU5iIiccrOzub111/nlVdeoaioiMcff5yxY8fitzjm7gRdz1xExIYLL7yQ1atXNzwuKSnhxhtv\njGsft9wC9fXJyaMyFxGxYfPmzfTr148OHTowe/ZsPv30UyZMmBDXPrZsgcZrQFdXwyuv2MujMhcR\nsWHOnDk8//zzRCIRhg0bxtKlS8nPz49rHz16wM03H3988CDceae9PCpzEUkfPp85H9zJ/Vv0xBNP\n8MQTTziXJU4qcxFJH5WZt2xcsiRa5juBw0AEqAMuTjSQiIjEL9EyN4AAoB+XIiIuSsY8cwcHsERE\nxIpEy9wA3gHWA5MSjyMiInYkOsxyCbAPOBV4C/g78NdEQ4mISHwSLfN90T/3AwuAITQr8/Ly8ob7\ngUCAQCCQ4EuKiGSOYDBIMBgEoLbW/n4SKfO86J/fAJ2Aa4D/aP6kxmUuIiJNNT7IPXgQpk2rsLWf\nRMr8NGAh5rh5HjAfeCOB/YmIiE2JvAH6KTAY+DbQH3gsKYlERNq5mTNnctFFF5GTk8PEiRObfGzp\n0qWcc845FBQUUFJSwu7du1OSSWeAikja8K9cSSgcdmz/Pq+XymHDYj6vZ8+elJaWsmTJEmpqahq2\nHzhwgDFjxjBv3jxGjBjBY489xve+9z1WrVrlWOZjVOYikjZC4TCGg5MoPNE3ImMZNWoUAGvWrGHP\nnj0N21977TXOP/98RowYAcCjjz7K9OnT2bZtG/3790963sa0OIWIiE3Nl4/btGkTgwcPbnicnZ1N\n//79U7KcnMpcRMQmT7MrOFZXV5OXl9dkW35+fkqWk1OZi4jY1PzIPD8/n+rq6ibbqqqqKCgocDyL\nylxExKbmR+YDBw5k/fr1DY+PHDnC1q1bGThwoONZVOYiInGKRCLU1tYSDoeJRCIcOXKESCTCqFGj\nWLt2LW+99Rb19fU8/vjjDBo0yPE3P0FlLiIStylTppCXl8e0adOYO3cuubm5TJ06laKiIhYsWMCD\nDz5IYWEh77//PvPnz09JJk1NFJG04fN6LU8ftLt/K8rLy1u9VMl3vvMdtmzZYmk/h3M3sO7L+uOP\nv7b0aS1SmYtI2rByQk86WVV8KbcvPLPh8dFwxPa+VOYiIi7582U15GVvb3hsGObSbXaozEVEXPL3\nr3z8eMyuhsc7/3cXUGxrXypzERGX1BseOnQ4fpKRJyuvjWe3TbNZREQygMpcRCQDJFrm1wAbgM3A\n5MTjiIiIHYmUeUfgWcxCHwSMAc5PRqhUCjo4ZzWZ0iXn4ao6tyNYki7/nsopViVS5v8EbAI+B8LA\nK8C1yQiVSunyRZguOQ9XO7dwQDKly7+ncopViZR5L+CzRo/3RLeJiGS01paNq6urY8yYMfTt25es\nrCxWrFjR5n7+77RDXHPNNQ23CbfcbjtTIlMTjdhPSa4v/nGIL3YcTu4+dxxizZLPYj/RZemQs0O4\nQ4vb6+sNyu//eYrTtC343+9TXvmN2zFiSnbOrGwo7OGJ/cQ4rV61kt88VRP7iQla6V9JOOTcb39e\nn5dhlfaXjQO47LLLePDBBxk7duwJV1VsrqYqi30XHT8GNiLV0Hb/O2I48OdGjx8CftnsOTswS183\n3XTTLe5bc8tZfsK2ZIp3/48++qgxYcKEFj/Wq1cvY8WKFa1+bht/7x3YkMiR+f8A5wI9gX3ATcA9\nzZ7zrQT2LyInN8PtALEYRsIRk/ZrUiJlXgvcCyzBHHt/CfhbMkKJiKSDWMMoqZTo6fyLozcRkZNO\nEo7MkyYZZ4BaPXFoNFAPXJCE17TDSs6bgLXAemBeinI1FyvnOcB/Axujz7khddEa/B7Yi5mzNTMw\np67+DffOP4iVczzm//UGYA1wYYpyNWfl3xNgCOY04BsdT9QyKzkDwIfAx7jyVl5qJeHIfAOwFWht\nhkDKvo86Ap9ijpt7McfRW3rBAuBd4APcKXMrOQdjlmSn6GN/ytIdZyXnXI6/NzGAptNDU2U4Zq7W\nvqlHAwuj98/H/MZ2Q6ycF2N+bYL5Q3RtKkK1IFZOgA7AMsxJB6NTEaoFsXJ2xzzI6BZ9nOj3UMJv\nUMbL6v7D4bBRU1NjPPzww8b48eON2tpaIxwOG4ZhGLW1tUZNTY3Rq1cv4+233zZqampa3AfH3xPI\nB7ZhdlBjcX0fJXpkbvXEoSnAr4EjJHHAPw5Wck4EZgLHltauTFm646zk/AwojN7vAuwi9d4DQm18\nfCTmeyhgFqQXd85BiJXzQ+DY2i7vY/4QdUOsnAA/BhYA+52P06pYOW/G/JrdF33sxvdQSrS2bBzA\n2WefTV5eHl988QVXX301nTp1Yvfu3W3trgrzN8QezbbH9X2U6Jh5SycOBZo95wLMb5I3MacvujHI\nZCXn2UAEeADzB04F8EYqwjViJeevgFWY39ydgO+kJFl8WjuhbI87cSy5B3jd7RCt6Ik5nFaCOdTS\nfgZqmzo7+ucqzK/NGcDvkvkCXp+XoCeYzF2esH8r2lo2bufOnfG+7BmY/68Tm22P6/so0TKP9UWV\nBTwFfL/RNjeOzK188Wdh/qP+E9Abc0hoJak9urCS8ynMb5DpwCWYwy4DnQxlU/P/5/ZaQGD+wLwD\nGOpyjtY8DTyM+W/owZ3vISs6YE5XLgHygNWYxb4pWS9g5YSeNJMP/BHzILKlFUAtfx8lOsyyB7P4\njulN058kBZhFE8QcC74E82g31ePmsXISfbwI8+h8J+abi/1TEa4RKzmHAf8ven81kMPxMcr2ovnf\noz0flQ/C/OH4L8Qe6nDLhcB8zO+h0cAzmHnbm93A20AN8BXmG6CDXE3U/r2KOdliYQsfS+n3UQ5m\n8fUETsF8w66tol4e4+NOsZJzFPBC9H4R5rj1qamJ18BKzr9w/DedAcCXmEdEqXYGbb8B+qfo/QuA\ndakI1IozaD1nH8yz7S5JWZrWnUHs2SwAc3BvNgu0nfN84K+YX495mEfk307gtZL1vma7hHmUPb2N\nv3/Kv49GcHya3C+i2yqA61t4rltlDtZy/gfmF+DfMaetuSFWzrM5/qvrZuC6VAcEXga+AI5i/uZw\nB+aYc+MzgGdyfEqVW//nsXL+DvMIcm309qELGcHav+cxbpa5lZw/w/x/30br0+2scrtvHYVZ5h9z\n/OtvRAv/npa/j9rr2JuISLTzMlN0jnrSOljLxomIZACVuYhIBlCZi4hkAJW5iEgGUJmLiMSptWXj\nVq1axRVXXEGXLl0oLCzkhhtu4PPPP09JJs1mEZH26oTZLCtX+gmHnTu3y+v1MWxY7JO+//SnP5GV\nldWwbNycOXMAePvttzl69ChXXXUVkUiEBx54gG3btrW44HWyZ7OIiLRXJ8zNXr7c2bnn8e6/rWXj\nDMMwNmzYYHTs2LHFj5HkS1xomEVExCYjxjz45cuXM2hQaq5okOiFtkRETlptLU6xfv16ysrKWLRo\nUUqy6MhcRMSm1o7Md+zYwciRI/ntb3/L0KGpuRinylxExKaWjsx37drFlVdeyWOPPcatt96asiwa\nZhERiVMkEqGuro5wOEwkEuHIkSN4vV6+/PJLSkpKmDRpEnfffbfbMUVE2oWEZ5vEy+r+y8rKDI/H\n0+RWXl5uVFRUGB6Px8jPz2+4FRQUtLgPkjybRXMcRaS9inbece1lnnkyJHueucpcRNqrE8o8k+gS\nuCIicgKVuYhIBlCZi4hkAJW5iEgGUJmLiGQAlbmISAZQmYuIZACVuYhIBlCZi4jEqbVl4zZv3swF\nF1xAly5dyM/PZ8iQISxbtszFpCIi7jvheiY+n+/YNU0cufl8PkvXZnnttdeMhQsXGvfee2+TlYYO\nHjxo7Ny50zAMw6ivrzdmzJhh+P3+lFybRVdNFJG0EQqFYq7uk4i2FptobNSoUQCsWbOGPXv2NGwv\nLCyksLAQMK+smJWVRZ8+fZIftAUqcxERm1r7wdKlSxeqq6vp0aNHyoZZNGYuImJTa0fyBw8epKqq\niu9///uMHTvW0d8mjlGZi4jY1FZJd+zYkYqKCj755BM2bNjgeBaVuYiITbHG2Ovr66mvr09JFpW5\niEicIpF8Ic5/AAAAy0lEQVQItbW1TZaNC4fDLF++nE2bNgHwzTff8Mgjj9CjRw/OO+88lxOLiLin\nxel8TrK6/5aWjauoqDBeeeUV46yzzjI6depkdOnSxbjhhhuMTz75pNXXSuY/llYaEpH2Ktp5x/n9\nfkIh55aN8/l8VFZq2TgRkWQ6ocwziZaNExGRE6jMRUQygMpcRCQDqMxFRDKAylxEJAOozEVEMoCu\nmigi7ZLX6/3a4/EUuJ3DKV6v9+twOOx2DBERERERERERERERERERERERB/x/0J9LcQfhAmYAAAAA\nSUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 312 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "sub_x = numpy.array(subdata)\n", + "sub_y = numpy.zeros([len(sublabels), numpy.max(sublabels) + 1])\n", + "for i, label in enumerate(sublabels):\n", + " sub_y[i, label] = 1\n", + "sub_w = numpy.zeros([len(sublabels), numpy.max(sublabels) + 1])\n", + "sub_w[:, :] = (numpy.bincount(sublabels) ** -1.) [sublabels][:, numpy.newaxis] * 100 " + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 335 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "subtrainX, subtestX, subtrainY, subtestY, subtrainW, subtestW = train_test_split(sub_x, sub_y, sub_w, train_size=0.1, test_size=0.1)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 336 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "class MultiLayerMultiOutputNN(nnet.MultiLayerNetwork):\n", + " def _prepare(self):\n", + " activation = self.prepare()\n", + " loss_ = lambda x, y, w: self.loss(y, activation(x), w)\n", + " x = T.matrix('X')\n", + " y = T.matrix('y')\n", + " w = T.matrix('w')\n", + " self.Activation = theano.function([x], activation(x))\n", + " self.Loss = theano.function([x, y, w], loss_(x, y.T, w.T))\n", + " for name, param in self.parameters.iteritems():\n", + " self.derivatives[name] = theano.function([x, y, w], T.grad(loss_(x, y.T, w.T), param))" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 337 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nn = MultiLayerMultiOutputNN(layers=[subdata.shape[1], 100, sub_y.shape[1]], loss=nnet.log_loss)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 349 + }, + { + "cell_type": "code", + "collapsed": true, + "input": [ + "for stage in range(100):\n", + " nn.fit(subtrainX, subtrainY, sample_weight=subtrainW, stages=1000, batch=100, learning_rate=0.01)\n", + " print nn.compute_loss(subtestX, subtestY, subtestW)\n", + "# print roc_auc_score(subtestY, nn.predict_proba(subtestX)[:, 1], sample_weight=subtestW)\n", + "# print roc_auc_score(testY, nn.predict_proba(testX)[:, 1], sample_weight=testW), nn.compute_loss(testX, testY, testW)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.247049838272\n", + "0.246684996344" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246449110784" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246617196761" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246699813741" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247420347033" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24734873828" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246837667123" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246735209825" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247008038127" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246471394039" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246839964719" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247161487221" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246604786582" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246459331675" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246688800669" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246901704987" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24647344449" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246735295278" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24706615021" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246509277936" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246878892615" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24661405164" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246591810881" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246380356986" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246759726362" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247520421991" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246098265111" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246325339737" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246830304198" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246976701923" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246324376086" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247944565565" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247322304283" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247011028915" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247002909621" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246611310905" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246508643748" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246664944889" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24681192523" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247055364795" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246644075829" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246919461645" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.245998472293" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246748952105" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246339154369" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247001712171" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246465523687" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246819060977" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246857917859" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246408529904" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247108123099" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246723051599" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247030512346" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24648200004" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246362909525" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246457020236" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246771324121" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246712943846" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246554441791" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246439231611" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24640663059" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246976701809" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247495159055" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247130213198" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247065487625" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246817804583" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.2471084833" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246701496596" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247047797037" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247160838789" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246251908302" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24630189993" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246789956713" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246932126741" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246741639172" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247229339821" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247504221061" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247046754192" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246590328548" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24687623174" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247316488267" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247262771523" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246717559338" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247092190047" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246964295774" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246858160145" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246245504034" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246034637908" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246439825438" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246243376728" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247178261253" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247463515824" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246441561133" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247015246505" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246925714002" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246432534115" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.246928382339" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.247227222873" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.24696820617" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + } + ], + "prompt_number": 357 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# subtestY\n", + "# subtestW" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 280 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pred = nn.Activation(subtestX.T)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 356 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file