-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathrun_nas_network_search.py
executable file
·277 lines (225 loc) · 11.1 KB
/
run_nas_network_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#!/usr/bin/env python3
###################################################################################################
#
# Copyright (C) 2021-2023 Maxim Integrated Products, Inc. All Rights Reserved.
#
# Maxim Integrated Products, Inc. Default Copyright Notice:
# https://www.maximintegrated.com/en/aboutus/legal/copyrights.html
#
###################################################################################################
"""
Application to run evolutionary search over trained Once For All model.
"""
import argparse
import fnmatch
import json
import os
import re
from pydoc import locate
import torch
from torch.utils.data import DataLoader
import ai8x
from nas import nas_utils, parse_nas_yaml
from nas.evo_search import EvolutionSearch
def parse_args(model_names, dataset_names):
"""Return the parsed arguments"""
parser = argparse.ArgumentParser(description='Evolutionary search for a trained once '
'for all model')
parser.add_argument('--model_path', metavar='DIR', required=True, help='path to model '
'checkpoint')
parser.add_argument('--arch', '-a', '--model', metavar='ARCH', required=True,
type=lambda s: s.lower(), dest='arch', choices=model_names,
help='model architecture: ' + ' | '.join(model_names))
parser.add_argument('--dataset', metavar='S', required=True, choices=dataset_names,
help='dataset: ' + ' | '.join(dataset_names))
parser.add_argument('--data', metavar='DIR', default='data', help='path to dataset')
parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N',
help='mini-batch size (default: 256)')
parser.add_argument('--no-bias', action='store_true', default=False,
help='for models that support both bias and no bias, set the '
'`use bias` flag to true')
parser.add_argument('--nas-policy', dest='nas_policy', required=True,
help='path to YAML file that defines the NAS '
'(once for all training) policy')
parser.add_argument('--num-out-archs', default=1, type=int,
help='number of subnet architectures at the output')
parser.add_argument('--export-archs', action='store_true', default=False,
help='exports found subnets to a json file if set to True')
parser.add_argument('--arch-file', help='filepath where the json file is stores '
'if `export-archs` is set True')
return parser.parse_args()
def get_evo_search_params(nas_policy):
"""Get parameters used for evolutionary search from yaml file"""
evo_search_params = {'population_size': 100, 'prob_mutation': 0.1, 'ratio_mutation': 0.5,
'ratio_parent': 0.25, 'num_iter': 500,
'constraints': {'max_num_weights': 4.5e5}}
if 'evolution_search' in nas_policy:
for key, _ in evo_search_params.items():
if key in nas_policy['evolution_search']:
evo_search_params[key] = nas_policy['evolution_search'][key]
return evo_search_params
def load_models():
"""Dynamically load models"""
supported_models = []
model_names = []
for _, _, files in sorted(os.walk('models')):
for name in sorted(files):
if fnmatch.fnmatch(name, '*.py'):
fn = 'models.' + name[:-3]
m = locate(fn)
try:
for i in m.models: # type: ignore
i['module'] = fn
supported_models += m.models # type: ignore
model_names += [item['name'] for item in m.models] # type: ignore
except AttributeError:
# Skip files that don't have 'models' or 'models.name'
pass
return supported_models, model_names
def load_datasets():
"""Dynamically load datasets"""
supported_sources = []
dataset_names = []
for _, _, files in sorted(os.walk('datasets')):
for name in sorted(files):
if fnmatch.fnmatch(name, '*.py'):
ds = locate('datasets.' + name[:-3])
try:
supported_sources += ds.datasets # type: ignore
dataset_names += [item['name'] for item in ds.datasets] # type: ignore
except AttributeError:
# Skip files that don't have 'datasets' or 'datasets.name'
pass
return supported_sources, dataset_names
def get_data_loaders(supported_sources, args):
"""Dynamically loads data loaders"""
selected_source = next((item for item in supported_sources if item['name'] == args.dataset))
labels = selected_source['output']
num_classes = len(labels)
if num_classes == 1 or ('regression' in selected_source and selected_source['regression']):
args.regression = True
else:
args.regression = False
args.dimensions = selected_source['input']
args.num_classes = len(selected_source['output'])
train_dataset, val_dataset = selected_source['loader']((args.data, args))
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=0)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0)
return train_loader, val_loader
def create_model(supported_models, args):
"""Create the model"""
module = next(item for item in supported_models if item['name'] == args.arch)
Model = locate(module['module'] + '.' + args.arch)
if not Model:
raise RuntimeError("Model " + args.arch + " not found\n")
if module['dim'] > 1 and module['min_input'] > args.dimensions[2]:
model = Model(pretrained=False, num_classes=args.num_classes,
num_channels=args.dimensions[0],
dimensions=(args.dimensions[1], args.dimensions[2]),
padding=(module['min_input'] - args.dimensions[2] + 1) // 2,
bias=not args.no_bias).to(args.device) # type: ignore
else:
model = Model(pretrained=False, num_classes=args.num_classes,
num_channels=args.dimensions[0],
dimensions=(args.dimensions[1], args.dimensions[2]),
bias=not args.no_bias).to(args.device) # type: ignore
if '2D' in type(model).__name__:
args.model_type = 'Conv2d'
elif '1D' in type(model).__name__:
args.model_type = 'Conv1d'
else:
args.model_type = 'Unknown'
return model
def format_json_data(json_data):
"""Converts the json file content to human readable format"""
json_data = re.sub(r'": \[\s+', '": [', json_data)
json_data = re.sub(r'": \[\[\s+', '": [[', json_data)
json_data = re.sub(r'\[\s+', '[', json_data)
json_data = re.sub(r'\n\s+\]', ']', json_data)
json_data = re.sub(r'\],\s+\[', '], [', json_data)
json_data = re.sub(r',\s+(\d)', r', \1', json_data)
json_data = re.sub(r'(\d),\s+(\d)', r'\1, \2', json_data)
json_data = re.sub(r'true,\s+true', 'true, true', json_data)
json_data = re.sub(r'true,\s+true]', 'true, true]', json_data)
json_data = re.sub(r'true,\s+false', 'true, false', json_data)
json_data = re.sub(r'true,\s+false]', 'true, false]', json_data)
json_data = re.sub(r'false,\s+true', 'false, true', json_data)
json_data = re.sub(r'false,\s+true]', 'false, true]', json_data)
json_data = re.sub(r'false,\s+false', 'false, false', json_data)
json_data = re.sub(r'false,\s+false]', 'false, false]', json_data)
return json_data
def generate_out_file(arch_list, num_elems, in_shape, model_type, file_path):
"""Generates json file for the found subnet architectures"""
file_content = []
for idx in range(num_elems):
arch = arch_list[idx][0]
acc = arch_list[idx][1]
bias_list = []
for unit_idx in range(arch['n_units']):
bias = []
for _ in range(arch['depth_list'][unit_idx]):
bias.append(arch['bias'])
bias_list.append(bias)
arch_dict = {
'acc': acc,
'type': model_type,
'in_shape': in_shape,
'out_class': arch['num_classes'],
'n_units': arch['n_units'],
'depth_list': arch['depth_list'],
'width_list': arch['width_list'],
'kernel_list': arch['kernel_list'],
'bias_list': bias_list,
'bn': arch['bn']
}
file_content.append(arch_dict)
json_file_content = json.dumps(file_content, indent=4)
json_file_content = format_json_data(json_file_content)
with open(file_path, mode='w', encoding='utf-8') as fp:
fp.write(json_file_content)
def main():
"""Main routine"""
ai8x.set_device(device=85, simulate=False, round_avg=False, verbose=False)
supported_models, model_names = load_models()
supported_sources, dataset_names = load_datasets()
args = parse_args(model_names, dataset_names)
args.truncate_testset = False
args.device = torch.device(
"cuda" if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available()
else "cpu"
)
args.act_mode_8bit = False
# Get policy for once for all training policy
nas_policy = parse_nas_yaml.parse(args.nas_policy) \
if args.nas_policy.lower() != '' else None
# Get data loaders
train_loader, val_loader = get_data_loaders(supported_sources, args)
# Load model
model = create_model(supported_models, args)
checkpoint = torch.load(args.model_path, map_location=args.device)
model.load_state_dict(checkpoint['state_dict'])
# Calculate full model accuracy
full_model_acc = nas_utils.calc_accuracy(None, model, train_loader, val_loader, args.device)
print(f'Model Accuracy: {100*full_model_acc: .3f}%')
# Run evolutionary search to find proper networks
evo_search_params = get_evo_search_params(nas_policy)
evo_search = EvolutionSearch(population_size=evo_search_params['population_size'],
prob_mutation=evo_search_params['prob_mutation'],
ratio_mutation=evo_search_params['ratio_mutation'],
ratio_parent=evo_search_params['ratio_parent'],
num_iter=evo_search_params['num_iter'])
evo_search.set_model(model)
arch_list = evo_search.run(evo_search_params['constraints'], train_loader,
val_loader, args.device)
if args.export_archs:
generate_out_file(arch_list, min(args.num_out_archs, len(arch_list)),
args.dimensions, args.model_type, args.arch_file)
else:
for idx in range(min(args.num_out_archs, len(arch_list))):
print(f'Model-{idx}:')
print(f'\tArch: {arch_list[idx][0]}')
print(f'\tAcc: {arch_list[idx][1]}\n')
if __name__ == '__main__':
main()