-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhomomorphic_filtering.m
49 lines (35 loc) · 1.14 KB
/
homomorphic_filtering.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
% I thank
% http://blogs.mathworks.com/steve/2013/06/25/homomorphic-filtering-part-1/
% for this code. :D
% read the image
I = imread('page.png');
figure, imshow(I);
% the image might be a color image, so we convert it to greyscale
%I = rgb2gray(I);
% convert the image to floating-point type from uint8(which is default)
I = im2double(I);
figure, imshow(I);
% take the image into the log domain
I = log(1 + I);
figure, imshow(I);
% Now lets construct the gaussian filter here k = size(I,1) = size(I,2)
M = 2*size(I,1) + 1;
N = 2*size(I,2) + 1;
% standard deviation of the equivalent spatial domain gaussian filter ??
sigma = 30;
% X and Y are k*k size matrices with
% X has column i with all i's (this is true for i = 1,....k
% Y has row i with all i's (this is true for i = 1,....k
[X, Y] = meshgrid(1:N,1:M);
centerX = ceil(N/2);
centerY = ceil(M/2);
gaussianNumerator = (X - centerX).^2 + (Y - centerY).^2;
H = exp(-gaussianNumerator./(2*sigma.^2));
H = 1 - H;
imshow(H,'InitialMagnification',25)
H = fftshift(H);
If = fft2(I, M, N);
Iout = real(ifft2(H.*If));
Iout = Iout(1:size(I,1),1:size(I,2));
Ihmf = exp(Iout) - 1;
imshowpair(I, Ihmf, 'montage')