You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
First, thanks for this wonderful repo, I am trying to adopt your hatt-archive-cntk.ipynb to tensorflow backend, it is giving the following error when constructing the model, wondering if you have any insight:
InvalidArgumentError Traceback (most recent call last)
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1566 try:
-> 1567 c_op = c_api.TF_FinishOperation(op_desc)
1568 except errors.InvalidArgumentError as e:
InvalidArgumentError: Dimension size must be evenly divisible by 3000 but is 200 for 'time_distributed_1/Reshape_1' (op: 'Reshape') with input shapes: [200], [3] and with input tensors computed as partial shapes: input[1] = [?,15,200].
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-24-38f8f519e000> in <module>()
10
11 review_input = Input(shape=(MAX_SENTS, MAX_SENT_LENGTH), dtype='int32')
---> 12 review_encoder = TimeDistributed(sentEncoder)(review_input)
13 l_lstm_sent = Bidirectional(GRU(GRU_UNITS, return_sequences=True, kernel_regularizer=l2_reg,
14 implementation=GPU_IMPL))(review_encoder)
/usr/local/lib/python3.5/dist-packages/keras/engine/base_layer.py in __call__(self, inputs, **kwargs)
458 # Actually call the layer,
459 # collecting output(s), mask(s), and shape(s).
--> 460 output = self.call(inputs, **kwargs)
461 output_mask = self.compute_mask(inputs, previous_mask)
462
/usr/local/lib/python3.5/dist-packages/keras/layers/wrappers.py in call(self, inputs, training, mask)
253 output_shape = self._get_shape_tuple(
254 (-1, input_length), y, 1, output_shape[2:])
--> 255 y = K.reshape(y, output_shape)
256
257 # Apply activity regularizer if any:
/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py in reshape(x, shape)
1935 """
1936 print('before x={}, shape={}'.format(x, shape))
-> 1937 _x = tf.reshape(x, shape)
1938 print('after _x={}'.format(_x))
1939 return _x
/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_array_ops.py in reshape(tensor, shape, name)
6111 if _ctx is None or not _ctx._eager_context.is_eager:
6112 _, _, _op = _op_def_lib._apply_op_helper(
-> 6113 "Reshape", tensor=tensor, shape=shape, name=name)
6114 _result = _op.outputs[:]
6115 _inputs_flat = _op.inputs
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
785 op = g.create_op(op_type_name, inputs, output_types, name=scope,
786 input_types=input_types, attrs=attr_protos,
--> 787 op_def=op_def)
788 return output_structure, op_def.is_stateful, op
789
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py in create_op(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_shapes, compute_device)
3390 input_types=input_types,
3391 original_op=self._default_original_op,
-> 3392 op_def=op_def)
3393
3394 # Note: shapes are lazily computed with the C API enabled.
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)
1732 op_def, inputs, node_def.attr)
1733 self._c_op = _create_c_op(self._graph, node_def, grouped_inputs,
-> 1734 control_input_ops)
1735 else:
1736 self._c_op = None
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1568 except errors.InvalidArgumentError as e:
1569 # Convert to ValueError for backwards compatibility.
-> 1570 raise ValueError(str(e))
1571
1572 return c_op
ValueError: Dimension size must be evenly divisible by 3000 but is 200 for 'time_distributed_1/Reshape_1' (op: 'Reshape') with input shapes: [200], [3] and with input tensors computed as partial shapes: input[1] = [?,15,200].
The text was updated successfully, but these errors were encountered:
First, thanks for this wonderful repo, I am trying to adopt your
hatt-archive-cntk.ipynb
to tensorflow backend, it is giving the following error when constructing the model, wondering if you have any insight:The text was updated successfully, but these errors were encountered: