-
Notifications
You must be signed in to change notification settings - Fork 0
/
estep_compute_Z_distr.m
37 lines (27 loc) · 1.16 KB
/
estep_compute_Z_distr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function [E_z, E_zz] = estep_compute_Z_distr(P, S_bar, V, RR, Tr, sigma_sq)
%[E_z, E_zz] = estep_compute_Z_distr(P, S_bar, V, RR, Tr, sigma_sq)
% Computes the distribution over Z given the current parameter estimates (see Eq 17-18)
K = size(V,1)/3;
[T, J] = size(P);
T = T/2;
Pc = P - Tr(:)*ones(1,J);
M_t = zeros(2*J, K);
P_hat_t = zeros(2*J, 1);
E_z = zeros(K, T);
E_zz = zeros(T*K, K);
invSigmaSq_p = eye(2*J)./sigma_sq;
for t=1:T,
R_t = [RR(t,:); RR(t+T,:)];
for kk = 1:K,
M_t(1:J, kk) = (R_t(1,:)*V(1+(kk-1)*3:kk*3, :))';
M_t(J+1:end, kk) = (R_t(2,:)*V(1+(kk-1)*3:kk*3, :))';
end
P_hat_t(1:J) = (R_t(1,:)*S_bar)';
P_hat_t(J+1:end) = (R_t(2,:)*S_bar)';
%beta_t = M_t' * inv(M_t*M_t' + sigma_sq*eye(2*J)); % (Eq 16)
% Can be computed much more efficiently using the matrix inversion lemma:
AA = M_t./sigma_sq;
beta_t = M_t'*(invSigmaSq_p - AA*inv(eye(K) + M_t'*M_t./sigma_sq)*AA'); % (Eq 16)
E_z(:, t) = beta_t*([Pc(t, :) Pc(t+T, :)]' - P_hat_t); % (Eq 17)
E_zz((t-1)*K+1:t*K,:) = eye(K) - beta_t*M_t + E_z(:,t)*E_z(:,t)'; % (Eq 18)
end