-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathyolov3_tiny.py
executable file
·48 lines (45 loc) · 2.18 KB
/
yolov3_tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import tensorflow as tf
from yolov3 import Yolov3
from utils import *
class Yolov3Tiny(Yolov3):
def _detection_block(self, input, num_kernels, anchor_list):
output_depth = len(anchor_list)*self.num_predictions
input = self.conv2d_bn(input=input,
num_kernels=num_kernels)
input = self.conv2d(input=input,
num_kernels=output_depth,
with_bias=True)
input = self.region(input, anchor_list)
return input
def graph(self):
with tf.variable_scope('yolov3_tiny'):
input = self.conv2d_bn(input=self.input,
num_kernels=16)
for i in range(6):
input = tf.layers.max_pooling2d(inputs=input,
pool_size=2,
strides=(1 if i == 5 else 2),
padding='same' if i == 5 else 'valid')
input = self.conv2d_bn(input=input,
num_kernels=pow(2, 5+i))
if i == 3:
route_1 = input
input = self.conv2d_bn(input=input,
num_kernels=256,
kernel_size=1)
route_2 = input
predictions_1 = self._detection_block(input=input,
num_kernels=512,
anchor_list=self._ANCHORS[3:6])
input = self.conv2d_bn(input=route_2,
num_kernels=128,
kernel_size=1)
input = self._upsample(input)
input = tf.concat(values=[input, route_1],
axis=-1)
predictions_2 = self._detection_block(input=input,
num_kernels=256,
anchor_list=self._ANCHORS[:3])
return tf.concat(values=[predictions_1, predictions_2],
axis=1,
name='output')