-
Notifications
You must be signed in to change notification settings - Fork 0
/
attendance.py
81 lines (68 loc) · 2.7 KB
/
attendance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import cv2
import numpy as np
import face_recognition
import os
from datetime import datetime
#1
path = r'C:\Users\Anshul Singh\PycharmProjects\finalproject\imageAttendance'
images = []
classNames = []
myList = os.listdir(path)
print(myList)
#2
for cl in myList:
curImg = cv2.imread(f'{path}/{cl}') #current Image
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)
#3
def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
encodeListKnown = findEncodings(images)
print('Encoding Complete')
#4
def markAttendance(name):
with open('attendance.csv','r+') as f:
myDataList = f.readlines()
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime('%H:%M:%S') # string format for time
f.writelines(f'\n{name},{dtString}')
#4 video
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS) #done to prevent from multiple faces error
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) #on the current image frame and the location it gives the encoding
# Step for finding our matches
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace) # returns a list of distance b/w the faces and the video faces
print(faceDis)
matchIndex = np.argmin(faceDis) # We take the minimum value
if matches[matchIndex]:
name = classNames[matchIndex].upper()
print(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(img, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
markAttendance(name)
cv2.imshow('Webcam', img)
k = cv2.waitKey(1)
if k == 27: #esc button
break
cap.release()
cv2.destroyAllWindows()