-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeed.py
49 lines (40 loc) · 1.27 KB
/
speed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
from dataloaders import create_dataloader, encode
from tqdm import tqdm
import time
from scipy.stats import norm
import pickle
import torch
from loss import CustomLoss
from model import ConvNet
from annealed_mean import pred_to_rgb_vec
def measure():
"""Class rebalancing"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_dataloader = create_dataloader(6, 224, False, "train_40000", "tree.p")
with open("tree.p", 'rb') as pickle_file:
tree = pickle.load(pickle_file)
model = ConvNet().to(device)
loss = CustomLoss("W_40000.npy", device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001, weight_decay=.001)
model.to(torch.double)
start = time.time()
end = 0
for i, (X, Weights, ii) in enumerate(tqdm(train_dataloader)):
# y [batch_size, 322, 224, 224]
start2 = time.time()
X, Z = encode(X, Weights, ii, device)
Z_pred = model(X)
J = loss(Z_pred, Z)
optimizer.zero_grad()
J.backward()
optimizer.step()
end += time.time() - start2
if i == 50:
break
print("The whole loop")
print((time.time() - start)/50)
print("The gpu")
print(end/50)
if __name__ == '__main__':
measure()