-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathLowest_Common_Ancestor.py
79 lines (66 loc) · 1.89 KB
/
Lowest_Common_Ancestor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Find the Lowest Common Ancestor (LCA) in a Binary Search Tree
# A Binary Search Tree node
class Node:
# Constructor to initialise node
def __init__(self, data):
self.data = data
self.left = None
self.right = None
class BST:
def __init__(self):
self.root = None
def insert_node(self, data):
if self.root is None:
self.root = Node(data)
else:
self._insert(data, self.root)
def _insert(self, data, current_node):
if data <= current_node.data:
if current_node.left is not None:
self._insert(data, current_node.left)
else:
current_node.left = Node(data)
else:
if current_node.right is not None:
self._insert(data, current_node.right)
else:
current_node.right = Node(data)
def inorder(self):
current_node = self.root
self._inorder(current_node)
print('End')
def _inorder(self, current_node):
if current_node is None:
return
self._inorder(current_node.left)
print(current_node.data, " -> ", end='')
self._inorder(current_node.right)
# assuming both nodes are present in the tree
def lca_bst(root, value1, value2):
while root is not None:
if value2 > root.data < value1:
root = root.right
elif value2 < root.data > value1:
root = root.left
else:
return root.data
if __name__ == '__main__':
tree = BST()
tree.insert_node(6)
tree.insert_node(8)
tree.insert_node(9)
tree.insert_node(6)
tree.insert_node(5)
tree.insert_node(7)
tree.insert_node(3)
tree.insert_node(2)
tree.insert_node(4)
print(lca_bst(tree.root, 4, 2))
"""
given tree:
6
6 8
5 7 9
3
2 4
"""