-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththeHolyPythonFile.py
79 lines (64 loc) · 2.28 KB
/
theHolyPythonFile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# -*- coding: utf-8 -*-
"""ugss.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1_L_xmIu4dy7raOmUvFG8y969VOD1-IQT
"""
# Commented out IPython magic to ensure Python compatibility.
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import datetime
# %matplotlib inline
# import serial
# arduino = serial.Serial("/dev/cu.usbmodem1101", timeout = 1)
# arduino.readline()
# inp = int(arduino.readline().rstrip()) for input
# for output: just replace print by:
# arduino.write(bytes(x, 'utf-8')) where x is the output
while True:
now = datetime.datetime.now()
current_time = now.strftime("%H.00")
i=int(input("enter junction: "))
# 1 AND 3 LANE
if i==1 or i==3:
df = pd.read_csv('13_traffic_new.csv')
X = df.iloc[:, :2].values
y = df.iloc[:, -2].values
for i in range(len(X)):
X[i][0] = X[i][0][10:]
X[i][0] = X[i][0].replace(':', '.')
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
df = df.replace(r'^\s*$', np.nan, regex=True)
from sklearn.tree import DecisionTreeRegressor
regressor = DecisionTreeRegressor(random_state = 0)
regressor.fit(X, y)
regressor.predict([[current_time,1]])
out = regressor.predict([[12.00,2]])
import math
out = math.ceil(float(out[0]))
if(out < 10): print(0)
elif(out >= 10 and out < 30): print(1)
elif out >= 30 : print(2)
# 2 AND 4 LANE
else:
daf = pd.read_csv('24_traffic.csv')
X = daf.iloc[:, :2].values
y = daf.iloc[:, -2].values
for i in range(len(X)):
X[i][0] = X[i][0][10:]
X[i][0] = X[i][0].replace(':', '.')
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
daf = daf.replace(r'^\s*$', np.nan, regex=True)
from sklearn.tree import DecisionTreeRegressor
regressor = DecisionTreeRegressor(random_state = 0)
regressor.fit(X, y)
out = regressor.predict([[current_time,2]])
import math
out = math.ceil(float(out[0]))
if(out < 10): print(0)
elif(out >= 10 and out < 30): print(1)
elif out >= 30 : print(2)