diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/ClusterUtils.java b/src/main/java/org/apache/commons/math4/ml/clustering/ClusterUtils.java new file mode 100644 index 0000000000..e4ae9ce75f --- /dev/null +++ b/src/main/java/org/apache/commons/math4/ml/clustering/ClusterUtils.java @@ -0,0 +1,124 @@ +package org.apache.commons.math4.ml.clustering; + +import org.apache.commons.math4.exception.ConvergenceException; +import org.apache.commons.math4.exception.util.LocalizedFormats; +import org.apache.commons.math4.ml.distance.DistanceMeasure; +import org.apache.commons.math4.ml.distance.EuclideanDistance; +import org.apache.commons.math4.stat.descriptive.moment.Variance; +import org.apache.commons.rng.UniformRandomProvider; + +import java.util.Collection; +import java.util.List; + +/** + * Common functions used in clustering + */ +public class ClusterUtils { + /** + * Use only for static + */ + private ClusterUtils() { + } + + public static final DistanceMeasure DEFAULT_MEASURE = new EuclideanDistance(); + + /** + * Predict which cluster is best for the point + * + * @param clusters cluster to predict into + * @param point point to predict + * @param measure distance measurer + * @param type of cluster point + * @return the cluster which has nearest center to the point + */ + public static CentroidCluster predict(List> clusters, Clusterable point, DistanceMeasure measure) { + double minDistance = Double.POSITIVE_INFINITY; + CentroidCluster nearestCluster = null; + for (CentroidCluster cluster : clusters) { + double distance = measure.compute(point.getPoint(), cluster.getCenter().getPoint()); + if (distance < minDistance) { + minDistance = distance; + nearestCluster = cluster; + } + } + return nearestCluster; + } + + /** + * Predict which cluster is best for the point + * + * @param clusters cluster to predict into + * @param point point to predict + * @param type of cluster point + * @return the cluster which has nearest center to the point + */ + public static CentroidCluster predict(List> clusters, Clusterable point) { + return predict(clusters, point, DEFAULT_MEASURE); + } + + /** + * Computes the centroid for a set of points. + * + * @param points the set of points + * @param dimension the point dimension + * @return the computed centroid for the set of points + */ + public static Clusterable centroidOf(final Collection points, final int dimension) { + final double[] centroid = new double[dimension]; + for (final T p : points) { + final double[] point = p.getPoint(); + for (int i = 0; i < centroid.length; i++) { + centroid[i] += point[i]; + } + } + for (int i = 0; i < centroid.length; i++) { + centroid[i] /= points.size(); + } + return new DoublePoint(centroid); + } + + + /** + * Get a random point from the {@link Cluster} with the largest distance variance. + * + * @param clusters the {@link Cluster}s to search + * @param measure DistanceMeasure + * @param random Random generator + * @return a random point from the selected cluster + * @throws ConvergenceException if clusters are all empty + */ + public static T getPointFromLargestVarianceCluster(final Collection> clusters, + final DistanceMeasure measure, + final UniformRandomProvider random) + throws ConvergenceException { + double maxVariance = Double.NEGATIVE_INFINITY; + Cluster selected = null; + for (final CentroidCluster cluster : clusters) { + if (!cluster.getPoints().isEmpty()) { + // compute the distance variance of the current cluster + final Clusterable center = cluster.getCenter(); + final Variance stat = new Variance(); + for (final T point : cluster.getPoints()) { + stat.increment(measure.compute(point.getPoint(), center.getPoint())); + } + final double variance = stat.getResult(); + + // select the cluster with the largest variance + if (variance > maxVariance) { + maxVariance = variance; + selected = cluster; + } + + } + } + + // did we find at least one non-empty cluster ? + if (selected == null) { + throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS); + } + + // extract a random point from the cluster + final List selectedPoints = selected.getPoints(); + return selectedPoints.remove(random.nextInt(selectedPoints.size())); + } +} diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/KMeansPlusPlusClusterer.java b/src/main/java/org/apache/commons/math4/ml/clustering/KMeansPlusPlusClusterer.java index 74699ffb07..48208b432c 100644 --- a/src/main/java/org/apache/commons/math4/ml/clustering/KMeansPlusPlusClusterer.java +++ b/src/main/java/org/apache/commons/math4/ml/clustering/KMeansPlusPlusClusterer.java @@ -19,13 +19,14 @@ import java.util.ArrayList; import java.util.Collection; -import java.util.Collections; import java.util.List; import org.apache.commons.math4.exception.ConvergenceException; import org.apache.commons.math4.exception.MathIllegalArgumentException; import org.apache.commons.math4.exception.NumberIsTooSmallException; import org.apache.commons.math4.exception.util.LocalizedFormats; +import org.apache.commons.math4.ml.clustering.initialization.CentroidInitializer; +import org.apache.commons.math4.ml.clustering.initialization.KMeansPlusPlusCentroidInitializer; import org.apache.commons.math4.ml.distance.DistanceMeasure; import org.apache.commons.math4.ml.distance.EuclideanDistance; import org.apache.commons.rng.simple.RandomSource; @@ -35,42 +36,67 @@ /** * Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm. + * * @param type of the points to cluster * @see K-means++ (wikipedia) * @since 3.2 */ public class KMeansPlusPlusClusterer extends Clusterer { - /** Strategies to use for replacing an empty cluster. */ + /** + * Strategies to use for replacing an empty cluster. + */ public enum EmptyClusterStrategy { - /** Split the cluster with largest distance variance. */ + /** + * Split the cluster with largest distance variance. + */ LARGEST_VARIANCE, - /** Split the cluster with largest number of points. */ + /** + * Split the cluster with largest number of points. + */ LARGEST_POINTS_NUMBER, - /** Create a cluster around the point farthest from its centroid. */ + /** + * Create a cluster around the point farthest from its centroid. + */ FARTHEST_POINT, - /** Generate an error. */ + /** + * Generate an error. + */ ERROR } - /** The number of clusters. */ + /** + * The number of clusters. + */ private final int k; - /** The maximum number of iterations. */ + /** + * The maximum number of iterations. + */ private final int maxIterations; - /** Random generator for choosing initial centers. */ + /** + * Random generator for choosing initial centers. + */ private final UniformRandomProvider random; - /** Selected strategy for empty clusters. */ + /** + * Selected strategy for empty clusters. + */ private final EmptyClusterStrategy emptyStrategy; - /** Build a clusterer. + /** + * Centroid initial algorithm + */ + private final CentroidInitializer centroidInitializer; + + /** + * Build a clusterer. *

* The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. @@ -83,45 +109,48 @@ public KMeansPlusPlusClusterer(final int k) { this(k, -1); } - /** Build a clusterer. + /** + * Build a clusterer. *

* The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. *

* The euclidean distance will be used as default distance measure. * - * @param k the number of clusters to split the data into + * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for. - * If negative, no maximum will be used. + * If negative, no maximum will be used. */ public KMeansPlusPlusClusterer(final int k, final int maxIterations) { this(k, maxIterations, new EuclideanDistance()); } - /** Build a clusterer. + /** + * Build a clusterer. *

* The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. * - * @param k the number of clusters to split the data into + * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for. - * If negative, no maximum will be used. - * @param measure the distance measure to use + * If negative, no maximum will be used. + * @param measure the distance measure to use */ public KMeansPlusPlusClusterer(final int k, final int maxIterations, final DistanceMeasure measure) { this(k, maxIterations, measure, RandomSource.create(RandomSource.MT_64)); } - /** Build a clusterer. + /** + * Build a clusterer. *

* The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. * - * @param k the number of clusters to split the data into + * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for. - * If negative, no maximum will be used. - * @param measure the distance measure to use - * @param random random generator to use for choosing initial centers + * If negative, no maximum will be used. + * @param measure the distance measure to use + * @param random random generator to use for choosing initial centers */ public KMeansPlusPlusClusterer(final int k, final int maxIterations, final DistanceMeasure measure, @@ -129,29 +158,33 @@ public KMeansPlusPlusClusterer(final int k, final int maxIterations, this(k, maxIterations, measure, random, EmptyClusterStrategy.LARGEST_VARIANCE); } - /** Build a clusterer. + /** + * Build a clusterer. * - * @param k the number of clusters to split the data into + * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for. - * If negative, no maximum will be used. - * @param measure the distance measure to use - * @param random random generator to use for choosing initial centers + * If negative, no maximum will be used. + * @param measure the distance measure to use + * @param random random generator to use for choosing initial centers * @param emptyStrategy strategy to use for handling empty clusters that - * may appear during algorithm iterations + * may appear during algorithm iterations */ public KMeansPlusPlusClusterer(final int k, final int maxIterations, final DistanceMeasure measure, final UniformRandomProvider random, final EmptyClusterStrategy emptyStrategy) { super(measure); - this.k = k; + this.k = k; this.maxIterations = maxIterations; - this.random = random; + this.random = random; this.emptyStrategy = emptyStrategy; + // It is a Common KMeans algorithm if centroidInitializer is not KMeansPlusPlus algorithm. + this.centroidInitializer = new KMeansPlusPlusCentroidInitializer(measure, random); } /** * Return the number of clusters this instance will use. + * * @return the number of clusters */ public int getK() { @@ -160,6 +193,7 @@ public int getK() { /** * Returns the maximum number of iterations this instance will use. + * * @return the maximum number of iterations, or -1 if no maximum is set */ public int getMaxIterations() { @@ -168,6 +202,7 @@ public int getMaxIterations() { /** * Returns the random generator this instance will use. + * * @return the random generator */ public UniformRandomProvider getRandomGenerator() { @@ -176,6 +211,7 @@ public UniformRandomProvider getRandomGenerator() { /** * Returns the {@link EmptyClusterStrategy} used by this instance. + * * @return the {@link EmptyClusterStrategy} */ public EmptyClusterStrategy getEmptyClusterStrategy() { @@ -188,13 +224,13 @@ public EmptyClusterStrategy getEmptyClusterStrategy() { * @param points the points to cluster * @return a list of clusters containing the points * @throws MathIllegalArgumentException if the data points are null or the number - * of clusters is larger than the number of data points - * @throws ConvergenceException if an empty cluster is encountered and the - * {@link #emptyStrategy} is set to {@code ERROR} + * of clusters is larger than the number of data points + * @throws ConvergenceException if an empty cluster is encountered and the + * {@link #emptyStrategy} is set to {@code ERROR} */ @Override public List> cluster(final Collection points) - throws MathIllegalArgumentException, ConvergenceException { + throws MathIllegalArgumentException, ConvergenceException { // sanity checks MathUtils.checkNotNull(points); @@ -205,7 +241,7 @@ public List> cluster(final Collection points) } // create the initial clusters - List> clusters = chooseInitialCenters(points); + List> clusters = centroidInitializer.selectCentroids(points, k); // create an array containing the latest assignment of a point to a cluster // no need to initialize the array, as it will be filled with the first assignment @@ -221,21 +257,21 @@ public List> cluster(final Collection points) final Clusterable newCenter; if (cluster.getPoints().isEmpty()) { switch (emptyStrategy) { - case LARGEST_VARIANCE : + case LARGEST_VARIANCE: newCenter = getPointFromLargestVarianceCluster(clusters); break; - case LARGEST_POINTS_NUMBER : + case LARGEST_POINTS_NUMBER: newCenter = getPointFromLargestNumberCluster(clusters); break; - case FARTHEST_POINT : + case FARTHEST_POINT: newCenter = getFarthestPoint(clusters); break; - default : + default: throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS); } emptyCluster = true; } else { - newCenter = centroidOf(cluster.getPoints(), cluster.getCenter().getPoint().length); + newCenter = ClusterUtils.centroidOf(cluster.getPoints(), cluster.getCenter().getPoint().length); } newClusters.add(new CentroidCluster(newCenter)); } @@ -254,8 +290,8 @@ public List> cluster(final Collection points) /** * Adds the given points to the closest {@link Cluster}. * - * @param clusters the {@link Cluster}s to add the points to - * @param points the points to add to the given {@link Cluster}s + * @param clusters the {@link Cluster}s to add the points to + * @param points the points to add to the given {@link Cluster}s * @param assignments points assignments to clusters * @return the number of points assigned to different clusters as the iteration before */ @@ -278,131 +314,6 @@ private int assignPointsToClusters(final List> clusters, return assignedDifferently; } - /** - * Use K-means++ to choose the initial centers. - * - * @param points the points to choose the initial centers from - * @return the initial centers - */ - private List> chooseInitialCenters(final Collection points) { - - // Convert to list for indexed access. Make it unmodifiable, since removal of items - // would screw up the logic of this method. - final List pointList = Collections.unmodifiableList(new ArrayList<> (points)); - - // The number of points in the list. - final int numPoints = pointList.size(); - - // Set the corresponding element in this array to indicate when - // elements of pointList are no longer available. - final boolean[] taken = new boolean[numPoints]; - - // The resulting list of initial centers. - final List> resultSet = new ArrayList<>(); - - // Choose one center uniformly at random from among the data points. - final int firstPointIndex = random.nextInt(numPoints); - - final T firstPoint = pointList.get(firstPointIndex); - - resultSet.add(new CentroidCluster(firstPoint)); - - // Must mark it as taken - taken[firstPointIndex] = true; - - // To keep track of the minimum distance squared of elements of - // pointList to elements of resultSet. - final double[] minDistSquared = new double[numPoints]; - - // Initialize the elements. Since the only point in resultSet is firstPoint, - // this is very easy. - for (int i = 0; i < numPoints; i++) { - if (i != firstPointIndex) { // That point isn't considered - double d = distance(firstPoint, pointList.get(i)); - minDistSquared[i] = d*d; - } - } - - while (resultSet.size() < k) { - - // Sum up the squared distances for the points in pointList not - // already taken. - double distSqSum = 0.0; - - for (int i = 0; i < numPoints; i++) { - if (!taken[i]) { - distSqSum += minDistSquared[i]; - } - } - - // Add one new data point as a center. Each point x is chosen with - // probability proportional to D(x)2 - final double r = random.nextDouble() * distSqSum; - - // The index of the next point to be added to the resultSet. - int nextPointIndex = -1; - - // Sum through the squared min distances again, stopping when - // sum >= r. - double sum = 0.0; - for (int i = 0; i < numPoints; i++) { - if (!taken[i]) { - sum += minDistSquared[i]; - if (sum >= r) { - nextPointIndex = i; - break; - } - } - } - - // If it's not set to >= 0, the point wasn't found in the previous - // for loop, probably because distances are extremely small. Just pick - // the last available point. - if (nextPointIndex == -1) { - for (int i = numPoints - 1; i >= 0; i--) { - if (!taken[i]) { - nextPointIndex = i; - break; - } - } - } - - // We found one. - if (nextPointIndex >= 0) { - - final T p = pointList.get(nextPointIndex); - - resultSet.add(new CentroidCluster (p)); - - // Mark it as taken. - taken[nextPointIndex] = true; - - if (resultSet.size() < k) { - // Now update elements of minDistSquared. We only have to compute - // the distance to the new center to do this. - for (int j = 0; j < numPoints; j++) { - // Only have to worry about the points still not taken. - if (!taken[j]) { - double d = distance(p, pointList.get(j)); - double d2 = d * d; - if (d2 < minDistSquared[j]) { - minDistSquared[j] = d2; - } - } - } - } - - } else { - // None found -- - // Break from the while loop to prevent - // an infinite loop. - break; - } - } - - return resultSet; - } - /** * Get a random point from the {@link Cluster} with the largest distance variance. * @@ -502,9 +413,9 @@ private T getFarthestPoint(final Collection> clusters) throws for (int i = 0; i < points.size(); ++i) { final double distance = distance(points.get(i), center); if (distance > maxDistance) { - maxDistance = distance; + maxDistance = distance; selectedCluster = cluster; - selectedPoint = i; + selectedPoint = i; } } @@ -523,7 +434,7 @@ private T getFarthestPoint(final Collection> clusters) throws * Returns the nearest {@link Cluster} to the given point * * @param clusters the {@link Cluster}s to search - * @param point the point to find the nearest {@link Cluster} for + * @param point the point to find the nearest {@link Cluster} for * @return the index of the nearest {@link Cluster} to the given point */ private int getNearestCluster(final Collection> clusters, final T point) { @@ -540,26 +451,4 @@ private int getNearestCluster(final Collection> clusters, fin } return minCluster; } - - /** - * Computes the centroid for a set of points. - * - * @param points the set of points - * @param dimension the point dimension - * @return the computed centroid for the set of points - */ - private Clusterable centroidOf(final Collection points, final int dimension) { - final double[] centroid = new double[dimension]; - for (final T p : points) { - final double[] point = p.getPoint(); - for (int i = 0; i < centroid.length; i++) { - centroid[i] += point[i]; - } - } - for (int i = 0; i < centroid.length; i++) { - centroid[i] /= points.size(); - } - return new DoublePoint(centroid); - } - } diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/MiniBatchKMeansClusterer.java b/src/main/java/org/apache/commons/math4/ml/clustering/MiniBatchKMeansClusterer.java new file mode 100644 index 0000000000..9c848d61c2 --- /dev/null +++ b/src/main/java/org/apache/commons/math4/ml/clustering/MiniBatchKMeansClusterer.java @@ -0,0 +1,297 @@ +package org.apache.commons.math4.ml.clustering; + +import org.apache.commons.math4.exception.ConvergenceException; +import org.apache.commons.math4.exception.MathIllegalArgumentException; +import org.apache.commons.math4.exception.NumberIsTooSmallException; +import org.apache.commons.math4.ml.clustering.initialization.CentroidInitializer; +import org.apache.commons.math4.ml.clustering.initialization.KMeansPlusPlusCentroidInitializer; +import org.apache.commons.math4.ml.distance.DistanceMeasure; +import org.apache.commons.math4.util.MathUtils; +import org.apache.commons.math4.util.Pair; +import org.apache.commons.rng.UniformRandomProvider; +import org.apache.commons.rng.sampling.ListSampler; + +import java.util.ArrayList; +import java.util.Collection; +import java.util.List; + +/** + * A very fast clustering algorithm base on KMeans(Refer to Python sklearn.cluster.MiniBatchKMeans) + * Use a partial points in initialize cluster centers, and mini batch in iterations. + * It finish in few seconds when clustering millions of data, and has few differences between KMeans. + * See https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf + * + * @param Type of the points to cluster + */ +public class MiniBatchKMeansClusterer extends Clusterer { + /** + * The number of clusters. + */ + private final int k; + + /** + * The maximum number of iterations. + */ + private final int maxIterations; + + /** + * Batch data size in iteration. + */ + private final int batchSize; + /** + * Iteration count of initialize the centers. + */ + private final int initIterations; + /** + * Data size of batch to initialize the centers, default 3*k + */ + private final int initBatchSize; + /** + * Max iterate times when no improvement on step iterations. + */ + private final int maxNoImprovementTimes; + /** + * Random generator for choosing initial centers. + */ + private final UniformRandomProvider random; + + /** + * Centroid initial algorithm + */ + private final CentroidInitializer centroidInitializer; + + + /** + * Build a clusterer. + * + * @param k the number of clusters to split the data into + * @param maxIterations the maximum number of iterations to run the algorithm for. + * If negative, no maximum will be used. + * @param batchSize the mini batch size for training iterations. + * @param initIterations the iterations to find out the best clusters centers. + * @param initBatchSize the mini batch size to initial the clusters centers. + * @param maxNoImprovementTimes the max iterations times when the square distance has no improvement. + * @param measure the distance measure to use + * @param random random generator to use for choosing initial centers + * may appear during algorithm iterations + * @param centroidInitializer the centroid initializer algorithm + */ + public MiniBatchKMeansClusterer(final int k, int maxIterations, final int batchSize, final int initIterations, + final int initBatchSize, final int maxNoImprovementTimes, + final DistanceMeasure measure, final UniformRandomProvider random, + final CentroidInitializer centroidInitializer) { + super(measure); + this.k = k; + this.maxIterations = maxIterations > 0 ? maxIterations : 100; + this.batchSize = batchSize; + this.initIterations = initIterations; + this.initBatchSize = initBatchSize; + this.maxNoImprovementTimes = maxNoImprovementTimes; + this.random = random; + this.centroidInitializer = centroidInitializer; + } + + /** + * Build a clusterer + * + * @param k the number of clusters to split the data into + * @param maxIterations the maximum number of iterations to run the algorithm for. + * If negative, no maximum will be used. + * @param measure the distance measure to use + * @param random random generator to use for choosing initial centers + * may appear during algorithm iterations + */ + public MiniBatchKMeansClusterer(int k, int maxIterations, DistanceMeasure measure, UniformRandomProvider random) { + this(k, maxIterations, 100, 3, 100 * 3, 10, + measure, random, new KMeansPlusPlusCentroidInitializer(measure, random)); + } + + /** + * Runs the MiniBatch K-means clustering algorithm. + * + * @param points the points to cluster + * @return a list of clusters containing the points + * @throws MathIllegalArgumentException if the data points are null or the number + * of clusters is larger than the number of data points + */ + @Override + public List> cluster(Collection points) throws MathIllegalArgumentException, ConvergenceException { + // sanity checks + MathUtils.checkNotNull(points); + + // number of clusters has to be smaller or equal the number of data points + if (points.size() < k) { + throw new NumberIsTooSmallException(points.size(), k, false); + } + + int pointSize = points.size(); + int batchSize = this.batchSize; + int batchCount = pointSize / batchSize + ((pointSize % batchSize > 0) ? 1 : 0); + int maxIterations = (this.maxIterations <= 0) ? Integer.MAX_VALUE : (this.maxIterations * batchCount); + MiniBatchImprovementEvaluator evaluator = new MiniBatchImprovementEvaluator(); + List> clusters = initialCenters(points); + for (int i = 0; i < maxIterations; i++) { + //Clear points in clusters + clearClustersPoints(clusters); + //Random sampling a mini batch of points. + List batchPoints = randomMiniBatch(points, batchSize); + // Processing the mini batch training step + Pair>> pair = step(batchPoints, clusters); + double squareDistance = pair.getFirst(); + clusters = pair.getSecond(); + // Evaluate the training can finished early. + if (evaluator.convergence(squareDistance, pointSize)) break; + } + clearClustersPoints(clusters); + //Add every mini batch points to their nearest cluster. + for (T point : points) { + addToNearestCentroidCluster(point, clusters); + } + return clusters; + } + + /** + * clear clustered points + * + * @param clusters The clusters to clear + */ + private void clearClustersPoints(List> clusters) { + for (CentroidCluster cluster : clusters) { + cluster.getPoints().clear(); + } + } + + /** + * Mini batch iteration step + * + * @param batchPoints The mini batch points. + * @param clusters The cluster centers. + * @return Square distance of all the batch points to the nearest center, and newly clusters. + */ + private Pair>> step( + List batchPoints, + List> clusters) { + //Add every mini batch points to their nearest cluster. + for (T point : batchPoints) { + addToNearestCentroidCluster(point, clusters); + } + List> newClusters = new ArrayList>(clusters.size()); + //Refresh then cluster centroid. + for (CentroidCluster cluster : clusters) { + Clusterable newCenter; + if (cluster.getPoints().isEmpty()) { + newCenter = new DoublePoint(ClusterUtils.getPointFromLargestVarianceCluster(clusters, this.getDistanceMeasure(), random).getPoint()); + } else { + newCenter = ClusterUtils.centroidOf(cluster.getPoints(), cluster.getCenter().getPoint().length); + } + newClusters.add(new CentroidCluster(newCenter)); + } + // Add every mini batch points to their nearest cluster again. + double squareDistance = 0.0; + for (T point : batchPoints) { + double d = addToNearestCentroidCluster(point, newClusters); + squareDistance += d * d; + } + return new Pair>>(squareDistance, newClusters); + } + + /** + * Get a mini batch of points + * + * @param points all the points + * @param batchSize the mini batch size + * @return mini batch of all the points + */ + private List randomMiniBatch(Collection points, int batchSize) { + ArrayList list = new ArrayList(points); + ListSampler.shuffle(random, list); + return list.subList(0, batchSize); + } + + /** + * Initial cluster centers with multiply iterations, find out the best. + * + * @param points Points use to initial the cluster centers. + * @return Clusters with center + */ + private List> initialCenters(Collection points) { + List validPoints = initBatchSize < points.size() ? randomMiniBatch(points, initBatchSize) : new ArrayList(points); + double nearestSquareDistance = Double.POSITIVE_INFINITY; + List> bestCenters = null; + for (int i = 0; i < initIterations; i++) { + List initialPoints = (initBatchSize < points.size()) ? randomMiniBatch(points, initBatchSize) : new ArrayList(points); + List> clusters = centroidInitializer.selectCentroids(initialPoints, k); + Pair>> pair = step(validPoints, clusters); + double squareDistance = pair.getFirst(); + List> newClusters = pair.getSecond(); + //Find out a best centers that has the nearest total square distance. + if (squareDistance < nearestSquareDistance) { + nearestSquareDistance = squareDistance; + bestCenters = newClusters; + } + } + return bestCenters; + } + + /** + * Add a point to the cluster which the nearest center belong to. + * + * @param point The point to add. + * @param clusters The clusters to add to. + * @return The distance to nearest center. + */ + private double addToNearestCentroidCluster(T point, List> clusters) { + double minDistance = Double.POSITIVE_INFINITY; + CentroidCluster nearestCentroidCluster = null; + for (CentroidCluster centroidCluster : clusters) { + double distance = distance(point, centroidCluster.getCenter()); + if (distance < minDistance) { + minDistance = distance; + nearestCentroidCluster = centroidCluster; + } + } + assert nearestCentroidCluster != null; + nearestCentroidCluster.addPoint(point); + return minDistance; + } + + /** + * The Evaluator to evaluate whether the iteration should finish where square has no improvement for appointed times. + */ + class MiniBatchImprovementEvaluator { + private Double ewaInertia = null; + private double ewaInertiaMin = Double.POSITIVE_INFINITY; + private int noImprovementTimes = 0; + + /** + * Evaluate whether the iteration should finish where square has no improvement for appointed times + * + * @param squareDistance the total square distance of the mini batch points to their nearest center. + * @param pointSize size of the the data points. + * @return true if no improvement for appointed times, otherwise false + */ + public boolean convergence(double squareDistance, int pointSize) { + double batchInertia = squareDistance / batchSize; + if (ewaInertia == null) { + ewaInertia = batchInertia; + } else { + // Refer to sklearn, pointSize+1 maybe intent to avoid the div/0 error, + // but java double does not have a div/0 error + double alpha = batchSize * 2.0 / (pointSize + 1); + alpha = Math.min(alpha, 1.0); + ewaInertia = ewaInertia * (1 - alpha) + batchInertia * alpha; + } + + // Improved + if (ewaInertia < ewaInertiaMin) { + noImprovementTimes = 0; + ewaInertiaMin = ewaInertia; + } else { + // No improvement + noImprovementTimes++; + } + // Has no improvement continuous for many times + return noImprovementTimes >= maxNoImprovementTimes; + } + } +} diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/ClusterEvaluator.java b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/ClusterEvaluator.java index 5f364c040e..314b6f8aac 100644 --- a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/ClusterEvaluator.java +++ b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/ClusterEvaluator.java @@ -19,10 +19,7 @@ import java.util.List; -import org.apache.commons.math4.ml.clustering.CentroidCluster; -import org.apache.commons.math4.ml.clustering.Cluster; -import org.apache.commons.math4.ml.clustering.Clusterable; -import org.apache.commons.math4.ml.clustering.DoublePoint; +import org.apache.commons.math4.ml.clustering.*; import org.apache.commons.math4.ml.distance.DistanceMeasure; import org.apache.commons.math4.ml.distance.EuclideanDistance; @@ -106,17 +103,7 @@ protected Clusterable centroidOf(final Cluster cluster) { } final int dimension = points.get(0).getPoint().length; - final double[] centroid = new double[dimension]; - for (final T p : points) { - final double[] point = p.getPoint(); - for (int i = 0; i < centroid.length; i++) { - centroid[i] += point[i]; - } - } - for (int i = 0; i < centroid.length; i++) { - centroid[i] /= points.size(); - } - return new DoublePoint(centroid); + return ClusterUtils.centroidOf(points,dimension); } } diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/initialization/CentroidInitializer.java b/src/main/java/org/apache/commons/math4/ml/clustering/initialization/CentroidInitializer.java new file mode 100644 index 0000000000..4adb67406c --- /dev/null +++ b/src/main/java/org/apache/commons/math4/ml/clustering/initialization/CentroidInitializer.java @@ -0,0 +1,22 @@ +package org.apache.commons.math4.ml.clustering.initialization; + +import org.apache.commons.math4.ml.clustering.CentroidCluster; +import org.apache.commons.math4.ml.clustering.Clusterable; + +import java.util.Collection; +import java.util.List; + +/** + * Interface abstract the algorithm for clusterer to choose the initial centers. + */ +public interface CentroidInitializer { + + /** + * Choose the initial centers. + * + * @param points the points to choose the initial centers from + * @param k The number of clusters + * @return the initial centers + */ + List> selectCentroids(final Collection points, final int k); +} diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/initialization/KMeansPlusPlusCentroidInitializer.java b/src/main/java/org/apache/commons/math4/ml/clustering/initialization/KMeansPlusPlusCentroidInitializer.java new file mode 100644 index 0000000000..bc94987979 --- /dev/null +++ b/src/main/java/org/apache/commons/math4/ml/clustering/initialization/KMeansPlusPlusCentroidInitializer.java @@ -0,0 +1,169 @@ +package org.apache.commons.math4.ml.clustering.initialization; + +import org.apache.commons.math4.ml.clustering.CentroidCluster; +import org.apache.commons.math4.ml.clustering.Clusterable; +import org.apache.commons.math4.ml.distance.DistanceMeasure; +import org.apache.commons.rng.UniformRandomProvider; + +import java.util.ArrayList; +import java.util.Collection; +import java.util.Collections; +import java.util.List; + +/** + * Use K-means++ to choose the initial centers. + * + * @see K-means++ (wikipedia) + */ +public class KMeansPlusPlusCentroidInitializer implements CentroidInitializer { + private final DistanceMeasure measure; + private final UniformRandomProvider random; + + /** + * Build a K-means++ CentroidInitializer + * @param measure the distance measure to use + * @param random the random to use. + */ + public KMeansPlusPlusCentroidInitializer(final DistanceMeasure measure, final UniformRandomProvider random) { + this.measure = measure; + this.random = random; + } + + /** + * Use K-means++ to choose the initial centers. + * + * @param points the points to choose the initial centers from + * @param k The number of clusters + * @return the initial centers + */ + @Override + public List> selectCentroids(final Collection points, final int k) { + // Convert to list for indexed access. Make it unmodifiable, since removal of items + // would screw up the logic of this method. + final List pointList = Collections.unmodifiableList(new ArrayList<>(points)); + + // The number of points in the list. + final int numPoints = pointList.size(); + + // Set the corresponding element in this array to indicate when + // elements of pointList are no longer available. + final boolean[] taken = new boolean[numPoints]; + + // The resulting list of initial centers. + final List> resultSet = new ArrayList<>(); + + // Choose one center uniformly at random from among the data points. + final int firstPointIndex = random.nextInt(numPoints); + + final T firstPoint = pointList.get(firstPointIndex); + + resultSet.add(new CentroidCluster(firstPoint)); + + // Must mark it as taken + taken[firstPointIndex] = true; + + // To keep track of the minimum distance squared of elements of + // pointList to elements of resultSet. + final double[] minDistSquared = new double[numPoints]; + + // Initialize the elements. Since the only point in resultSet is firstPoint, + // this is very easy. + for (int i = 0; i < numPoints; i++) { + if (i != firstPointIndex) { // That point isn't considered + double d = distance(firstPoint, pointList.get(i)); + minDistSquared[i] = d * d; + } + } + + while (resultSet.size() < k) { + + // Sum up the squared distances for the points in pointList not + // already taken. + double distSqSum = 0.0; + + for (int i = 0; i < numPoints; i++) { + if (!taken[i]) { + distSqSum += minDistSquared[i]; + } + } + + // Add one new data point as a center. Each point x is chosen with + // probability proportional to D(x)2 + final double r = random.nextDouble() * distSqSum; + + // The index of the next point to be added to the resultSet. + int nextPointIndex = -1; + + // Sum through the squared min distances again, stopping when + // sum >= r. + double sum = 0.0; + for (int i = 0; i < numPoints; i++) { + if (!taken[i]) { + sum += minDistSquared[i]; + if (sum >= r) { + nextPointIndex = i; + break; + } + } + } + + // If it's not set to >= 0, the point wasn't found in the previous + // for loop, probably because distances are extremely small. Just pick + // the last available point. + if (nextPointIndex == -1) { + for (int i = numPoints - 1; i >= 0; i--) { + if (!taken[i]) { + nextPointIndex = i; + break; + } + } + } + + // We found one. + if (nextPointIndex >= 0) { + + final T p = pointList.get(nextPointIndex); + + resultSet.add(new CentroidCluster(p)); + + // Mark it as taken. + taken[nextPointIndex] = true; + + if (resultSet.size() < k) { + // Now update elements of minDistSquared. We only have to compute + // the distance to the new center to do this. + for (int j = 0; j < numPoints; j++) { + // Only have to worry about the points still not taken. + if (!taken[j]) { + double d = distance(p, pointList.get(j)); + double d2 = d * d; + if (d2 < minDistSquared[j]) { + minDistSquared[j] = d2; + } + } + } + } + + } else { + // None found -- + // Break from the while loop to prevent + // an infinite loop. + break; + } + } + + return resultSet; + } + + /** + * Calculates the distance between two {@link Clusterable} instances + * with the configured {@link DistanceMeasure}. + * + * @param p1 the first clusterable + * @param p2 the second clusterable + * @return the distance between the two clusterables + */ + protected double distance(final Clusterable p1, final Clusterable p2) { + return measure.compute(p1.getPoint(), p2.getPoint()); + } +} diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/initialization/RandomCentroidInitializer.java b/src/main/java/org/apache/commons/math4/ml/clustering/initialization/RandomCentroidInitializer.java new file mode 100644 index 0000000000..723876711b --- /dev/null +++ b/src/main/java/org/apache/commons/math4/ml/clustering/initialization/RandomCentroidInitializer.java @@ -0,0 +1,44 @@ +package org.apache.commons.math4.ml.clustering.initialization; + +import org.apache.commons.math4.ml.clustering.CentroidCluster; +import org.apache.commons.math4.ml.clustering.Clusterable; +import org.apache.commons.rng.UniformRandomProvider; +import org.apache.commons.rng.sampling.ListSampler; + +import java.util.ArrayList; +import java.util.Collection; +import java.util.List; + +/** + * Random choose the initial centers. + */ +public class RandomCentroidInitializer implements CentroidInitializer { + private final UniformRandomProvider random; + + /** + * Build a random RandomCentroidInitializer + * + * @param random the random to use. + */ + public RandomCentroidInitializer(final UniformRandomProvider random) { + this.random = random; + } + + /** + * Random choose the initial centers. + * + * @param points the points to choose the initial centers from + * @param k The number of clusters + * @return the initial centers + */ + @Override + public List> selectCentroids(Collection points, int k) { + ArrayList list = new ArrayList(points); + ListSampler.shuffle(random, list); + List> result = new ArrayList<>(k); + for (int i = 0; i < k; i++) { + result.add(new CentroidCluster<>(list.get(i))); + } + return result; + } +} diff --git a/src/test/java/org/apache/commons/math4/ml/clustering/MiniBatchKMeansClustererTest.java b/src/test/java/org/apache/commons/math4/ml/clustering/MiniBatchKMeansClustererTest.java new file mode 100644 index 0000000000..980a62cec0 --- /dev/null +++ b/src/test/java/org/apache/commons/math4/ml/clustering/MiniBatchKMeansClustererTest.java @@ -0,0 +1,76 @@ +package org.apache.commons.math4.ml.clustering; + +import org.apache.commons.math4.ml.clustering.evaluation.ClusterEvaluator; +import org.apache.commons.math4.ml.clustering.evaluation.SumOfClusterVariances; +import org.apache.commons.math4.ml.distance.DistanceMeasure; +import org.apache.commons.math4.ml.distance.EuclideanDistance; +import org.apache.commons.rng.simple.RandomSource; +import org.junit.Assert; +import org.junit.Test; + +import java.util.ArrayList; +import java.util.List; +import java.util.Random; + +public class MiniBatchKMeansClustererTest { + private DistanceMeasure measure = new EuclideanDistance(); + + /** + * Compare the result to KMeansPlusPlusClusterer + */ + @Test + public void testCompareToKMeans() { + //Generate 4 cluster + int randomSeed = 0; + List data = generateCircles(randomSeed); + KMeansPlusPlusClusterer kMeans = new KMeansPlusPlusClusterer<>(4, -1, measure, + RandomSource.create(RandomSource.MT_64, randomSeed)); + MiniBatchKMeansClusterer miniBatchKMeans = new MiniBatchKMeansClusterer<>(4, -1, + measure, RandomSource.create(RandomSource.MT_64, randomSeed)); + for (int i = 0; i < 100; i++) { + List> kMeansClusters = kMeans.cluster(data); + List> miniBatchKMeansClusters = miniBatchKMeans.cluster(data); + Assert.assertEquals(4, kMeansClusters.size()); + Assert.assertEquals(kMeansClusters.size(), miniBatchKMeansClusters.size()); + int totalDiffCount = 0; + for (CentroidCluster kMeanCluster : kMeansClusters) { + CentroidCluster miniBatchCluster = ClusterUtils.predict(miniBatchKMeansClusters, kMeanCluster.getCenter()); + totalDiffCount += Math.abs(kMeanCluster.getPoints().size() - miniBatchCluster.getPoints().size()); + } + ClusterEvaluator clusterEvaluator = new SumOfClusterVariances<>(measure); + double kMeansScore = clusterEvaluator.score(kMeansClusters); + double miniBatchKMeansScore = clusterEvaluator.score(miniBatchKMeansClusters); + double diffPointsRatio = totalDiffCount * 1.0 / data.size(); + double scoreDiffRatio = (miniBatchKMeansScore - kMeansScore) / + kMeansScore; + // MiniBatchKMeansClusterer has few score differences between KMeansClusterer + Assert.assertTrue(String.format("Different score ratio %f%%!, diff points ratio: %f%%\"", scoreDiffRatio * 100, diffPointsRatio * 100), + scoreDiffRatio < 0.1); + } + } + + private List generateCircles(int randomSeed) { + List data = new ArrayList<>(); + Random random = new Random(randomSeed); + data.addAll(generateCircle(250, new double[]{-1.0, -1.0}, 1.0, random)); + data.addAll(generateCircle(260, new double[]{0.0, 0.0}, 0.7, random)); + data.addAll(generateCircle(270, new double[]{1.0, 1.0}, 0.7, random)); + data.addAll(generateCircle(280, new double[]{2.0, 2.0}, 0.7, random)); + return data; + } + + List generateCircle(int count, double[] center, double radius, Random random) { + double x0 = center[0]; + double y0 = center[1]; + ArrayList list = new ArrayList(count); + for (int i = 0; i < count; i++) { + double ao = random.nextDouble() * 720 - 360; + double r = random.nextDouble() * radius * 2 - radius; + double x1 = x0 + r * Math.cos(ao * Math.PI / 180); + double y1 = y0 + r * Math.sin(ao * Math.PI / 180); + list.add(new DoublePoint(new double[]{x1, y1})); + } + return list; + } + +}