|
28 | 28 |
|
29 | 29 | @tvm.testing.requires_cuda_compute_version(8, 9) |
30 | 30 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
31 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8", "float16"]) |
| 31 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2", "float16"]) |
32 | 32 | @pytest.mark.parametrize("batch_size", [1, 64]) |
33 | 33 | def test_fp8_matmul_compile(dtype, original_dtype, batch_size): |
34 | 34 | bb = relax.BlockBuilder() |
@@ -66,7 +66,7 @@ def test_fp8_matmul_compile(dtype, original_dtype, batch_size): |
66 | 66 |
|
67 | 67 | @tvm.testing.requires_cuda_compute_version(8, 9) |
68 | 68 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
69 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 69 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
70 | 70 | @pytest.mark.parametrize("batch_size", [1, 64]) |
71 | 71 | def test_fp8_conv2d_compile(dtype, original_dtype, batch_size): |
72 | 72 | bb = relax.BlockBuilder() |
@@ -116,7 +116,7 @@ def test_fp8_conv2d_compile(dtype, original_dtype, batch_size): |
116 | 116 |
|
117 | 117 | @tvm.testing.requires_cuda_compute_version(8, 9) |
118 | 118 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
119 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 119 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
120 | 120 | @pytest.mark.parametrize("batch_size", [1, 64]) |
121 | 121 | def test_fp8_maxpool2d_compile(dtype, original_dtype, batch_size): |
122 | 122 | bb = relax.BlockBuilder() |
@@ -164,7 +164,7 @@ def test_fp8_maxpool2d_compile(dtype, original_dtype, batch_size): |
164 | 164 |
|
165 | 165 | @tvm.testing.requires_cuda_compute_version(8, 9) |
166 | 166 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
167 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 167 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
168 | 168 | @pytest.mark.parametrize("batch_size", [1, 64]) |
169 | 169 | def test_fp8_add_compile(dtype, original_dtype, batch_size): |
170 | 170 | bb = relax.BlockBuilder() |
@@ -202,7 +202,7 @@ def test_fp8_add_compile(dtype, original_dtype, batch_size): |
202 | 202 |
|
203 | 203 | @tvm.testing.requires_cuda_compute_version(8, 9) |
204 | 204 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
205 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 205 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
206 | 206 | @pytest.mark.parametrize("batch_size", [1, 64]) |
207 | 207 | def test_fp8_relu_compile(dtype, original_dtype, batch_size): |
208 | 208 | bb = relax.BlockBuilder() |
@@ -238,7 +238,7 @@ def test_fp8_relu_compile(dtype, original_dtype, batch_size): |
238 | 238 |
|
239 | 239 | @tvm.testing.requires_cuda_compute_version(8, 9) |
240 | 240 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
241 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 241 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
242 | 242 | @pytest.mark.parametrize("batch_size", [1, 64]) |
243 | 243 | def test_fp8_gelu_compile(dtype, original_dtype, batch_size): |
244 | 244 | bb = relax.BlockBuilder() |
@@ -274,7 +274,7 @@ def test_fp8_gelu_compile(dtype, original_dtype, batch_size): |
274 | 274 |
|
275 | 275 | @tvm.testing.requires_cuda_compute_version(8, 9) |
276 | 276 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
277 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 277 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
278 | 278 | @pytest.mark.parametrize("batch_size", [1, 64]) |
279 | 279 | def test_fp8_gelu_tanh_compile(dtype, original_dtype, batch_size): |
280 | 280 | bb = relax.BlockBuilder() |
@@ -310,7 +310,7 @@ def test_fp8_gelu_tanh_compile(dtype, original_dtype, batch_size): |
310 | 310 |
|
311 | 311 | @tvm.testing.requires_cuda_compute_version(8, 9) |
312 | 312 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
313 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 313 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
314 | 314 | @pytest.mark.parametrize("batch_size", [1, 64]) |
315 | 315 | def test_fp8_sigmoid_compile(dtype, original_dtype, batch_size): |
316 | 316 | bb = relax.BlockBuilder() |
@@ -346,7 +346,7 @@ def test_fp8_sigmoid_compile(dtype, original_dtype, batch_size): |
346 | 346 |
|
347 | 347 | @tvm.testing.requires_cuda_compute_version(8, 9) |
348 | 348 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
349 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 349 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
350 | 350 | @pytest.mark.parametrize("batch_size", [1, 64]) |
351 | 351 | def test_fp8_silu_compile(dtype, original_dtype, batch_size): |
352 | 352 | bb = relax.BlockBuilder() |
@@ -382,7 +382,7 @@ def test_fp8_silu_compile(dtype, original_dtype, batch_size): |
382 | 382 |
|
383 | 383 | @tvm.testing.requires_cuda_compute_version(8, 9) |
384 | 384 | @pytest.mark.parametrize("original_dtype", ["float16", "float32"]) |
385 | | -@pytest.mark.parametrize("dtype", ["e4m3_float8", "e5m2_float8"]) |
| 385 | +@pytest.mark.parametrize("dtype", ["float8_e4m3fn", "float8_e5m2"]) |
386 | 386 | @pytest.mark.parametrize("batch_size", [1, 64]) |
387 | 387 | def test_fp8_softmax_compile(dtype, original_dtype, batch_size): |
388 | 388 | bb = relax.BlockBuilder() |
|
0 commit comments