-
Notifications
You must be signed in to change notification settings - Fork 289
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
batch inference becomes slower and slower #63
Comments
I saw this too, this is a wired thing. |
@fushi219 #!/usr/bin/env python3
"""Simplified script to run DepthPro inference and save results.
Copyright (C) 2024 Apple Inc. All Rights Reserved.
"""
import argparse
import logging
from pathlib import Path
import numpy as np
import PIL.Image
import torch
from tqdm import tqdm
import matplotlib.pyplot as plt
from depth_pro import create_model_and_transforms, load_rgb
LOGGER = logging.getLogger(__name__)
def get_torch_device() -> torch.device:
"""Get the Torch device."""
if torch.cuda.is_available():
return torch.device("cuda:0")
elif torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")
def run(args):
"""Run DepthPro on images and save results."""
if args.verbose:
logging.basicConfig(level=logging.INFO)
# Load model.
model, transform = create_model_and_transforms(
device=get_torch_device(),
precision=torch.half,
)
model.eval()
image_paths = [args.image_path]
if args.image_path.is_dir():
image_paths = args.image_path.glob("**/*")
relative_path = args.image_path
else:
relative_path = args.image_path.parent
for image_path in tqdm(image_paths):
try:
# Skip if outputs already exist.
output_file = (
args.output_path
/ image_path.relative_to(relative_path).parent
/ image_path.stem
)
if (output_file.with_suffix(".npz").exists() and
output_file.with_suffix(".jpg").exists()):
LOGGER.info(f"Outputs exist for {image_path}, skipping.")
continue
LOGGER.info(f"Processing image: {image_path}")
image, _, f_px = load_rgb(image_path)
# Run inference.
prediction = model.infer(transform(image), f_px=f_px)
depth = prediction["depth"].detach().cpu().numpy().squeeze()
# Save Depth as npz file.
LOGGER.info(f"Saving depth map to: {output_file}.npz")
output_file.parent.mkdir(parents=True, exist_ok=True)
np.savez_compressed(output_file, depth=depth)
# Save as color-mapped "turbo" jpg image.
inverse_depth = 1 / depth
max_invdepth_vizu = min(inverse_depth.max(), 1 / 0.1)
min_invdepth_vizu = max(1 / 250, inverse_depth.min())
inverse_depth_normalized = (inverse_depth - min_invdepth_vizu) / (
max_invdepth_vizu - min_invdepth_vizu
)
cmap = plt.get_cmap("turbo")
color_depth = (cmap(inverse_depth_normalized)[..., :3] * 255).astype(np.uint8)
color_map_output_file = str(output_file) + ".jpg"
LOGGER.info(f"Saving color-mapped depth to: {color_map_output_file}")
PIL.Image.fromarray(color_depth).save(
color_map_output_file, format="JPEG", quality=90
)
except Exception as e:
LOGGER.error(f"Error processing {image_path}: {str(e)}")
LOGGER.info("All images processed.")
def main():
"""Run simplified DepthPro inference."""
parser = argparse.ArgumentParser(
description="Simplified inference script for DepthPro."
)
parser.add_argument(
"-i",
"--image-path",
type=Path,
required=True,
help="Path to input image or directory."
)
parser.add_argument(
"-o",
"--output-path",
type=Path,
required=True,
help="Path to store output files."
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
help="Show verbose output."
)
run(parser.parse_args())
if __name__ == "__main__":
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi! Thanks for your job!
I do batch inference(~1000 images) on a V100 gpu.
At first, the inference is quick(~1s). However, for rear images, it becomes slower and slower(~30s for 300th image.)
The memory-usage seems to be around 7.5G.
Is there any possible reasons for this problem?
The text was updated successfully, but these errors were encountered: