|
| 1 | +import pandas as pd |
| 2 | + |
| 3 | +from cea.config import Configuration |
| 4 | +from cea.inputlocator import InputLocator |
| 5 | + |
| 6 | +from cea.analysis.lca.emission_timeline import BuildingEmissionTimeline |
| 7 | +from cea.analysis.lca.hourly_operational_emission import OperationalHourlyTimeline |
| 8 | +from cea.demand.building_properties import BuildingProperties |
| 9 | +from cea.datamanagement.database.envelope_lookup import EnvelopeLookup |
| 10 | +from cea.datamanagement.database.components import Feedstocks |
| 11 | +from cea.utilities import epwreader |
| 12 | + |
| 13 | + |
| 14 | +def operational_hourly(config: Configuration) -> None: |
| 15 | + locator = InputLocator(config.scenario) |
| 16 | + buildings = config.emissions.buildings |
| 17 | + weather_path = locator.get_weather_file() |
| 18 | + weather_data = epwreader.epw_reader(weather_path)[ |
| 19 | + ["year", "drybulb_C", "wetbulb_C", "relhum_percent", "windspd_ms", "skytemp_C"] |
| 20 | + ] |
| 21 | + building_properties = BuildingProperties(locator, weather_data, buildings) |
| 22 | + feedstock_db = Feedstocks.from_locator(locator) |
| 23 | + results: list[tuple[str, pd.DataFrame]] = [] |
| 24 | + |
| 25 | + for building in buildings: |
| 26 | + bpr = building_properties[building] |
| 27 | + timeline = OperationalHourlyTimeline(locator, bpr, feedstock_db) |
| 28 | + timeline.calculate_operational_emission() |
| 29 | + timeline.save_results() |
| 30 | + print( |
| 31 | + f"Hourly operational emissions for {building} calculated and saved in: {locator.get_lca_operational_hourly_building(building)}." |
| 32 | + ) |
| 33 | + results.append([building, timeline.operational_emission_timeline]) |
| 34 | + |
| 35 | + df_by_building = to_ton(sum_by_building(results)) |
| 36 | + df_by_hour = to_ton(sum_by_index([df for _, df in results])) |
| 37 | + df_by_building.to_csv(locator.get_total_yearly_operational_building(), float_format='%.2f') |
| 38 | + df_by_hour.to_csv(locator.get_total_yearly_operational_hour(), float_format='%.2f') |
| 39 | + print( |
| 40 | + f"District-level operational emissions saved in: {locator.get_lca_timeline_folder()}" |
| 41 | + ) |
| 42 | + |
| 43 | + |
| 44 | +def total_yearly(config: Configuration) -> None: |
| 45 | + locator = InputLocator(scenario=config.scenario) |
| 46 | + buildings: list[str] = config.emissions.buildings |
| 47 | + if config.emissions.year_end is None: |
| 48 | + end_year: int = 2100 |
| 49 | + else: |
| 50 | + end_year: int = config.emissions.year_end |
| 51 | + |
| 52 | + envelope_lookup = EnvelopeLookup.from_locator(locator) |
| 53 | + weather_path = locator.get_weather_file() |
| 54 | + weather_data = epwreader.epw_reader(weather_path)[ |
| 55 | + ["year", "drybulb_C", "wetbulb_C", "relhum_percent", "windspd_ms", "skytemp_C"] |
| 56 | + ] |
| 57 | + building_properties = BuildingProperties(locator, weather_data, buildings) |
| 58 | + results: list[tuple[str, pd.DataFrame]] = [] |
| 59 | + for building in buildings: |
| 60 | + timeline = BuildingEmissionTimeline( |
| 61 | + building_properties=building_properties, |
| 62 | + envelope_lookup=envelope_lookup, |
| 63 | + building_name=building, |
| 64 | + locator=locator, |
| 65 | + end_year=end_year, |
| 66 | + ) |
| 67 | + timeline.fill_timeline() |
| 68 | + timeline.demolish(demolition_year=end_year + 1) # no demolition by default |
| 69 | + timeline.save_timeline() |
| 70 | + print( |
| 71 | + f"Emission timeline for {building} calculated and saved in: {locator.get_lca_timeline_building(building)}." |
| 72 | + ) |
| 73 | + results.append((building, timeline.timeline)) |
| 74 | + |
| 75 | + df_by_building = to_ton(sum_by_building(results)) |
| 76 | + df_by_year = to_ton(sum_by_index([df for _, df in results])) |
| 77 | + df_by_building.to_csv(locator.get_total_emissions_building_year_end(year_end=end_year), float_format='%.2f') |
| 78 | + df_by_year.to_csv(locator.get_total_emissions_timeline_year_end(year_end=end_year), float_format='%.2f') |
| 79 | + print( |
| 80 | + f"District-level total emissions saved in: {locator.get_lca_timeline_folder()}" |
| 81 | + ) |
| 82 | + |
| 83 | + |
| 84 | +def sum_by_building(result_list: list[tuple[str, pd.DataFrame]]) -> pd.DataFrame: |
| 85 | + """Sum the dataframes in the result list by building. Result in a new dataframe |
| 86 | + with buildings as index and summed values as data. |
| 87 | +
|
| 88 | + For example: |
| 89 | + ``` |
| 90 | + building_1: col1 col2 |
| 91 | + idx |
| 92 | + 0 1 2 |
| 93 | + 1 3 |
| 94 | + building_2: col1 col2 |
| 95 | + idx |
| 96 | + 0 5 6 |
| 97 | + 1 7 8 |
| 98 | + ``` |
| 99 | + The result would be: |
| 100 | + ``` |
| 101 | + output: col1 col2 |
| 102 | + name |
| 103 | + building_1 4 6 |
| 104 | + building_2 12 14 |
| 105 | + ``` |
| 106 | +
|
| 107 | + :param result_list: a list of tuple, contains building name and its corresponding dataframe. |
| 108 | + :type result_list: list[tuple[str, pd.DataFrame]] |
| 109 | + :return: a dataframe with buildings as index and summed values as data. |
| 110 | + It has the same columns as the input dataframes. |
| 111 | + :rtype: pd.DataFrame |
| 112 | + """ |
| 113 | + # create a new df, each row is the summed value for a building across all its df's indices |
| 114 | + summed_df = pd.DataFrame( |
| 115 | + data=0.0, |
| 116 | + index=[building for building, _ in result_list], |
| 117 | + columns=result_list[0][1].columns, |
| 118 | + ) |
| 119 | + summed_df.index.rename("name", inplace=True) |
| 120 | + for building, df in result_list: |
| 121 | + summed_df.loc[building] += df.sum(axis=0).to_numpy() |
| 122 | + return summed_df |
| 123 | + |
| 124 | + |
| 125 | +def sum_by_index(dfs: list[pd.DataFrame]) -> pd.DataFrame: |
| 126 | + """Sum all values across all dataframes that share the same index. |
| 127 | + Useful for getting district-level time-dependent data across multiple buildings. |
| 128 | +
|
| 129 | + For example: |
| 130 | + ``` |
| 131 | + building_1: col1 col2 |
| 132 | + index |
| 133 | + 2000 1 2 |
| 134 | + 2001 3 4 |
| 135 | + building_2: col1 col2 |
| 136 | + index |
| 137 | + 1999 5 6 |
| 138 | + 2000 7 8 |
| 139 | + building_3: col1 col2 |
| 140 | + index |
| 141 | + 2005 1 2 |
| 142 | + 2006 3 4 |
| 143 | +
|
| 144 | + ``` |
| 145 | + The result would be: |
| 146 | + ``` |
| 147 | + output: col1 col2 |
| 148 | + index |
| 149 | + 1999 5 6 |
| 150 | + 2000 8 10 |
| 151 | + 2001 3 4 |
| 152 | + 2002 0 0 |
| 153 | + 2003 0 0 |
| 154 | + 2004 0 0 |
| 155 | + 2005 1 2 |
| 156 | + 2006 3 4 |
| 157 | + ``` |
| 158 | +
|
| 159 | + :param result_list: A list of dataframes to sum. |
| 160 | + :type result_list: list[pd.DataFrame] |
| 161 | + :return: A dataframe with the summed values. |
| 162 | + :rtype: pd.DataFrame |
| 163 | + """ |
| 164 | + if not dfs: |
| 165 | + raise ValueError("result_list must be non-empty") |
| 166 | + index_min = min(df.index.min() for df in dfs) |
| 167 | + index_max = max(df.index.max() for df in dfs) |
| 168 | + out = ( |
| 169 | + pd.concat(dfs) |
| 170 | + .groupby(level=0, sort=True) |
| 171 | + .sum(numeric_only=True) |
| 172 | + .reindex(pd.RangeIndex(index_min, index_max + 1), fill_value=float(0)) |
| 173 | + ) |
| 174 | + out.index.rename(dfs[0].index.name, inplace=True) |
| 175 | + return out |
| 176 | + |
| 177 | + |
| 178 | +def to_ton(df: pd.DataFrame) -> pd.DataFrame: |
| 179 | + """Convert a dataframe in kgCO2 to tonCO2 by dividing all values by 1000, and also rename the columns by changing 'kgCO2' to 'tonCO2'. |
| 180 | +
|
| 181 | + :param df: A dataframe with values in kgCO2. |
| 182 | + :type df: pd.DataFrame |
| 183 | + :return: A dataframe with values in tonCO2. |
| 184 | + :rtype: pd.DataFrame |
| 185 | + """ |
| 186 | + df_ton = df / 1000.0 |
| 187 | + df_ton.columns = df_ton.columns.str.replace("kgCO2", "tonCO2") |
| 188 | + return df_ton |
| 189 | + |
| 190 | + |
| 191 | +def main(config: Configuration) -> None: |
| 192 | + operational_hourly(config) |
| 193 | + total_yearly(config) |
| 194 | + |
| 195 | + |
| 196 | +if __name__ == "__main__": |
| 197 | + main(Configuration()) |
0 commit comments