forked from MARDAScience/adm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_models.py
230 lines (179 loc) · 8.26 KB
/
make_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf #numerical operations on gpu
from tensorflow.keras.models import model_from_json
#-----------------------------------
def batchnorm_act(x):
"""
batchnorm_act(x)
This function applies batch normalization to a keras model layer, `x`, then a relu activation function
INPUTS:
* `z` : keras model layer (should be the output of a convolution or an input layer)
OPTIONAL INPUTS: None
GLOBAL INPUTS: None
OUTPUTS:
* batch normalized and relu-activated `x`
"""
x = tf.keras.layers.BatchNormalization()(x)
return tf.keras.layers.Activation("relu")(x)
#-----------------------------------
def conv_block(x, filters, kernel_size = (7,7), padding="same", strides=1):
"""
conv_block(x, filters, kernel_size = (7,7), padding="same", strides=1)
This function applies batch normalization to an input layer, then convolves with a 2D convol layer
The two actions combined is called a convolutional block
INPUTS:
* `filters`: number of filters in the convolutional block
* `x`:input keras layer to be convolved by the block
OPTIONAL INPUTS:
* `kernel_size`=(3, 3): tuple of kernel size (x, y) - this is the size in pixels of the kernel to be convolved with the image
* `padding`="same": see tf.keras.layers.Conv2D
* `strides`=1: see tf.keras.layers.Conv2D
GLOBAL INPUTS: None
OUTPUTS:
* keras layer, output of the batch normalized convolution
"""
conv = batchnorm_act(x)
return tf.keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides)(conv)
#-----------------------------------
def bottleneck_block(x, filters, kernel_size = (7,7), padding="same", strides=1):
"""
bottleneck_block(x, filters, kernel_size = (7,7), padding="same", strides=1)
This function creates a bottleneck block layer, which is the addition of a convolution block and a batch normalized/activated block
INPUTS:
* `filters`: number of filters in the convolutional block
* `x`: input keras layer
OPTIONAL INPUTS:
* `kernel_size`=(3, 3): tuple of kernel size (x, y) - this is the size in pixels of the kernel to be convolved with the image
* `padding`="same": see tf.keras.layers.Conv2D
* `strides`=1: see tf.keras.layers.Conv2D
GLOBAL INPUTS: None
OUTPUTS:
* keras layer, output of the addition between convolutional and bottleneck layers
"""
conv = tf.keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides)(x)
conv = conv_block(conv, filters, kernel_size=kernel_size, padding=padding, strides=strides)
bottleneck = tf.keras.layers.Conv2D(filters, kernel_size=(1, 1), padding=padding, strides=strides)(x)
bottleneck = batchnorm_act(bottleneck)
return tf.keras.layers.Add()([conv, bottleneck])
#-----------------------------------
def res_block(x, filters, kernel_size = (7,7), padding="same", strides=1):
"""
res_block(x, filters, kernel_size = (7,7), padding="same", strides=1)
This function creates a residual block layer, which is the addition of a residual convolution block and a batch normalized/activated block
INPUTS:
* `filters`: number of filters in the convolutional block
* `x`: input keras layer
OPTIONAL INPUTS:
* `kernel_size`=(3, 3): tuple of kernel size (x, y) - this is the size in pixels of the kernel to be convolved with the image
* `padding`="same": see tf.keras.layers.Conv2D
* `strides`=1: see tf.keras.layers.Conv2D
GLOBAL INPUTS: None
OUTPUTS:
* keras layer, output of the addition between residual convolutional and bottleneck layers
"""
res = conv_block(x, filters, kernel_size=kernel_size, padding=padding, strides=strides)
res = conv_block(res, filters, kernel_size=kernel_size, padding=padding, strides=1)
bottleneck = tf.keras.layers.Conv2D(filters, kernel_size=(1, 1), padding=padding, strides=strides)(x)
bottleneck = batchnorm_act(bottleneck)
return tf.keras.layers.Add()([bottleneck, res])
#-----------------------------------
def upsamp_concat_block(x, xskip):
"""
upsamp_concat_block(x, xskip)
This function takes an input layer and creates a concatenation of an upsampled version and a residual or 'skip' connection
INPUTS:
* `xskip`: input keras layer (skip connection)
* `x`: input keras layer
OPTIONAL INPUTS: None
GLOBAL INPUTS: None
OUTPUTS:
* keras layer, output of the addition between residual convolutional and bottleneck layers
"""
u = tf.keras.layers.UpSampling2D((2, 2))(x)
return tf.keras.layers.Concatenate()([u, xskip])
#-----------------------------------
def res_unet(sz, f, nclasses=1):
"""
res_unet(sz, f, nclasses=1)
This function creates a custom residual U-Net model for image segmentation
INPUTS:
* `sz`: [tuple] size of input image
* `f`: [int] number of filters in the convolutional block
* flag: [string] if 'binary', the model will expect 2D masks and uses sigmoid. If 'multiclass', the model will expect 3D masks and uses softmax
* nclasses [int]: number of classes
OPTIONAL INPUTS:
* `kernel_size`=(3, 3): tuple of kernel size (x, y) - this is the size in pixels of the kernel to be convolved with the image
* `padding`="same": see tf.keras.layers.Conv2D
* `strides`=1: see tf.keras.layers.Conv2D
GLOBAL INPUTS: None
OUTPUTS:
* keras model
"""
inputs = tf.keras.layers.Input(sz)
## downsample
e1 = bottleneck_block(inputs, f); f = int(f*2)
e2 = res_block(e1, f, strides=2); f = int(f*2)
e3 = res_block(e2, f, strides=2); f = int(f*2)
e4 = res_block(e3, f, strides=2); f = int(f*2)
_ = res_block(e4, f, strides=2)
## bottleneck
b0 = conv_block(_, f, strides=1)
_ = conv_block(b0, f, strides=1)
## upsample
_ = upsamp_concat_block(_, e4)
_ = res_block(_, f); f = int(f/2)
_ = upsamp_concat_block(_, e3)
_ = res_block(_, f); f = int(f/2)
_ = upsamp_concat_block(_, e2)
_ = res_block(_, f); f = int(f/2)
_ = upsamp_concat_block(_, e1)
_ = res_block(_, f)
## classify
if nclasses==1:
outputs = tf.keras.layers.Conv2D(nclasses, (1, 1), padding="same", activation="sigmoid")(_)
else:
outputs = tf.keras.layers.Conv2D(nclasses, (1, 1), padding="same", activation="softmax")(_)
#model creation
model = tf.keras.models.Model(inputs=[inputs], outputs=[outputs])
return model
tilesize = 1024
weights = os.path.normpath(os.getcwd()+os.sep+'model/orthoclip_demonly_3class_batch_6.h5')
model = res_unet((tilesize, tilesize, 1), 6, 3)
model.load_weights(weights)
model_json = model.to_json()
with open(weights.replace('.h5','.json'), "w") as json_file:
json_file.write(model_json)
weights = os.path.normpath(os.getcwd()+os.sep+'model/orthoclip_stdevonly_3class_batch_6.h5')
model = res_unet((tilesize, tilesize, 1), 6, 3)
model.load_weights(weights)
model_json = model.to_json()
with open(weights.replace('.h5','.json'), "w") as json_file:
json_file.write(model_json)
weights = os.path.normpath(os.getcwd()+os.sep+'model/orthoclip_orthoonly_3class_batch_6.h5')
model = res_unet((tilesize, tilesize, 3), 6, 3)
model.load_weights(weights)
model_json = model.to_json()
with open(weights.replace('.h5','.json'), "w") as json_file:
json_file.write(model_json)
weights = os.path.normpath(os.getcwd()+os.sep+'model/orthoclip_RGBdem_3class_batch_6.h5')
model = res_unet((tilesize, tilesize, 4), 6, 3)
model.load_weights(weights)
model_json = model.to_json()
with open(weights.replace('.h5','.json'), "w") as json_file:
json_file.write(model_json)
weights = os.path.normpath(os.getcwd()+os.sep+'model/orthoclip_RGBstdev_3class_batch_6.h5')
model = res_unet((tilesize, tilesize, 4), 6, 3)
model.load_weights(weights)
model_json = model.to_json()
with open(weights.replace('.h5','.json'), "w") as json_file:
json_file.write(model_json)
#
# weights = os.path.normpath(os.getcwd()+os.sep+'model/orthoclip_RGBdemstdev_3class_batch_6.h5')
# model = res_unet((tilesize, tilesize, 5), 6, 3)
#
# model.load_weights(weights)
#
# model_json = model.to_json()
# with open(weights.replace('.h5','.json'), "w") as json_file:
# json_file.write(model_json)