diff --git "a/theories/\316\275Type/\316\275Type.v" "b/theories/\316\275Type/\316\275Type.v" index c35ec2c..d482ffa 100644 --- "a/theories/\316\275Type/\316\275Type.v" +++ "b/theories/\316\275Type/\316\275Type.v" @@ -88,7 +88,7 @@ Variable arity: HSet. (** [FrameBlockPrev] consists of the levels we remember before the current one and for each such previous data, [FrameBlock] consists of the data to maintain at the current level. *) -Class FrameBlockPrev (n: nat) (prefix: Type@{m'}) := { +Class FrameBlockPrev n (prefix: Type@{m'}) := { frame' {p} (Hp: p.+1 <= n): prefix -> HSet@{m}; frame'' {p} (Hp: p.+2 <= n): prefix -> HSet@{m}; restrFrame' {p q} {Hpq: p.+2 <= q.+2} (Hq: q.+2 <= n) (ε: arity) {D}: @@ -99,7 +99,7 @@ Arguments frame' {n prefix} _ {p} Hp D. Arguments frame'' {n prefix} _ {p} Hp D. Arguments restrFrame' {n prefix} _ {p q Hpq} Hq ε {D} d. -Class FrameBlock (n p: nat) (prefix: Type@{m'}) +Class FrameBlock n p (prefix: Type@{m'}) (FramePrev: FrameBlockPrev n prefix) := { frame (Hp: p <= n): prefix -> HSet@{m}; restrFrame {q} {Hpq: p.+1 <= q.+1} (Hq: q.+1 <= n) (ε: arity) {D}: @@ -124,7 +124,7 @@ Arguments cohFrame {n p prefix FramePrev} _ {q r Hpr Hrq Hq ε ω D} d. (** We build paintings using an iterated construction: a painting at level n depends on paintings at level n-1 and n-2; just as we have frame' and frame'', we have painting' and painting''. *) -Class PaintingBlockPrev (n: nat) (prefix: Type@{m'}) +Class PaintingBlockPrev n (prefix: Type@{m'}) (FramePrev : FrameBlockPrev n prefix) := { painting' {p} {Hp: p.+1 <= n} {D}: FramePrev.(frame') Hp D -> HSet@{m}; @@ -140,7 +140,7 @@ Arguments painting'' {n prefix FramePrev} _ {p Hp D} d. Arguments restrPainting' {n prefix FramePrev} _ {p q Hpq} Hq ε {D} [d] b. (** Painting consists of painting, restrPainting, and coherence conditions between them *) -Class PaintingBlock (n: nat) (prefix: Type@{m'}) +Class PaintingBlock n (prefix: Type@{m'}) {FramePrev: FrameBlockPrev n prefix} (PaintingPrev: PaintingBlockPrev n prefix FramePrev) (Frame: forall {p}, FrameBlock n p prefix FramePrev) := { @@ -183,7 +183,7 @@ Arguments cohPainting {n prefix FramePrev PaintingPrev Frame} _ the previous dimensions, so that the induction can be carried *) -Class νType (n: nat) := { +Class νType n := { prefix: Type@{m'}; FramePrev: FrameBlockPrev n prefix; Frame {p}: FrameBlock n p prefix FramePrev; @@ -436,7 +436,7 @@ Proof. unfold mkRestrPainting; now rewrite le_induction'_base_computes. Qed. -Lemma mkRestrPainting_step_computes {q r n} {C: νType n} {Hq: q.+2 <= n.+1} +Lemma mkRestrPainting_step_computes {n} {C: νType n} {q r} {Hq: q.+2 <= n.+1} {Hrq: r.+2 <= q.+2} {ε: arity} {D E} {d: (mkFrame r).(frame) _ D} {c}: mkRestrPainting (Hpq := ↓ Hrq) (Hq := Hq) (ε := ε) E d c = match (rew [id] mkpainting_computes in c) with