You can download the dataset directly locally by following the command below.
wget https://kubeedge.obs.cn-north-1.myhuaweicloud.com/ianvs/curb-detection/curb-detection.zip
This command comes from The lifelong learning bench of curb-detection.
The following is a description of each data set separately.
Download link: cityscapes
paper link: The Cityscapes Dataset for Semantic Urban Scene Understanding
Cordts
Below shows one example figure(RGB) in the dataset.
Cityscape's RGB images ### Data Explorer
Cityscapes is comprised of a large, diverse set of stereo video sequences recorded in streets from 50 different cities. 5000 of these images have high-quality pixel-level annotations; 20 000 additional images have coarse annotations to enable methods that leverage large volumes of weakly-labeled data.
The directories of this dataset is as follows:
├─Cityscapes Dataset
├─disparity
│ ├─test
│ │ ├─berlin
│ │ ├─bielefeld
│ │ ├─bonn
│ │ ├─...
│ │ └─munich
│ ├─train
│ │ ├─01_Hanns_Klemm_Str_45
│ │ ├─03_Hanns_Klemm_Str_19
│ │ ├─...
│ │ └─zurich
│ └─val
│ ├─02_Hanns_Klemm_Str_44
│ ├─04_Maurener_Weg_8
│ ├─05_Schafgasse_1
│ ├─...
│ └─munster
├─gtFine
│ ├─train
│ │ ├─01_Hanns_Klemm_Str_45
│ │ ├─03_Hanns_Klemm_Str_19
│ │ ├─...
│ │ └─zurich
│ └─val
│ ├─02_Hanns_Klemm_Str_44
│ ├─04_Maurener_Weg_8
│ ├─05_Schafgasse_1
│ ├─...
│ └─munster
└─leftImg8bit
├─test
│ ├─berlin
│ ├─bielefeld
│ ├─bonn
│ ├─...
│ └─munich
├─train
│ ├─01_Hanns_Klemm_Str_45
│ ├─03_Hanns_Klemm_Str_19
│ ├─...
│ └─zurich
└─val
├─02_Hanns_Klemm_Str_44
├─04_Maurener_Weg_8
├─05_Schafgasse_1
├─...
└─munster
The following is part of index.txt
:
./images/real_aachen_000093_00019_leftImg8bit.png ./images/real_aachen_000093_00019_gtFine_labelTrainIds.png
./images/real_aachen_000094_00019_leftImg8bit.png ./images/real_aachen_000094_00019_gtFine_labelTrainIds.png
./images/real_aachen_000095_00019_leftImg8bit.png ./images/real_aachen_000095_00019_gtFine_labelTrainIds.png
./images/real_aachen_000096_00019_leftImg8bit.png ./images/real_aachen_000096_00019_gtFine_labelTrainIds.png
./images/real_aachen_000097_00019_leftImg8bit.png ./images/real_aachen_000097_00019_gtFine_labelTrainIds.png
./images/real_aachen_000098_00019_leftImg8bit.png ./images/real_aachen_000098_00019_gtFine_labelTrainIds.png
./images/real_aachen_000099_00019_leftImg8bit.png ./images/real_aachen_000099_00019_gtFine_labelTrainIds.png
The first column represents the file path of the original image, and the second column represents the file path of the label file.
Download link: Synthia
paper link: The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes
The SYNTHetic collection of Imagery and Annotations is a dataset that has been generated with the purpose of aiding semantic segmentation and related scene understanding problems in the context of driving scenarios. SYNTHIA consists of a collection of photo-realistic frames rendered from a virtual city and comes with precise pixel-level semantic annotations for 13 classes: misc, sky, building, road, sidewalk, fence, vegetation, pole, car, sign, pedestrian, cyclist, lane-marking.
Below shows one example figure(RGB) in the dataset.
Synthia's RGB images
It is a new set containing 9,000 random images with labels compatible with the CITYSCAPES test set. The list of classes is void, sky, building, road, sidewalk, fence, vegetation, pole, car, traffic sign, pedestrian, bicycle, motorcycle, parking slot, road-work, traffic light, terrain, rider, truck, bus, train, wall, and landmarking. These images are generated as random perturbations of the virtual world, therefore no temporal consistency is provided (this is not a video stream).
├─SYNTHIA Dataset
├─RGB
│ ├─0000000.png
│ ├─0000001.png
│ ├─...
│ └─0009399.png
├─GT
│ ├─COLOR
│ │ ├─0000000.png
│ │ ├─0000001.png
│ │ ├─...
│ │ └─0009399.png
│ ├─LABELS
│ │ ├─0000000.png
│ │ ├─0000001.png
│ │ ├─...
│ │ └─0009399.png
├─Depth
├─0000000.png
├─0000001.png
├─...
└─0009399.png
The following is part of index.txt
:
./images/sim_1769.png ./images/sim_1769TrainIds.png
./images/sim_1770.png ./images/sim_1770TrainIds.png
./images/sim_1771.png ./images/sim_1771TrainIds.png
./images/sim_1772.png ./images/sim_1772TrainIds.png
./images/sim_1773.png ./images/sim_1773TrainIds.png
./images/sim_1775.png ./images/sim_1775TrainIds.png
./images/sim_1777.png ./images/sim_1777TrainIds.png
./images/sim_1779.png ./images/sim_1779TrainIds.png
./images/sim_1780.png ./images/sim_1780TrainIds.png
The first column represents the file path of the original image, and the second column represents the file path of the label file.