-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1161.maximum-level-sum-of-a-binary-tree.py
82 lines (77 loc) · 1.86 KB
/
1161.maximum-level-sum-of-a-binary-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#
# @lc app=leetcode id=1161 lang=python3
#
# [1161] Maximum Level Sum of a Binary Tree
#
# https://leetcode.com/problems/maximum-level-sum-of-a-binary-tree/description/
#
# algorithms
# Medium (67.25%)
# Likes: 3640
# Dislikes: 103
# Total Accepted: 353.4K
# Total Submissions: 525.5K
# Testcase Example: '[1,7,0,7,-8,null,null]'
#
# Given the root of a binary tree, the level of its root is 1, the level of its
# children is 2, and so on.
#
# Return the smallest level x such that the sum of all the values of nodes at
# level x is maximal.
#
#
# Example 1:
#
#
# Input: root = [1,7,0,7,-8,null,null]
# Output: 2
# Explanation:
# Level 1 sum = 1.
# Level 2 sum = 7 + 0 = 7.
# Level 3 sum = 7 + -8 = -1.
# So we return the level with the maximum sum which is level 2.
#
#
# Example 2:
#
#
# Input: root = [989,null,10250,98693,-89388,null,null,null,-32127]
# Output: 2
#
#
#
# Constraints:
#
#
# The number of nodes in the tree is in the range [1, 10^4].
# -10^5 <= Node.val <= 10^5
#
#
#
# @lc code=start
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import deque
from typing import Optional
class Solution:
def maxLevelSum(self, root: Optional[TreeNode]) -> int:
queue = deque([root])
max_result = []
while queue:
queue_depth = len(queue)
temp_max_result = 0
for i in range(queue_depth):
node = queue.popleft()
temp_max_result += node.val
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
max_result.append(temp_max_result)
print(max_result)
return max_result.index(max(max_result)) + 1
# @lc code=end