-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path437.path-sum-iii.py
109 lines (91 loc) · 2.84 KB
/
437.path-sum-iii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#
# @lc app=leetcode id=437 lang=python3
#
# [437] Path Sum III
#
# https://leetcode.com/problems/path-sum-iii/description/
#
# algorithms
# Medium (46.04%)
# Likes: 11348
# Dislikes: 544
# Total Accepted: 661.2K
# Total Submissions: 1.4M
# Testcase Example: '[10,5,-3,3,2,null,11,3,-2,null,1]\n8'
#
# Given the root of a binary tree and an integer targetSum, return the number
# of paths where the sum of the values along the path equals targetSum.
#
# The path does not need to start or end at the root or a leaf, but it must go
# downwards (i.e., traveling only from parent nodes to child nodes).
#
#
# Example 1:
#
#
# Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
# Output: 3
# Explanation: The paths that sum to 8 are shown.
#
#
# Example 2:
#
#
# Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
# Output: 3
#
#
#
# Constraints:
#
#
# The number of nodes in the tree is in the range [0, 1000].
# -10^9 <= Node.val <= 10^9
# -1000 <= targetSum <= 1000
#
#
#
# @lc code=start
# Definition for a binary tree node.
from collections import defaultdict
from typing import Optional
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
# class Solution:
# def pathSum(self, root: Optional[TreeNode], targetSum: int) -> int:
# def countSum(node, currentSum):
# count = 0
# if not node:
# return 0
# # print(node.val)
# currentSum += node.val
# if currentSum == targetSum:
# count += 1
# count += countSum(node.left, currentSum)
# count += countSum(node.right, currentSum)
# return count
# if not root:
# return 0
# return countSum(root, 0) + self.pathSum(root.left, targetSum) + self.pathSum(root.right, targetSum)
# dfs + prefixsum
class Solution:
def pathSum(self, root: Optional[TreeNode], targetSum: int) -> int:
def dfs(node, currentSum, prefixSum):
if not node:
return 0
currentSum += node.val # 누적 합 갱신
# `currentSum - targetSum`이 존재하는 개수 더하기
count = prefixSum[currentSum - targetSum]
prefixSum[currentSum] += 1 # 현재 누적 합 개수 증가
# 왼쪽과 오른쪽으로 탐색하면서 결과 합산
count += dfs(node.left, currentSum, prefixSum)
count += dfs(node.right, currentSum, prefixSum)
prefixSum[currentSum] -= 1 # 백트래킹 (현재 노드에서 나올 때 개수 감소)
return count
prefixSum = defaultdict(int)
prefixSum[0] = 1 # 기본적으로 0을 하나 포함 (루트에서 시작하는 경로 고려)
return dfs(root, 0, prefixSum)
# @lc code=end