-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathodin.py
276 lines (222 loc) · 13 KB
/
odin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""
For ODIN[1], we simply apply
f(x) = [max prob_t(x')]> theta, where
- x' is the epsilon-perturbed x in direction that minimizes the CE loss on **the most likely output class**.
- For the loss calculation, the output is scaled according to the temperature.
we use the same procedure as the reference code for the paper
See https://github.com/ShiyuLiang/odin-pytorch/blob/34e53f5a982811a0d74baba049538d34efc0732d/code/calData.py#L48
- prob_t is the softmax with temperature t. The max is over all labels.
- theta is the threshold.
We learn the
- threshold with an SVM loss (margin 0).
- grid-search over the epsilon and temperature.
[1] S. Liang, Y. Li, and R. Srikant, "Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks" ICLR, 2018
"""
from __future__ import print_function
import os
import os.path as path
import timeit
from termcolor import colored
import torch
import torch.nn as nn
import torch.optim as optim
import torch.autograd as autograd
import torch.nn.functional as F
from torch.utils.data import DataLoader
import global_vars as Global
from utils.iterative_trainer import IterativeTrainerConfig, IterativeTrainer
from utils.logger import Logger
from methods.base_threshold import ProbabilityThreshold
from methods import AbstractModelWrapper, SVMLoss
from datasets import SubDataset, MirroredDataset
class ODINModelWrapper(AbstractModelWrapper):
""" The wrapper class for H.
"""
def __init__(self, base_model, epsilon=0.0012, temperature=1000):
super(ODINModelWrapper, self).__init__(base_model)
# Let's have these fixed for now!
self.H = nn.Module()
self.H.register_parameter('threshold', nn.Parameter(torch.Tensor([0.5]))) # initialize to prob=0.5 for faster convergence.
# register params under H for storage.
self.H.register_buffer('epsilon', torch.FloatTensor([epsilon]))
self.H.register_buffer('temperature', torch.FloatTensor([1./temperature]))
self.criterion = nn.CrossEntropyLoss()
def subnetwork_eval(self, x):
# We have to backpropagate through the input.
# The model must be fixed in the eval mode.
new_x = x.clone()
cur_x = x.clone()
grad_input_x = None
with torch.set_grad_enabled(True):
cur_x.requires_grad = True
if cur_x.grad is not None:
cur_x.grad.zero_()
base_output = self.base_model(cur_x, softmax=False)
y_hat = base_output.max(1)[1].detach()
base_output = base_output * self.H.temperature
loss = self.criterion(base_output, y_hat)
grad_input_x = autograd.grad([loss], [cur_x], retain_graph=False, only_inputs=True)[0]
# This code is written based on author's code.
# https://github.com/ShiyuLiang/odin-pytorch/blob/34e53f5a982811a0d74baba049538d34efc0732d/code/calData.py#L183
# construct X' - Fast Gradient Sign Method + Projection
# They scale the gradient by 4.1 because of the normalization they apply
# to the images. But we do a late normalization of images in the architecture
# itself, so the gradient is scaled properly already. Though it doesn't really
# matter, because we learn the Epsilon anyway. Normally you should project the
# perturbed image back to the hypercupe, but they don't do it. So I didn't either.
new_input = (new_x.detach() - self.H.epsilon*(grad_input_x.detach().sign()))
new_input.detach_()
new_input.requires_grad = False
# second evaluation.
new_output = self.base_model(new_input, softmax=False).detach()
new_output.mul_(self.H.temperature)
probabilities = F.softmax(new_output, dim=1)
# Get the max probability out
input = probabilities.max(1)[0].detach().unsqueeze_(1)
return input.detach()
def wrapper_eval(self, x):
# Threshold hold the max probability.
output = self.H.threshold - x
return output
def classify(self, x):
return (x>0).long()
class ODIN(ProbabilityThreshold):
def method_identifier(self):
output = "ODIN"
if len(self.add_identifier) > 0:
output = output + "/" + self.add_identifier
return output
def get_H_config(self, train_ds, valid_ds, will_train=True, epsilon=0.0012, temperature=1000):
print("Preparing training D1+D2 (H)")
# Initialize the multi-threaded loaders.
train_loader = DataLoader(train_ds, batch_size=self.args.batch_size, shuffle=True, num_workers=self.args.workers, pin_memory=True)
valid_loader = DataLoader(valid_ds, batch_size=self.args.batch_size, shuffle=True, num_workers=self.args.workers, pin_memory=True)
# Set up the criterion
# To make the threshold learning, actually threshold learning
# the margin must be set to 0.
criterion = SVMLoss(margin=0.0).to(self.args.device)
# Set up the model
model = ODINModelWrapper(self.base_model, epsilon=epsilon, temperature=temperature).to(self.args.device)
old_valid_loader = valid_loader
if will_train:
# cache the subnetwork for faster optimization.
from methods import get_cached
from torch.utils.data.dataset import TensorDataset
trainX, trainY = get_cached(model, train_loader, self.args.device)
validX, validY = get_cached(model, valid_loader, self.args.device)
new_train_ds = TensorDataset(trainX, trainY)
x_center = trainX[trainY==0].mean()
y_center = trainX[trainY==1].mean()
init_value = (x_center+y_center)/2
model.H.threshold.fill_(init_value)
print("Initializing threshold to %.2f"%(init_value.item()))
new_valid_ds = TensorDataset(validX, validY)
# Initialize the new multi-threaded loaders.
train_loader = DataLoader(new_train_ds, batch_size=2048, shuffle=True, num_workers=0, pin_memory=False)
valid_loader = DataLoader(new_valid_ds, batch_size=2048, shuffle=True, num_workers=0, pin_memory=False)
# Set model to direct evaluation (for cached data)
model.set_eval_direct(True)
# Set up the config
config = IterativeTrainerConfig()
base_model_name = self.base_model.__class__.__name__
if hasattr(self.base_model, 'preferred_name'):
base_model_name = self.base_model.preferred_name()
config.name = '_%s[%s](%s->%s)'%(self.__class__.__name__, base_model_name, self.args.D1, self.args.D2)
config.train_loader = train_loader
config.valid_loader = valid_loader
config.phases = {
'train': {'dataset' : train_loader, 'backward': True},
'test': {'dataset' : valid_loader, 'backward': False},
'testU': {'dataset' : old_valid_loader, 'backward': False},
}
config.criterion = criterion
config.classification = True
config.cast_float_label = True
config.stochastic_gradient = True
config.visualize = not self.args.no_visualize
config.model = model
config.optim = optim.Adagrad(model.H.parameters(), lr=1e-2, weight_decay=0)
config.scheduler = optim.lr_scheduler.ReduceLROnPlateau(config.optim, patience=5, threshold=1e-1, min_lr=1e-8, factor=0.1, verbose=True)
config.logger = Logger()
config.max_epoch = 30
return config
def train_H(self, dataset):
# Wrap the (mixture)dataset in SubDataset so to easily
# split it later.
dataset = SubDataset('%s-%s'%(self.args.D1, self.args.D2), dataset, torch.arange(len(dataset)).int())
# 80%, 20% for local train+test
train_ds, valid_ds = dataset.split_dataset(0.8)
if self.args.D1 in Global.mirror_augment:
print(colored("Mirror augmenting %s"%self.args.D1, 'green'))
new_train_ds = train_ds + MirroredDataset(train_ds)
train_ds = new_train_ds
# As suggested by the authors.
all_temperatures = [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000]
all_epsilons = torch.linspace(0, 0.004, 21)
total_params = len(all_temperatures) * len(all_epsilons)
best_accuracy = -1
h_path = path.join(self.args.experiment_path, '%s'%(self.__class__.__name__),
'%d'%(self.default_model),
'%s->%s.pth'%(self.args.D1, self.args.D2))
h_parent = path.dirname(h_path)
if not path.isdir(h_parent):
os.makedirs(h_parent)
done_path = h_path + '.done'
trainer, h_config = None, None
if self.args.force_train_h or not path.isfile(done_path):
# Grid search over the temperature and the epsilons.
for i_eps, eps in enumerate(all_epsilons):
for i_temp, temp in enumerate(all_temperatures):
so_far = i_eps * len(all_temperatures) + i_temp + 1
print(colored('Checking eps=%.2e temp=%.1f (%d/%d)'%(eps, temp, so_far, total_params), 'green'))
start_time = timeit.default_timer()
h_config = self.get_H_config(train_ds=train_ds, valid_ds=valid_ds,
epsilon=eps, temperature=temp)
trainer = IterativeTrainer(h_config, self.args)
print(colored('Training from scratch', 'green'))
trainer.run_epoch(0, phase='test')
for epoch in range(1, h_config.max_epoch+1):
trainer.run_epoch(epoch, phase='train')
trainer.run_epoch(epoch, phase='test')
train_loss = h_config.logger.get_measure('train_loss').mean_epoch()
h_config.scheduler.step(train_loss)
# Track the learning rates and threshold.
lrs = [float(param_group['lr']) for param_group in h_config.optim.param_groups]
h_config.logger.log('LRs', lrs, epoch)
h_config.logger.get_measure('LRs').legend = ['LR%d'%i for i in range(len(lrs))]
if hasattr(h_config.model, 'H') and hasattr(h_config.model.H, 'threshold'):
h_config.logger.log('threshold', h_config.model.H.threshold.cpu().numpy(), epoch-1)
h_config.logger.get_measure('threshold').legend = ['threshold']
if h_config.visualize:
h_config.logger.get_measure('threshold').visualize_all_epochs(trainer.visdom)
if h_config.visualize:
# Show the average losses for all the phases in one figure.
h_config.logger.visualize_average_keys('.*_loss', 'Average Loss', trainer.visdom)
h_config.logger.visualize_average_keys('.*_accuracy', 'Average Accuracy', trainer.visdom)
h_config.logger.visualize_average('LRs', trainer.visdom)
test_average_acc = h_config.logger.get_measure('test_accuracy').mean_epoch()
if best_accuracy < test_average_acc:
print('Updating the on file model with %s'%(colored('%.4f'%test_average_acc, 'red')))
best_accuracy = test_average_acc
torch.save(h_config.model.H.state_dict(), h_path)
elapsed = timeit.default_timer() - start_time
print('Hyper-param check (%.2e, %.1f) in %.2fs' %(eps, temp, elapsed))
torch.save({'finished':True}, done_path)
# If we load the pretrained model directly, we will have to initialize these.
if trainer is None or h_config is None:
h_config = self.get_H_config(train_ds=train_ds, valid_ds=valid_ds,
epsilon=0, temperature=1, will_train=False)
# don't worry about the values of epsilon or temperature. it will be overwritten.
trainer = IterativeTrainer(h_config, self.args)
# Load the best model.
print(colored('Loading H model from %s'%h_path, 'red'))
h_config.model.H.load_state_dict(torch.load(h_path))
h_config.model.set_eval_direct(False)
print('Temperature %s Epsilon %s'%(colored(h_config.model.H.temperature.item(),'red'), colored(h_config.model.H.epsilon.item(), 'red')))
trainer.run_epoch(0, phase='testU')
test_average_acc = h_config.logger.get_measure('testU_accuracy').mean_epoch(epoch=0)
print("Valid/Test average accuracy %s"%colored('%.4f%%'%(test_average_acc*100), 'red'))
self.H_class = h_config.model
self.H_class.eval()
self.H_class.set_eval_direct(False)
return test_average_acc