-
Notifications
You must be signed in to change notification settings - Fork 0
/
skindeep_infer.py
54 lines (38 loc) · 1.73 KB
/
skindeep_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from fastai.vision.image import Image
from fastai.vision import load_learner
import PIL.Image
import torchvision.transforms as T
from pathlib import Path
from torch.nn import Module
class FeatureLoss(Module):
def __init__(self, m_feat, layer_ids, layer_wgts):
super().__init__()
self.m_feat = m_feat
self.loss_features = [self.m_feat[i] for i in layer_ids]
self.hooks = hook_outputs(self.loss_features, detach=False)
self.wgts = layer_wgts
self.metric_names = ['pixel'] +\
[f'feat_{i}' for i in range(len(layer_ids))] +\
[f'gram_{i}' for i in range(len(layer_ids))]
def make_features(self, x, clone=False):
self.m_feat(x)
return [(o.clone() if clone else o) for o in self.hooks.stored]
def forward(self, input, target):
out_feat = self.make_features(target, clone=True)
in_feat = self.make_features(input)
self.feat_losses = [base_loss(input, target)]
self.feat_losses += [base_loss(f_in, f_out)*w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.metrics = dict(zip(self.metric_names, self.feat_losses))
return sum(self.feat_losses)
def __del__(self): self.hooks.remove()
path = Path(".")
learn = load_learner(path, 'SkinDeep2.pkl')
def process_image(filename):
img = PIL.Image.open("inked.jpg").convert("RGB")
img_t = T.ToTensor()(img)
img_fast = Image(img_t)
_, img_hr, _ = learn.predict(img_fast)
Image(img_hr).save('out.png')