From 9b6fa199935e8648904591da3c38ca25d815ee0f Mon Sep 17 00:00:00 2001 From: ashioyajotham Date: Sun, 12 Jan 2025 01:00:26 +0300 Subject: [PATCH] I can't lock out --- README.md | 109 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 109 insertions(+) diff --git a/README.md b/README.md index 8cfe5e6..a11fabb 100644 --- a/README.md +++ b/README.md @@ -58,6 +58,115 @@ Common in crypto due to: - Inventory management - Cross-exchange arbitrage +## Trading Strategies + +### 1. Sentiment-Driven Market Making +Exploits sentiment-price divergences in crypto markets: + +```math +Signal_{sentiment} = \begin{cases} + 1, & \text{if } |S(t) - \beta P'(t)| > \theta \text{ and } S(t) > P'(t) \\ + -1, & \text{if } |S(t) - \beta P'(t)| > \theta \text{ and } S(t) < P'(t) \\ + 0, & \text{otherwise} +\end{cases} + +where: +- S(t): Normalized sentiment score +- P'(t): Price return +- β: Sentiment-price sensitivity +- θ: Divergence threshold +``` + +**Implementation Details:** +- Uses FinGPT for real-time sentiment analysis +- Monitors news, social media, and on-chain metrics +- Adapts β based on market volatility regime +- Dynamic θ threshold using market microstructure + +### 2. Microstructure Alpha +Captures order flow imbalances and liquidity provision opportunities: + +```math +OFI_{\alpha} = \sum_{i=1}^n w_i \cdot \frac{V_b^i - V_a^i}{V_b^i + V_a^i} + +where: +- w_i: Level-specific weights +- V_b^i: Bid volume at level i +- V_a^i: Ask volume at level i +``` + +**Key Features:** +- Multi-level order book analysis +- Volume-weighted price impact estimation +- Adaptive order placement +- Cross-exchange liquidity aggregation + +### 3. Statistical Arbitrage +Exploits temporary price dislocations: + +```math +Z_{spread}(t) = \frac{P_1(t) - P_2(t) - \mu_{spread}}{\sigma_{spread}} + +Trade when: |Z_{spread}| > Z_{threshold} +``` + +**Implementation:** +- Pairs trading across exchanges +- Cointegration-based pair selection +- Dynamic spread modeling +- Transaction cost optimization + +### 4. Portfolio Management Strategies + +#### a) Dynamic Asset Allocation +```math +w^*_t = argmax_w \{ w'\mu_t - \frac{\lambda}{2}w'\Sigma_t w \} +s.t. \begin{cases} + w'1 = 1 \\ + w_i \geq 0 \\ + w_i \leq w_{max} \\ + ESG(w) \geq ESG_{min} +\end{cases} +``` + +#### b) Tax-Loss Harvesting +```math +Harvest_{value} = \sum_{i \in Losses} |P_i^{current} - P_i^{basis}| \cdot Q_i \cdot TaxRate +Execute \text{ if } Harvest_{value} > Costs_{transaction} + Costs_{opportunity} +``` + +#### c) Risk Parity Portfolio +```math +w_i \propto \frac{1}{\sigma_i} \text{ where } \sum w_i = 1 +``` + +### Strategy Integration + +1. **Signal Generation** +```python +combined_signal = w_1 * sentiment_signal + w_2 * micro_signal + w_3 * stat_arb_signal +where w_1 + w_2 + w_3 = 1 +``` + +2. **Position Sizing** +```math +size = min(Kelly_{fraction} \cdot capital, position_{limit}, liquidity_{constraint}) +where: +Kelly_{fraction} = p - \frac{1-p}{r} +``` + +3. **Risk Management** +- Per-trade stop loss +- Portfolio-level VaR limits +- Drawdown controls +- Exposure limits per strategy + +4. **Execution Optimization** +- Smart order routing +- Transaction cost analysis +- Liquidity-aware execution +- Cross-exchange netting + ## Core Components ### 1. Market Inefficiency Detection