Skip to content

Commit 9311c1f

Browse files
authored
Merge pull request #27 from ashish-3916/upload
Good Bye Mr Sem 7
2 parents 63b48d9 + b9c9370 commit 9311c1f

37 files changed

+985
-22
lines changed

sem 5/todo.txt

+269
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,269 @@
1+
--------------------------------------------------------END SEM----------------------------------------------------------
2+
today is 4 dec and we have a weekend
3+
4+
need to do : 3 practical files
5+
poc : we have codes ,need to install env and test and make file
6+
CC : mix all of them
7+
data mining : from scratch , unless we get a miracle
8+
9+
need to study cloud computing
10+
11+
how good are we with the subjects ?
12+
13+
cloud computing : i need to study this today . 3 units mp , lets see
14+
15+
data mining :
16+
i have read the most of the topics , need to revise before mid sems though a bit rusty , though i can do on day of practical/ exam day
17+
so we are kinda good here.
18+
:SOS: need to complete file here though by weekend!
19+
20+
machine learning :
21+
all good to go , ig a quick revsion of mid sem though.
22+
23+
compiler construction : done the video part , last unit still left , have to do on sunday for sure ,
24+
:SOS: need to complete file here though by weekend!
25+
REMINDER : though we had few classes , so I need to meet teacher (which i dont know who is lol) and need to ask a bit about exam pattern
26+
but lets prepare for viva till then
27+
28+
cryptography :
29+
hell No , and i am not ready for this! need to meet maam for this URGENT on monday for sure .
30+
though we don't have practicals to we can leave it for now
31+
32+
33+
we are totally good with mid sem marks in all subjects.
34+
35+
LETS BRING THE END SEM DOWN TO FEET!!!
36+
37+
--------------------------------------------------------END SEM----------------------------------------------------------
38+
HEY THIS IS ME FROM 21 NOV
39+
40+
you will soon have practical classed hopefully next week , but you know they won't be much productive , so might be spending most of the time in
41+
making practical files [29 nov - 5 dec]
42+
43+
the next week you will be having PRACTICAL OFFLINE EXAMS. (need to read theory before that). [6 dec - 13 ]
44+
45+
the next 2 weeks would be OFFLINE EXAMS ~:PANIC:~ :KALM: [13 onwards]
46+
47+
----------------------------->
48+
Marks distribution( For practical waale subject) --
49+
50+
Mse = 25
51+
Ese = 50
52+
Class test + Internals = 10
53+
Practicals = 15
54+
55+
----------------------------->
56+
DM practical evaluation -- (⌛ Next week submit karna hai)
57+
58+
Project
59+
Make project in DM and PPT to explain that project (Jiske grp banaye thay pahle)
60+
61+
Practical
62+
- Classify data using decision tree, k nearest, naive bayes, bayseian believe network, linear or logistic regresssion, svm
63+
- Visualize it, ss in file, hyperparameter value change karo and note the changes in the model
64+
-Check the model using different measures (eg. F1 score, recall etc.)
65+
66+
UPD : [DONE EZ :)]
67+
68+
----------------------------->
69+
Crypto ESE
70+
71+
50 marks
72+
5 question with parts, 10marks per question
73+
3-4 parts for each question (1 or 2 numerical in each question)
74+
75+
❎ Not in syllabus
76+
Unit2 - Elliptic curve
77+
78+
✅Important topics
79+
RSA, Diffie Hellman
80+
81+
[5:15 pm, 22/11/2021] ashish: md 5 not in sylabus
82+
[5:17 pm, 22/11/2021] ashish: majorly RSA calculation
83+
[5:17 pm, 22/11/2021] ashish: 3 question per unit , attempt 2 only
84+
85+
----------------------------->
86+
87+
----------------------------->
88+
CLOUD COMPUTING
89+
still dont know what to do
90+
91+
MACHINE LEARNING
92+
one revision from statquest and we are good to read the ppts hopefully.
93+
u have read most of the stuff , still u have *must* read the ppts before end of this month , special revisoion of neural network and svm
94+
95+
DATA MINING
96+
_-------------------------->
97+
98+
gini index (examples)
99+
cart algo (examples)
100+
ide3 algo (examples)
101+
regression and classification
102+
bayes theorm (examples)
103+
bayesian belief network (examples)
104+
knn
105+
decision trees (examples)
106+
rule based classifier
107+
linear and logistic regression
108+
109+
see PPTS of these topics :
110+
111+
svm's : the whole derivation till we find the optimal value as 2/||W||
112+
bagging and boosting : random forest , adaboost , gradient boost(basics)
113+
there are some practice problems
114+
ensemble learning
115+
holdout and cross validations
116+
117+
interestingness measures : pattern recognisation and something more too !
118+
119+
association rules : apriori algorithm (psuedo code and example)[bfs]
120+
pattern growth -> fp tree [dfs]
121+
verticle data format approach
122+
123+
lift
124+
x^2 measures
125+
find a YT video for this [UPD : DONE TILL HERE]
126+
127+
clustering :
128+
partitioning measures
129+
k-means algo and some variation in it.
130+
hierarchical methods (AGNES , DIANA , dendogram)
131+
centriod , radius
132+
133+
fuzzy set and fuzzy clustering
134+
expectation maximasation algorithm (there is a numerical in the ppt)
135+
136+
find a YT video for this too !
137+
138+
attribute oriented analysis :
139+
140+
intial thoughts: donno know what actually is this topic about .
141+
looks like it something related to x^2 test and correlation among the attributes .
142+
and to find the covariance . there are screenshot from book though . most of it is the reading part. some numerical examples . lets see it in the end .
143+
144+
OBV THIS IS THE END!!!
145+
_-------------------------->
146+
147+
COMPILER CONSTRUCTION
148+
maam have uploaded notes on classroom , also gate smasher has most of the syllabus covered.
149+
UPD : [ALMOST DONE]
150+
151+
CRYPTOGRAPHY
152+
u better start it tomorrow , huge and complex syllabus , u need to do all the upcoming classes .
153+
UPD : [I'M CONFUSED IN MAC AND HASH , WT- ]
154+
i will do after the practicals now
155+
156+
157+
158+
159+
-------------------------------------------------------------------------------------------------------------------------
160+
--------------------------------------------------------MID SEM----------------------------------------------------------
161+
data sheet ->
162+
163+
11 oct POC
164+
12 oct CC
165+
13 oct DM
166+
14 oct ML and crypto
167+
168+
169+
thursday -> 4 days
170+
to do -> DM
171+
172+
173+
174+
preprocessing
175+
select attributes
176+
correlation and information gain
177+
PCA
178+
eigen vector and eigen values
179+
180+
To-do:
181+
182+
Cloud Computing
183+
// -unit 1 and 2
184+
185+
Machine Learning
186+
// - linear regression , multiple variables
187+
// - Gradient decent
188+
// - logistic regression
189+
// - decision tree
190+
191+
Cryptography
192+
// - Cipher techniques
193+
// - block ciepher and stream ciepher and feistel structures
194+
// - AES
195+
// - operation modes
196+
// - DES
197+
// - CR4
198+
199+
200+
POC
201+
// compiler assember and interperter preprocessor
202+
// phases of compiler
203+
// some toc introduction
204+
205+
// lexical analysis -> tokens and lexime
206+
207+
// syntax analysis -> parser tree and chech against the grammer
208+
// to study context free grammer
209+
// top down parser - > predicate recursive(first and follow ) ,
210+
// recursive decent parser and LL1 grammer
211+
212+
// (semantic analysis)
213+
214+
// intermeduate code generation
215+
// code optimisation
216+
// code genereation
217+
218+
// - chapter 1
219+
// - chapter 1b
220+
// - Toc intro
221+
222+
223+
Data Mining
224+
225+
// calculate mean , medinaan , mode ,outliers detection formula
226+
227+
// introduction , data , exploring data
228+
229+
// chapter 1 -> intro, defination, challenges,
230+
// predictive tasks (classsificatin and regression) ,
231+
// descriptive tasks (clustering, assosiation analysis, anomaly detection)
232+
233+
// chapter 2 -> basic types of data, data quality, precessing techniques, and measures of similarity and dissimilarity
234+
// 1.types of data
235+
// types of attribute :
236+
// nominal , oridnal , interval ,ratio
237+
// on no of value : discreate and continuous
238+
// asymetric attributes
239+
240+
// characterstics of data sets :
241+
// dimensionality , spartiality and resolution
242+
243+
// types of data sets :
244+
// record data, transaction data, data matrix, documentation
245+
// graph data -> relationship , representation
246+
// ordered data -> relationship changes with time or space
247+
// sequential data -> record data + time (visiting time in mall)
248+
// sequence data -> genes (postions of ATGC)
249+
// time series data -> sequential data + time series (taken over time) (eg stocks)
250+
// spatial data -> postion + areas (eg weather geography)
251+
252+
// temporal autocorelation -> if two measurements are close in time, then the values of those measurements are often very similar
253+
// spatial autocorelation -> objects that are physically close tend to be similar in other ways as well.
254+
255+
// 2. data quality
256+
// detection and correction (data cleaning)
257+
// algo to tolerate poor data
258+
259+
260+
261+
262+
// chapter 3 -> data exploration, discusses summary statistics, visualization techniques, and On-Line Analytical Processing (OLAP)
263+
264+
265+
266+
// - ETL extraction , transformtion ,pipelining
267+
268+
269+
----------------------------------------------------------------------------------------------------------------------------------------------------

sem 6/todo.txt

+30
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,30 @@
1+
hpc
2+
3+
unit 1 :
4+
ppt 1 :introduction parallel and serial computing
5+
VON NEUMAN ARCHITECTURE
6+
ppt 2 :
7+
flynns classifiaction and parallel and temporal parallelism
8+
ppt 3 :
9+
that numerical stuff clock cycle and mips rate
10+
ppt 4 :
11+
dependencies, data , flow , output, anti. etc etc control resource , problems ,bernstein's conditions, pipleling and hazards (ye book se padna hai ig ,ganda sa lag raha hia ppt me ) . PRAM variants vagerah
12+
13+
cahlo aaj sirf unit 1 karte hia jitna ho paye
14+
15+
16+
17+
-------------------------------------------------------------------------------------
18+
26 january
19+
20+
HPC : only syllabus on classroom
21+
NLP : classroom par bas books and syllabus hai , ye subj english ke brabar hai
22+
23+
IOT : ppt hai classroom par till date
24+
25+
CV : uff ye teacher bhi na, books daal kar bhag gya
26+
CHS : syllabus hi nahi pata maam ko hi lol
27+
-------------------------------------------------------------------------------------
28+
29+
ufff, ek bhi subj interesting nahi hai wuuoo wuuoo :(
30+
152 KB
Loading

sem 7/Computer Graphics/cg syll.pdf

272 KB
Binary file not shown.
4.74 MB
Binary file not shown.
Binary file not shown.
File renamed without changes.

sem 7/HCI/endsem paper.jpeg

90 KB
Loading

sem 7/HCI/endsem slides.txt

+7
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
slides
2+
ch 1 - https://www.slideshare.net/alanjohndix/hci-chapter-1
3+
ch 2 - https://www.slideshare.net/alanjohndix/hci-3e-ch-2-the-computer
4+
ch 3 - https://www.slideshare.net/alanjohndix/hci-chapter-3
5+
ch 4 - https://www.slideshare.net/alanjohndix/hci-chapter-4
6+
ch 5 - https://www.slideshare.net/alanjohndix/hci-3e-ch-5-interaction-design-basics
7+
ch 7 - https://www.slideshare.net/alanjohndix/hci-3e-ch-7-design-rules
Binary file not shown.
4.38 MB
Binary file not shown.

sem 7/HCI/ppts/Notability.pdf

769 KB
Binary file not shown.

sem 7/HCI/ppts/e3-chap-01.pdf

1.7 MB
Binary file not shown.

sem 7/HCI/ppts/e3-chap-02.pdf

3.05 MB
Binary file not shown.

sem 7/HCI/ppts/e3-chap-03.pdf

2.4 MB
Binary file not shown.

sem 7/HCI/ppts/e3-chap-04.pdf

770 KB
Binary file not shown.

sem 7/HCI/ppts/e3-chap-05.pdf

1.34 MB
Binary file not shown.

sem 7/HCI/ppts/e3-chap-07.pdf

265 KB
Binary file not shown.

sem 7/HCI/ppts/e3-chap-09.pdf

402 KB
Binary file not shown.

sem 7/HCI/ppts/hci_midsem.pdf

972 KB
Binary file not shown.

sem 7/HCI/ppts/ppt1.pdf

131 KB
Binary file not shown.

sem 7/HCI/ppts/ppt2.pdf

166 KB
Binary file not shown.

sem 7/ITIM/Document 29.pdf

693 KB
Binary file not shown.

sem 7/ITIM/ITIM endsem.jpeg

122 KB
Loading

sem 7/ITIM/IT_Security.pdf

3.1 MB
Binary file not shown.

sem 7/ITIM/book edit.pdf

233 KB
Binary file not shown.

0 commit comments

Comments
 (0)