-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper.py
75 lines (60 loc) · 2.23 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.applications.xception import Xception
from keras.models import load_model
from pickle import load
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
# import argparse
# ap = argparse.ArgumentParser()
# ap.add_argument('-i', '--image', required=True, help="Image Path")
# args = vars(ap.parse_args())
# img_path = args['image']
def extract_features(img, model):
# try:
# image = Image.open(filename)
# except:
# print("ERROR: Couldn't open image! Make sure the image path and extension is correct")
image = img
image = image.resize((299,299))
image = np.array(image)
# for images that has 4 channels, we convert them into 3 channels
if image.shape[2] == 4:
image = image[..., :3]
image = np.expand_dims(image, axis=0)
image = image/127.5
image = image - 1.0
feature = model.predict(image)
return feature
def word_for_id(integer, tokenizer):
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
def generate_desc(model, tokenizer, photo, max_length):
in_text = 'start'
for i in range(max_length):
sequence = tokenizer.texts_to_sequences([in_text])[0]
sequence = pad_sequences([sequence], maxlen=max_length)
pred = model.predict([photo,sequence], verbose=0)
pred = np.argmax(pred)
word = word_for_id(pred, tokenizer)
if word is None:
break
in_text += ' ' + word
if word == 'end':
break
return in_text
def generate_caption(img):
max_length = 32
tokenizer = load(open("static/tokenizer.p","rb"))
model = load_model('static/models/model_9.h5')
xception_model = Xception(include_top=False, pooling="avg")
photo = extract_features(img, xception_model)
# img = Image.open(img_path)
description = generate_desc(model, tokenizer, photo, max_length)
print("\n\n")
print(description)
return description
plt.imshow(img)