diff --git a/dev/plots.py b/dev/plots.py index 845903e..5804896 100644 --- a/dev/plots.py +++ b/dev/plots.py @@ -249,7 +249,7 @@ def plot_estimates(star, filename='search_&_estimate.png', highlight=True, n=0): path = os.path.join(star.params['path'],filename) if not star.params['overwrite']: path = utils._get_next(path) - plt.savefig(path, dpi=300) + plt.savefig(path, dpi=100) if not star.params['show']: plt.close() @@ -361,7 +361,7 @@ def plot_parameters(star, subfilename='background_only.png', filename='global_fi path = os.path.join(star.params['path'],subfilename) if not star.params['overwrite']: path = utils._get_next(path) - plt.savefig(path, dpi=300) + plt.savefig(path, dpi=100) if not star.params['show']: plt.close() return @@ -452,7 +452,7 @@ def plot_parameters(star, subfilename='background_only.png', filename='global_fi path = os.path.join(star.params['path'],filename) if not star.params['overwrite']: path = utils._get_next(path) - plt.savefig(path, dpi=300) + plt.savefig(path, dpi=100) if not star.params['show']: plt.close() @@ -484,7 +484,7 @@ def plot_samples(star, filename='samples.png'): path = os.path.join(star.params['path'],filename) if not star.params['overwrite']: path = utils._get_next(path) - plt.savefig(path, dpi=300) + plt.savefig(path, dpi=100) if not star.params['show']: plt.close() @@ -589,7 +589,7 @@ def plot_bgfits(star, filename='bgmodel_fits.png', highlight=True): path = os.path.join(star.params['path'],filename) if not star.params['overwrite']: path = utils._get_next(path) - plt.savefig(path, dpi=300) + plt.savefig(path, dpi=100) if not star.params['show']: plt.close() @@ -646,7 +646,7 @@ def create_benchmark_plot(filename='comparison.png', variables=['numax','dnu'], path = os.path.join(os.path.abspath(os.getcwd()), filename) if not overwrite: path = utils._get_next(path) - plt.savefig(path, dpi=300, facecolor='white', edgecolor='white') + plt.savefig(path, dpi=100, facecolor='white', edgecolor='white') if show: plt.show() plt.close() @@ -707,7 +707,7 @@ def plot_light_curve(star, args, filename='time_series.png', npanels=1): path = os.path.join(star.params['path'],filename) if not star.params['overwrite']: path = utils._get_next(path) - plt.savefig(path, dpi=300) + plt.savefig(path, dpi=100) if not star.params['show']: plt.close() @@ -753,7 +753,7 @@ def plot_power_spectrum(star, args, filename='power_spectrum.png', npanels=1): path = os.path.join(star.params['path'],filename) if not star.params['overwrite']: path = utils._get_next(path) - plt.savefig(path, dpi=300) + plt.savefig(path, dpi=100) if not star.params['show']: plt.close() @@ -789,7 +789,7 @@ def plot_1d_ed(star, filename='1d_ed.png', npanels=1): path = os.path.join(star.params['path'],filename) if not star.params['overwrite']: path = utils._get_next(path) - plt.savefig(path, dpi=300) + plt.savefig(path, dpi=100) if not star.params['show']: plt.close() diff --git a/dev/target.py b/dev/target.py index 718c491..e40d6f9 100644 --- a/dev/target.py +++ b/dev/target.py @@ -1830,26 +1830,23 @@ def echelle_diagram(self, smooth_ech=None, nox=None, noy='0+0', hey=False, npb=1 nx = int(np.ceil(use_dnu/self.params['resolution']/self.params['npb'])) else: nx = int(self.params['nox']) - x = np.linspace(0.0, 2*use_dnu, 2*nx+1) - yy = np.arange(min(self.frequency),max(self.frequency),use_dnu) - lower = self.params['numax_smoo']-(use_dnu*(ny/2.))+(use_dnu*(nshift+0)) - upper = self.params['numax_smoo']+(use_dnu*(ny/2.))+(use_dnu*(nshift+1)) - y = yy[(yy >= lower)&(yy <= upper)] - z = np.zeros((ny+1,2*nx)) - for i in range(1,ny+1): - y_mask = ((self.frequency >= y[i-1]) & (self.frequency < y[i])) - for j in range(nx): - x_mask = ((self.frequency%(use_dnu) >= x[j]) & (self.frequency%(use_dnu) < x[j+1])) - if smooth_y[x_mask & y_mask] != []: - z[i][j] = np.sum(smooth_y[x_mask & y_mask]) - else: - z[i][j] = np.nan - z[0][:nx], z[-1][nx:] = np.nan, np.nan - for k in range(ny): - z[k][nx:] = z[k+1][:nx] + + fmin, fmax = self.params['numax_smoo']-(use_dnu*(ny/2.))+(use_dnu*(nshift+0)), self.params['numax_smoo']+(use_dnu*(ny/2.))+(use_dnu*(nshift+1)) + fstart = fmin-(fmin%use_dnu) + zoom_freq, zoom_pow = self.zoom_freq, self.zoom_pow + + x = np.linspace(0, 2*use_dnu, 2*nx) + z = np.zeros([ny+1, 2*nx]) + + for istack in range(ny): + z[-istack-1,:] = np.interp(fstart+istack * use_dnu + x, zoom_freq, zoom_pow) + + y = fstart + np.arange(0, ny+1, 1)*use_dnu + use_dnu/2 + self.ed = np.copy(z) self.extent = [min(x),max(x),min(y),max(y)] - # make copy of ED to flatten and clip outliers + + # make copy of ED to flatten and clip outliers ed_copy = self.ed.flatten() if self.params['clip_value'] > 0: cut = np.nanmedian(ed_copy)+(self.params['clip_value']*np.nanmedian(ed_copy))