forked from lucidrains/lightweight-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
94 lines (68 loc) · 2.99 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import re
from pathlib import Path
from random import random
import torch
from more_itertools import flatten
from PIL.Image import BILINEAR
from torch.functional import norm
from torch.utils.data import Dataset
from torchvision import transforms
from util import dose2locs, identity, loc2dose
def transforms1(image_size, w=3, zoom=1.1, erase_p=0):
return [
transforms.Resize(image_size),
transforms.RandomAffine(w, (.01*w, .01*w), (1, 1), w, BILINEAR),
transforms.Resize(int(image_size*zoom)),
transforms.CenterCrop(image_size) ,
transforms.RandomErasing(p=erase_p, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0)
]
class DoseCurveDataset(Dataset):
def __init__(self, folder, image_size, chans=[0,1,2,3,4], train=True, norm_f=None,
w=None, doses="all", label=False, multiplier=None, erase_p=0):
if doses == "all":
doses = dose2locs.keys()
w = w or (3 if train else 0)
def paths(folder, doses):
not_52 = re.compile('/[^(52)]')
assays = flatten(dose2locs[dose] for dose in doses)
gen = flatten((Path(f'{folder}').glob(
f'**/*{assay}*.pt')) for assay in assays)
return [p for p in gen if not_52.search(str(p))]
self.dose2id = {k: i for i, k in enumerate(sorted(doses))}
self.f = d8 if train else identity()
super().__init__()
self.folder = folder
self.image_size = image_size
self.label = label
assert not norm_f or not multiplier
if not norm_f and not multiplier: multiplier = 1
self.norm_f = norm_f or (lambda x: (x*multiplier/255).clamp(0, 1))
self.paths = paths(folder, doses)
assert len(self.paths) > 0, f'No images were found in {folder} for training'
#convert_image_fn = convert_transparent_to_rgb if not transparent else convert_rgb_to_transparent
self.chans = chans
self.transform = transforms.Compose(transforms1(image_size, w, erase_p=erase_p))
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = self.paths[index]
img = self.norm_f(torch.load(path)[self.chans])
if self.label:
label = self.dose2id[loc2dose[str(path).split()[-2]]]
return self.transform(self.f(img)), label
return (self.transform(self.f(img)))
class MSNorm:
def __init__(self, norm_path):
self.mean, self.std = torch.load(norm_path, map_location='cpu')
def __call__(self, img):
return (img - self.mean) / self.std
def invert(self, img):
return img * self.std + self.mean
def denorm_f(ms, device):
mean, std = map(lambda x: torch.tensor(x, device=device)[None, :, None, None], ms)
return lambda x: (x*std + mean).cpu()
def d8(img):
img = torch.rot90(img, int(random()*4), dims=(1,2))
if random()>.5:
img = torch.flip(img, dims=(2,))
return img