Topics
Kubernetes Terms:
Jobs
Pods, Nodes, Ingress, Services, Deployment, StatefullSet
Main Kubernetes Components summarized:
ClusterIP, Headless, Multi-Port, NodePort, LoadBalancer
Pods are the smallest deployable units of computing that you can create and manage in Kubernetes.
pods/simple-pod.yaml
apiVersion: v1
kind: Pod
metadata:
name: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
To create the Pod shown above, run the following command:
kubectl apply -f https://k8s.io/examples/pods/simple-pod.yaml
Pod templates:
Controllers for workload resources create Pods from a pod template and manage those Pods on your behalf.
PodTemplates are specifications for creating Pods, and are included in workload resources such as Deployments, Jobs, and DaemonSets.
apiVersion: batch/v1
kind: Job
metadata:
name: hello
spec:
template:
# This is the pod template
spec:
containers:
- name: hello
image: busybox:1.28
command: ['sh', '-c', 'echo "Hello, Kubernetes!" && sleep 3600']
restartPolicy: OnFailure
# The pod template ends here
Kubernetes runs your workload by placing containers into Pods to run on Nodes. A node may be a virtual or physical machine, depending on the cluster. Each node is managed by the control plane and contains the services necessary to run Pods.
The components on a node include the kubelet, a container runtime, and the kube-proxy.
Management
There are two main ways to have Nodes added to the API server:
1. The kubelet on a node self-registers to the control plane
2. You (or another human user) manually add a Node object
{
"kind": "Node",
"apiVersion": "v1",
"metadata": {
"name": "10.240.79.157",
"labels": {
"name": "my-first-k8s-node"
}
}
}
"conditions": [
{
"type": "Ready",
"status": "True",
"reason": "KubeletReady",
"message": "kubelet is posting ready status",
"lastHeartbeatTime": "2019-06-05T18:38:35Z",
"lastTransitionTime": "2019-06-05T11:41:27Z"
}
]
Assuming the following custom pod priority classes in a cluster,
Pod priority class name Pod priority class value
custom-class-a 100000
custom-class-b 10000
custom-class-c 1000
regular/unset 0
Within the kubelet configuration the settings for shutdownGracePeriodByPodPriority could look like:
Pod priority class value Shutdown period
100000 10 seconds
10000 180 seconds
1000 120 seconds
0 60 seconds
The corresponding kubelet config YAML configuration would be:
shutdownGracePeriodByPodPriority:
- priority: 100000
shutdownGracePeriodSeconds: 10
- priority: 10000
shutdownGracePeriodSeconds: 180
- priority: 1000
shutdownGracePeriodSeconds: 120
- priority: 0
shutdownGracePeriodSeconds: 60
Pod priority class value Shutdown period
100000 300 seconds
1000 120 seconds
0 60 seconds
memorySwap:
swapBehavior: LimitedSwap
service-deployment.yml:
apiVersion: v1
kink: Service
metadata:
name: demoservice
spec:
ports:
- port: 80
targetPort: 80
selector:
name: deployment
type: ClusterIP
kubectl apply -f service-deployment.yml kubectl get po -o wide
An abstract way to expose an application running on a set of Pods as a network service.
With Kubernetes you don't need to modify your application to use an unfamiliar service discovery mechanism. Kubernetes gives Pods their own IP addresses and a single DNS name for a set of Pods, and can load-balance across them.
Defining a Service:
A Service in Kubernetes is a REST object, similar to a Pod.
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
selector:
app.kubernetes.io/name: MyApp
ports:
- protocol: TCP
port: 80
targetPort: 9376
apiVersion: v1
kind: Pod
metadata:
name: nginx
labels:
app.kubernetes.io/name: proxy
spec:
containers:
- name: nginx
image: nginx:stable
ports:
- containerPort: 80
name: http-web-svc
---
apiVersion: v1
kind: Service
metadata:
name: nginx-service
spec:
selector:
app.kubernetes.io/name: proxy
ports:
- name: name-of-service-port
protocol: TCP
port: 80
targetPort: http-web-svc
Services without selectors:
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9376
apiVersion: discovery.k8s.io/v1
kind: EndpointSlice
metadata:
name: my-service-1 # by convention, use the name of the Service
# as a prefix for the name of the EndpointSlice
labels:
# You should set the "kubernetes.io/service-name" label.
# Set its value to match the name of the Service
kubernetes.io/service-name: my-service
addressType: IPv4
ports:
- name: '' # empty because port 9376 is not assigned as a well-known
# port (by IANA)
appProtocol: http
protocol: TCP
port: 9376
endpoints:
- addresses:
- "10.4.5.6" # the IP addresses in this list can appear in any order
- "10.1.2.3"
Multi-Port Services:
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
selector:
app.kubernetes.io/name: MyApp
ports:
- name: http
protocol: TCP
port: 80
targetPort: 9376
- name: https
protocol: TCP
port: 443
targetPort: 9377
Environment variables:
REDIS_PRIMARY_SERVICE_HOST=10.0.0.11
REDIS_PRIMARY_SERVICE_PORT=6379
REDIS_PRIMARY_PORT=tcp://10.0.0.11:6379
REDIS_PRIMARY_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_PRIMARY_PORT_6379_TCP_PROTO=tcp
REDIS_PRIMARY_PORT_6379_TCP_PORT=6379
REDIS_PRIMARY_PORT_6379_TCP_ADDR=10.0.0.11
NodePort:
Choosing your own port
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
type: NodePort
selector:
app.kubernetes.io/name: MyApp
ports:
# By default and for convenience, the `targetPort` is set to the same value as the `port` field.
- port: 80
targetPort: 80
# Optional field
# By default and for convenience, the Kubernetes control plane will allocate a port from a range (default: 30000-32767)
nodePort: 30007
Type LoadBalancer:
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
selector:
app.kubernetes.io/name: MyApp
ports:
- protocol: TCP
port: 80
targetPort: 9376
clusterIP: 10.0.171.239
type: LoadBalancer
status:
loadBalancer:
ingress:
- ip: 192.0.2.127
TLS support on AWS
For partial TLS / SSL support on clusters running on AWS, you can add three annotations to a LoadBalancer service:
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-ssl-cert: arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-123456789012
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-backend-protocol: (https|http|ssl|tcp)
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http
service.beta.kubernetes.io/aws-load-balancer-ssl-ports: "443,8443"
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-ssl-negotiation-policy: "ELBSecurityPolicy-TLS-1-2-2017-01"
PROXY protocol support on AWS
To enable PROXY protocol support for clusters running on AWS, you can use the following service annotation:
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-proxy-protocol: "*"
ELB Access Logs on AWS:
metadata:
name: my-service
annotations:
# Specifies whether access logs are enabled for the load balancer
service.beta.kubernetes.io/aws-load-balancer-access-log-enabled: "true"
# The interval for publishing the access logs. You can specify an interval of either 5 or 60 (minutes).
service.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval: "60"
# The name of the Amazon S3 bucket where the access logs are stored
service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name: "my-bucket"
# The logical hierarchy you created for your Amazon S3 bucket, for example `my-bucket-prefix/prod`
service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix: "my-bucket-prefix/prod"
Connection Draining on AWS:
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-connection-draining-enabled: "true"
service.beta.kubernetes.io/aws-load-balancer-connection-draining-timeout: "60"
Other ELB annotations
There are other annotations to manage Classic Elastic Load Balancers that are described below.
metadata:
name: my-service
annotations:
# The time, in seconds, that the connection is allowed to be idle (no data has been sent
# over the connection) before it is closed by the load balancer
service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "60"
# Specifies whether cross-zone load balancing is enabled for the load balancer
service.beta.kubernetes.io/aws-load-balancer-cross-zone-load-balancing-enabled: "true"
# A comma-separated list of key-value pairs which will be recorded as
# additional tags in the ELB.
service.beta.kubernetes.io/aws-load-balancer-additional-resource-tags: "environment=prod,owner=devops"
# The number of successive successful health checks required for a backend to
# be considered healthy for traffic. Defaults to 2, must be between 2 and 10
service.beta.kubernetes.io/aws-load-balancer-healthcheck-healthy-threshold: ""
# The number of unsuccessful health checks required for a backend to be
# considered unhealthy for traffic. Defaults to 6, must be between 2 and 10
service.beta.kubernetes.io/aws-load-balancer-healthcheck-unhealthy-threshold: "3"
# The approximate interval, in seconds, between health checks of an
# individual instance. Defaults to 10, must be between 5 and 300
service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval: "20"
# The amount of time, in seconds, during which no response means a failed
# health check. This value must be less than the service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval
# value. Defaults to 5, must be between 2 and 60
service.beta.kubernetes.io/aws-load-balancer-healthcheck-timeout: "5"
# A list of existing security groups to be configured on the ELB created. Unlike the annotation
# service.beta.kubernetes.io/aws-load-balancer-extra-security-groups, this replaces all other
# security groups previously assigned to the ELB and also overrides the creation
# of a uniquely generated security group for this ELB.
# The first security group ID on this list is used as a source to permit incoming traffic to
# target worker nodes (service traffic and health checks).
# If multiple ELBs are configured with the same security group ID, only a single permit line
# will be added to the worker node security groups, that means if you delete any
# of those ELBs it will remove the single permit line and block access for all ELBs that shared the same security group ID.
# This can cause a cross-service outage if not used properly
service.beta.kubernetes.io/aws-load-balancer-security-groups: "sg-53fae93f"
# A list of additional security groups to be added to the created ELB, this leaves the uniquely
# generated security group in place, this ensures that every ELB
# has a unique security group ID and a matching permit line to allow traffic to the target worker nodes
# (service traffic and health checks).
# Security groups defined here can be shared between services.
service.beta.kubernetes.io/aws-load-balancer-extra-security-groups: "sg-53fae93f,sg-42efd82e"
# A comma separated list of key-value pairs which are used
# to select the target nodes for the load balancer
service.beta.kubernetes.io/aws-load-balancer-target-node-labels: "ingress-gw,gw-name=public-api"
Network Load Balancer support on AWS:
FEATURE STATE: Kubernetes v1.15 [beta]
To use a Network Load Balancer on AWS, use the annotation service.beta.kubernetes.io/aws-load-balancer-type with the value set to nlb.
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-type: "nlb"
spec:
loadBalancerSourceRanges:
- "143.231.0.0/16"
Type ExternalName:
apiVersion: v1
kind: Service
metadata:
name: my-service
namespace: prod
spec:
type: ExternalName
externalName: my.database.example.com
External IPs:
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
selector:
app.kubernetes.io/name: MyApp
ports:
- name: http
protocol: TCP
port: 80
targetPort: 9376
externalIPs:
- 80.11.12.10
deployhttpd.yml:
apiVersion: v1
kind: Deployment
metadata:
name: mydeployment
spec:
replicas: 1
selector:
matchLabels:
name: deployment
template:
metadata:
name: testpod1
labels:
name: deployment
spec:
containers:
- name: c00
image: httpd
ports:
- containerPort: 80
kubectl apply -f deployhttpd.yml
kubectl get deployment
A Deployment provides declarative updates for Pods and ReplicaSets.
You describe a desired state in a Deployment, and the Deployment Controller changes the actual state to the desired state at a controlled rate. You can define Deployments to create new ReplicaSets, or to remove existing Deployments and adopt all their resources with new Deployments.
Use Case
The following are typical use cases for Deployments:
Create a Deployment to rollout a ReplicaSet. The ReplicaSet creates Pods in the background. Check the status of the rollout to see if it succeeds or not.
Declare the new state of the Pods by updating the PodTemplateSpec of the Deployment. A new ReplicaSet is created and the Deployment manages moving the Pods from the old ReplicaSet to the new one at a controlled rate. Each new ReplicaSet updates the revision of the Deployment.
Rollback to an earlier Deployment revision if the current state of the Deployment is not stable. Each rollback updates the revision of the Deployment.
Scale up the Deployment to facilitate more load.
Pause the rollout of a Deployment to apply multiple fixes to its PodTemplateSpec and then resume it to start a new rollout.
Use the status of the Deployment as an indicator that a rollout has stuck.
Clean up older ReplicaSets that you don't need anymore.
Creating a Deployment:
The following is an example of a Deployment. It creates a ReplicaSet to bring up three nginx Pods:
controllers/nginx-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
kubectl apply -f https://k8s.io/examples/controllers/nginx-deployment.yaml
kubectl get deployments
Updating a Deployment
kubectl set image deployment.v1.apps/nginx-deployment nginx=nginx:1.16.1
Or
kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1
kubectl edit deployment/nginx-deployment
kubectl rollout status deployment/nginx-deployment
or
deployment "nginx-deployment" successfully rolled out
kubectl get rs
kubectl get pods
kubectl describe deployments
kubectl set image deployment/nginx-deployment nginx=nginx:1.161
kubectl rollout status deployment/nginx-deployment
kubectl get rs
kubectl get pods
kubectl describe deployment
kubectl rollout history deployment/nginx-deployment
kubectl rollout history deployment/nginx-deployment --revision=2
kubectl rollout undo deployment/nginx-deployment
or
kubectl rollout undo deployment/nginx-deployment --to-revision=2
kubectl get deployment nginx-deployment
kubectl describe deployment nginx-deployment
kubectl scale deployment/nginx-deployment --replicas=10
kubectl autoscale deployment/nginx-deployment --min=10 --max=15 --cpu-percent=80
kubectl get deploy
kubectl set image deployment/nginx-deployment nginx=nginx:sometag
kubectl get rs
kubectl get deploy
kubectl get rs
kubectl get deploy
kubectl get rs
kubectl rollout pause deployment/nginx-deployment
kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1
kubectl rollout history deployment/nginx-deployment
kubectl get rs
kubectl set resources deployment/nginx-deployment -c=nginx --limits=cpu=200m,memory=512Mi
kubectl rollout resume deployment/nginx-deployment
kubectl get rs -w
kubectl get rs
kubectl rollout status deployment/nginx-deployment
kubectl patch deployment/nginx-deployment -p '{"spec":{"progressDeadlineSeconds":600}}'
kubectl describe deployment nginx-deployment
kubectl rollout status deployment/nginx-deployment
FEATURE STATE:
An API object that manages external access to the services in a cluster, typically HTTP.
Ingress may provide load balancing, SSL termination and name-based virtual hosting.
Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic routing is controlled by rules defined on the Ingress resource.
service/networking/minimal-ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: minimal-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
ingressClassName: nginx-example
rules:
- http:
paths:
- path: /testpath
pathType: Prefix
backend:
service:
name: test
port:
number: 80
service/networking/ingress-resource-backend.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: ingress-resource-backend
spec:
defaultBackend:
resource:
apiGroup: k8s.example.com
kind: StorageBucket
name: static-assets
rules:
- http:
paths:
- path: /icons
pathType: ImplementationSpecific
backend:
resource:
apiGroup: k8s.example.com
kind: StorageBucket
name: icon-assets
kubectl describe ingress ingress-resource-backend
Examples:
Kind Path(s) Request path(s) Matches?
Prefix / (all paths) Yes
Exact /foo /foo Yes
Exact /foo /bar No
Exact /foo /foo/ No
Exact /foo/ /foo No
Prefix /foo /foo, /foo/ Yes
Prefix /foo/ /foo, /foo/ Yes
Prefix /aaa/bb /aaa/bbb No
Prefix /aaa/bbb /aaa/bbb Yes
Prefix /aaa/bbb/ /aaa/bbb Yes, ignores trailing slash
Prefix /aaa/bbb /aaa/bbb/ Yes, matches trailing slash
Prefix /aaa/bbb /aaa/bbb/ccc Yes, matches subpath
Prefix /aaa/bbb /aaa/bbbxyz No, does not match string prefix
Prefix /, /aaa /aaa/ccc Yes, matches /aaa prefix
Prefix /, /aaa, /aaa/bbb /aaa/bbb Yes, matches /aaa/bbb prefix
Prefix /, /aaa, /aaa/bbb /ccc Yes, matches / prefix
Prefix /aaa /ccc No, uses default backend
Mixed /foo (Prefix), /foo (Exact) /foo Yes, prefers Exact
Hostname wildcards:
Host Host header Match?
*.foo.com bar.foo.com Matches based on shared suffix
*.foo.com baz.bar.foo.com No match, wildcard only covers a single DNS label
*.foo.com foo.com No match, wildcard only covers a single DNS label
service/networking/ingress-wildcard-host.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: ingress-wildcard-host
spec:
rules:
- host: "foo.bar.com"
http:
paths:
- pathType: Prefix
path: "/bar"
backend:
service:
name: service1
port:
number: 80
- host: "*.foo.com"
http:
paths:
- pathType: Prefix
path: "/foo"
backend:
service:
name: service2
port:
number: 80
service/networking/external-lb.yaml
apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
name: external-lb
spec:
controller: example.com/ingress-controller
parameters:
apiGroup: k8s.example.com
kind: IngressParameters
name: external-lb
For example:
---
apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
name: external-lb-1
spec:
controller: example.com/ingress-controller
parameters:
# The parameters for this IngressClass are specified in a
# ClusterIngressParameter (API group k8s.example.net) named
# "external-config-1". This definition tells Kubernetes to
# look for a cluster-scoped parameter resource.
scope: Cluster
apiGroup: k8s.example.net
kind: ClusterIngressParameter
name: external-config-1
service/networking/default-ingressclass.yaml
apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
labels:
app.kubernetes.io/component: controller
name: nginx-example
annotations:
ingressclass.kubernetes.io/is-default-class: "true"
spec:
controller: k8s.io/ingress-nginx
service/networking/test-ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: test-ingress
spec:
defaultBackend:
service:
name: test
port:
number: 80
kubectl get ingress test-ingress
service/networking/simple-fanout-example.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: simple-fanout-example
spec:
rules:
- host: foo.bar.com
http:
paths:
- path: /foo
pathType: Prefix
backend:
service:
name: service1
port:
number: 4200
- path: /bar
pathType: Prefix
backend:
service:
name: service2
port:
number: 8080
kubectl describe ingress simple-fanout-example
service/networking/name-virtual-host-ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: name-virtual-host-ingress
spec:
rules:
- host: foo.bar.com
http:
paths:
- pathType: Prefix
path: "/"
backend:
service:
name: service1
port:
number: 80
- host: bar.foo.com
http:
paths:
- pathType: Prefix
path: "/"
backend:
service:
name: service2
port:
number: 80
service/networking/name-virtual-host-ingress-no-third-host.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: name-virtual-host-ingress-no-third-host
spec:
rules:
- host: first.bar.com
http:
paths:
- pathType: Prefix
path: "/"
backend:
service:
name: service1
port:
number: 80
- host: second.bar.com
http:
paths:
- pathType: Prefix
path: "/"
backend:
service:
name: service2
port:
number: 80
- http:
paths:
- pathType: Prefix
path: "/"
backend:
service:
name: service3
port:
number: 80
apiVersion: v1
kind: Secret
metadata:
name: testsecret-tls
namespace: default
data:
tls.crt: base64 encoded cert
tls.key: base64 encoded key
type: kubernetes.io/tls
service/networking/tls-example-ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: tls-example-ingress
spec:
tls:
- hosts:
- https-example.foo.com
secretName: testsecret-tls
rules:
- host: https-example.foo.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: service1
port:
number: 80
kubectl describe ingress test kubectl edit ingress test
spec:
rules:
- host: foo.bar.com
http:
paths:
- backend:
service:
name: service1
port:
number: 80
path: /foo
pathType: Prefix
- host: bar.baz.com
http:
paths:
- backend:
service:
name: service2
port:
number: 80
path: /foo
pathType: Prefix
..
kubectl describe ingress test
volumes-hostpath.yml (Tested Code)
apiVersion: v1
kind: Pod
metadata:
name: myvolhostpath
spec:
containers:
- name: testc
image: centos
command: ["/bin/bash", "-c", "sleep 15000"]
volumeMounts:
- name: testvolume
mountPath: /tmp/hostpath
volumes:
- name: testvolume
hostPath:
path: /tmp/data
kubectl apply -f volumes-hostpath.yml
kubectl get po
Volumes:
On-disk files in a container are ephemeral, which presents some problems for non-trivial applications when running in containers. One problem is the loss of files when a container crashes. The kubelet restarts the container but with a clean state. A second problem occurs when sharing files between containers running together in a Pod. The Kubernetes volume abstraction solves both of these problems. Familiarity with Pods is suggested. Background
Creating an AWS EBS volume
Before you can use an EBS volume with a pod, you need to create it.
aws ec2 create-volume --availability-zone=eu-west-1a --size=10 --volume-type=gp2
Make sure the zone matches the zone you brought up your cluster in. Check that the size and EBS volume type are suitable for your use. AWS EBS configuration example
apiVersion: v1
kind: Pod
metadata:
name: test-ebs
spec:
containers:
- image: registry.k8s.io/test-webserver
name: test-container
volumeMounts:
- mountPath: /test-ebs
name: test-volume
volumes:
- name: test-volume
# This AWS EBS volume must already exist.
awsElasticBlockStore:
volumeID: "<volume id>"
fsType: ext4
If the EBS volume is partitioned, you can supply the optional field partition: "" to specify which partition to mount on. AWS EBS CSI migration FEATURE STATE: Kubernetes v1.25 [stable]
The cinder volume type is used to mount the OpenStack Cinder volume into your pod. Cinder volume configuration example
apiVersion: v1
kind: Pod
metadata:
name: test-cinder
spec:
containers:
- image: registry.k8s.io/test-webserver
name: test-cinder-container
volumeMounts:
- mountPath: /test-cinder
name: test-volume
volumes:
- name: test-volume
# This OpenStack volume must already exist.
cinder:
volumeID: "<volume id>"
fsType: ext4
OpenStack CSI migration FEATURE STATE: Kubernetes v1.24 [stable]
The CSIMigration feature for Cinder is enabled by default since Kubernetes 1.21. It redirects all plugin operations from the existing in-tree plugin to the cinder.csi.openstack.org Container Storage Interface (CSI) Driver. OpenStack Cinder CSI Driver must be installed on the cluster.
When referencing a ConfigMap, you provide the name of the ConfigMap in the volume. You can customize the path to use for a specific entry in the ConfigMap. The following configuration shows how to mount the log-config ConfigMap onto a Pod called configmap-pod:
apiVersion: v1
kind: Pod
metadata:
name: configmap-pod
spec:
containers:
- name: test
image: busybox:1.28
volumeMounts:
- name: config-vol
mountPath: /etc/config
volumes:
- name: config-vol
configMap:
name: log-config
items:
- key: log_level
path: log_level
The log-config ConfigMap is mounted as a volume, and all contents stored in its log_level entry are mounted into the Pod at path /etc/config/log_level. Note that this path is derived from the volume's mountPath and the path keyed with log_level. Note:
You must create a ConfigMap before you can use it.
A container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
Text data is exposed as files using the UTF-8 character encoding. For other character encodings, use binaryData.
A size limit can be specified for the default medium, which limits the capacity of the emptyDir volume. The storage is allocated from node ephemeral storage. If that is filled up from another source (for example, log files or image overlays), the emptyDir may run out of capacity before this limit. Note: If the SizeMemoryBackedVolumes feature gate is enabled, you can specify a size for memory backed volumes. If no size is specified, memory backed volumes are sized to 50% of the memory on a Linux host. emptyDir configuration example
apiVersion: v1
kind: Pod
metadata:
name: test-pd
spec:
containers:
- image: registry.k8s.io/test-webserver
name: test-container
volumeMounts:
- mountPath: /cache
name: cache-volume
volumes:
- name: cache-volume
emptyDir:
sizeLimit: 500Mi
fc (fibre channel)
An fc volume type allows an existing fibre channel block storage volume to mount in a Pod. You can specify single or multiple target world wide names (WWNs) using the parameter targetWWNs in your Volume configuration. If multiple WWNs are specified, targetWWNs expect that those WWNs are from multi-path connections. Note: You must configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
Creating a GCE persistent disk
Before you can use a GCE persistent disk with a Pod, you need to create it.
gcloud compute disks create --size=500GB --zone=us-central1-a my-data-disk
GCE persistent disk configuration example
apiVersion: v1
kind: Pod
metadata:
name: test-pd
spec:
containers:
- image: registry.k8s.io/test-webserver
name: test-container
volumeMounts:
- mountPath: /test-pd
name: test-volume
volumes:
- name: test-volume
# This GCE PD must already exist.
gcePersistentDisk:
pdName: my-data-disk
fsType: ext4
Regional persistent disks
The Regional persistent disks feature allows the creation of persistent disks that are available in two zones within the same region. In order to use this feature, the volume must be provisioned as a PersistentVolume; referencing the volume directly from a pod is not supported. Manually provisioning a Regional PD PersistentVolume
gcloud compute disks create --size=500GB my-data-disk --region us-central1 --replica-zones us-central1-a,us-central1-b
Regional persistent disk configuration example
apiVersion: v1
kind: PersistentVolume
metadata:
name: test-volume
spec:
capacity:
storage: 400Gi
accessModes:
- ReadWriteOnce
gcePersistentDisk:
pdName: my-data-disk
fsType: ext4
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
# failure-domain.beta.kubernetes.io/zone should be used prior to 1.21
- key: topology.kubernetes.io/zone
operator: In
values:
- us-central1-a
- us-central1-b
Here is an example of a gitRepo volume:
apiVersion: v1
kind: Pod
metadata:
name: server
spec:
containers:
- image: nginx
name: nginx
volumeMounts:
- mountPath: /mypath
name: git-volume
volumes:
- name: git-volume
gitRepo:
repository: "git@somewhere:me/my-git-repository.git"
revision: "22f1d8406d464b0c0874075539c1f2e96c253775"
hostPath configuration example
apiVersion: v1
kind: Pod
metadata:
name: test-pd
spec:
containers:
- image: registry.k8s.io/test-webserver
name: test-container
volumeMounts:
- mountPath: /test-pd
name: test-volume
volumes:
- name: test-volume
hostPath:
# directory location on host
path: /data
# this field is optional
type: Directory
Caution: The FileOrCreate mode does not create the parent directory of the file. If the parent directory of the mounted file does not exist, the pod fails to start. To ensure that this mode works, you can try to mount directories and files separately, as shown in the FileOrCreateconfiguration. hostPath FileOrCreate configuration example
apiVersion: v1
kind: Pod
metadata:
name: test-webserver
spec:
containers:
- name: test-webserver
image: registry.k8s.io/test-webserver:latest
volumeMounts:
- mountPath: /var/local/aaa
name: mydir
- mountPath: /var/local/aaa/1.txt
name: myfile
volumes:
- name: mydir
hostPath:
# Ensure the file directory is created.
path: /var/local/aaa
type: DirectoryOrCreate
- name: myfile
hostPath:
path: /var/local/aaa/1.txt
type: FileOrCreate
iscsi
An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod. Unlike emptyDir, which is erased when a Pod is removed, the contents of an iscsi volume are preserved and the volume is merely unmounted. This means that an iscsi volume can be pre-populated with data, and that data can be shared between pods. Note: You must have your own iSCSI server running with the volume created before you can use it.
See the iSCSI example for more details.
local
A local volume represents a mounted local storage device such as a disk, partition or directory.
Local volumes can only be used as a statically created PersistentVolume. Dynamic provisioning is not supported.
Compared to hostPath volumes, local volumes are used in a durable and portable manner without manually scheduling pods to nodes. The system is aware of the volume's node constraints by looking at the node affinity on the
PersistentVolume.
However, local volumes are subject to the availability of the underlying node and are not suitable for all applications. If a node becomes unhealthy, then the local volume becomes inaccessible by the pod. The pod using this volume is unable to run. Applications using local volumes must be able to tolerate this reduced availability, as well as potential data loss, depending on the durability characteristics of the underlying disk.
The following example shows a PersistentVolume using a local volume and nodeAffinity:
apiVersion: v1
kind: PersistentVolume
metadata:
name: example-pv
spec:
capacity:
storage: 100Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Delete
storageClassName: local-storage
local:
path: /mnt/disks/ssd1
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- example-node
You must set a PersistentVolume nodeAffinity when using local volumes. The Kubernetes scheduler uses the PersistentVolume nodeAffinity to schedule these Pods to the correct node.
PersistentVolume volumeMode can be set to "Block" (instead of the default value "Filesystem") to expose the local volume as a raw block device.
nfs
An nfs volume allows an existing NFS (Network File System) share to be mounted into a Pod. Unlike emptyDir, which is erased when a Pod is removed, the contents of an nfs volume are preserved and the volume is merely unmounted. This means that an NFS volume can be pre-populated with data, and that data can be shared between pods. NFS can be mounted by multiple writers simultaneously.
apiVersion: v1
kind: Pod
metadata:
name: test-pd
spec:
containers:
- image: registry.k8s.io/test-webserver
name: test-container
volumeMounts:
- mountPath: /my-nfs-data
name: test-volume
volumes:
- name: test-volume
nfs:
server: my-nfs-server.example.com
path: /my-nfs-volume
readOnly: true
A portworxVolume can be dynamically created through Kubernetes or it can also be pre-provisioned and referenced inside a Pod. Here is an example Pod referencing a pre-provisioned Portworx volume:
apiVersion: v1
kind: Pod
metadata:
name: test-portworx-volume-pod
spec:
containers:
- image: registry.k8s.io/test-webserver
name: test-container
volumeMounts:
- mountPath: /mnt
name: pxvol
volumes:
- name: pxvol
# This Portworx volume must already exist.
portworxVolume:
volumeID: "pxvol"
fsType: "<fs-type>"
Note: Make sure you have an existing PortworxVolume with name pxvol before using it in the Pod.
For more details, see the Portworx volume examples. Portworx CSI migration
The PHP application's code and assets map to the volume's html folder and the MySQL database is stored in the volume's mysql folder. For example:
apiVersion: v1
kind: Pod
metadata:
name: my-lamp-site
spec:
containers:
- name: mysql
image: mysql
env:
- name: MYSQL_ROOT_PASSWORD
value: "rootpasswd"
volumeMounts:
- mountPath: /var/lib/mysql
name: site-data
subPath: mysql
- name: php
image: php:7.0-apache
volumeMounts:
- mountPath: /var/www/html
name: site-data
subPath: html
volumes:
- name: site-data
persistentVolumeClaim:
claimName: my-lamp-site-data
Using subPath with expanded environment variables
Use the subPathExpr field to construct subPath directory names from downward API environment variables. The subPath and subPathExpr properties are mutually exclusive.
In this example, a Pod uses subPathExpr to create a directory pod1 within the hostPath volume /var/log/pods. The hostPath volume takes the Pod name from the downwardAPI. The host directory /var/log/pods/pod1 is mounted at /logs in the container.
apiVersion: v1
kind: Pod
metadata:
name: pod1
spec:
containers:
- name: container1
env:
- name: POD_NAME
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.name
image: busybox:1.28
command: [ "sh", "-c", "while [ true ]; do echo 'Hello'; sleep 10; done | tee -a /logs/hello.txt" ]
volumeMounts:
- name: workdir1
mountPath: /logs
# The variable expansion uses round brackets (not curly brackets).
subPathExpr: $(POD_NAME)
restartPolicy: Never
volumes:
- name: workdir1
hostPath:
path: /var/log/pods
Resources
The storage media (such as Disk or SSD) of an emptyDir volume is determined by the medium of the filesystem holding the kubelet root dir (typically /var/lib/kubelet). There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between containers or between pods.
***Tested Example By Ajay Sisaudiya***
-
CMDS:
Creating CinfigMap:
microk8s kubectl create configmap envcm01 --from-literal="astechutube" --from-literal="abc123" or
microk8s kubectl create cm envcm01 --from-literal="astechutube" --from-literal="abc123" microk8s kubectl get cm microk8s kubectl describe cm envcm01microk8s kubectl explain --recursive pod microk8s kubectl explain --recursive pod | less
cm01-pod.yml (Only One Value)
apiVersion: v1
kind: Pod
metadata:
name: cm01-pod
spec:
containers:
- name: cm01-pod
image: nginx
imagePullPolicy: Never
env:
- name: varsfromcm
valueFrom:
configMapKeyRef:
key: name
name: envcm01
OR
-
cm01-pod.yml (Only Two Values)
apiVersion: v1 kind: Pod metadata: name: cm01-pod spec: containers: - name: cm01-pod image: nginx imagePullPolicy: Never env: - name: varsfromcm1 valueFrom: configMapKeyRef: key: name name: envcm01 - name: varsfromcm2 valueFrom: configMapKeyRef: key: password name: envcm01
CMDS:
microk8s kubectl apply -f cm01-pod.yml
microk8s kubectl exec -it cm01-pod bash
root@cm01-pod:/# env
-
Using Yaml File
fromfilemc01.yml
apiVersion: v1 kind: ConfigMap metadata: name: fromfilecm01 data: #property-like keys; each key maps to a simple value #player_initial_lives: "3" #ui_properties_file_name: "user-interface.properties" #file-like keys env.sh: | name=ajay age=88 city=meerut country=india
CMDS:
microk8s kubectl apply -f fromfilecm01.yml
cm01-pod.yml
apiVersion: v1
kind: Pod
metadata:
name: cm01-pod
spec:
containers:
- name: cm01-pod
image: nginx
imagePullPolicy: Never
env:
- name: varsfromcm1
valueFrom:
configMapKeyRef:
key: name
name: envcm01
- name: varsfromcm2
valueFrom:
configMapKeyRef:
key: password
name: envcm01
- name: varsfromfile3
valueFrom:
configMapKeyRef:
key: env.sh
name: fromfilecm01
CMDS:
microk8s kubectl apply -f cm01-pod.yml
microk8s kubectl exec -it cm01-pod bash
root@cm01-pod:/# env
-
Using envFrom & configMapRef (Including configMap File
fromfilemc01.yml
apiVersion: v1 kind: ConfigMap metadata: name: fromfilecm01 data: #property-like keys; each key maps to a simple value #player_initial_lives: "3" #ui_properties_file_name: "user-interface.properties" #file-like keys env.sh: | name=ajay age=88 city=meerut country=india
CMDS:
microk8s kubectl apply -f fromfilecm01.yml
cm01-pod.yml
apiVersion: v1
kind: Pod
metadata:
name: cm01-pod
spec:
containers:
- name: cm01-pod
image: nginx
imagePullPolicy: Never
envFrom:
- configMapRef:
name: fromfilecm
microk8s kubectl apply -f cm01-pod.yml
microk8s kubectl exec -it cm01-pod bash
root@cm01-pod:/# env
🔚
How to Create a ConfigMap?
kubectl create configmap [configmap_name] [attribute] [source]
--from file (if the source is a file/directory)
--from-literal (if the source is a key-value pair)
apiVersion: v1
data:
key1: value1
key2: value2
...
kind: ConfigMap
metadata:
creationTimeStamp: ...
name: example-configmap
namespace: default
resourceVersion: ...
selfLink: /api/v1/namespace/default/configmaps/example-configmap
uid: ...
Mounting ConfigMap as a Volume:
Add a volume section to the to the yaml file of your pod:
volumes:
- name: config
configMap
name: [configmap_name]
items:
- key: [key/file_name]
path: [inside_the_pod]
Use ConfigMap with EnvFrom
env:
- name: SPECIAL_LEVEL_KEY
valueFrom:
configMapKeyRef:
name: [configmap_name]
key: [key/file_name]
To pull all environment variables from a ConfigMap, add the envFrom section to the yaml file:
envFrom:
- configMapKeyRef
name: env-config
apiVersion: v1
kind: ConfigMap
metadata:
name: mysql-config
data:
confluence.cnf: |-
[mysqld]
bind-address = 0.0.0.0
character-set-server=utf8
collation-server=utf8_bin
default-storage-engine=INNODB
max_allowed_packet=256M
innodb_log_file_size=2GB
transaction-isolation=READ-COMMITTED
ConfigMaps
A ConfigMap is an API object used to store non-confidential data in key-value pairs. Pods can consume ConfigMaps as environment variables, command-line arguments, or as configuration files in a volume.
ConfigMaps and Pods:
Here's an example ConfigMap that has some keys with single values, and other keys where the value looks like a fragment of a configuration format.
apiVersion: v1
kind: ConfigMap
metadata:
name: game-demo
data:
#property-like keys; each key maps to a simple value
player_initial_lives: "3"
ui_properties_file_name: "user-interface.properties"
#file-like keys
game.properties: |
enemy.types=aliens,monsters
player.maximum-lives=5
user-interface.properties: |
color.good=purple
color.bad=yellow
allow.textmode=true
configmap/configure-pod.yaml
apiVersion: v1
kind: Pod
metadata:
name: configmap-demo-pod
spec:
containers:
- name: demo
image: alpine
command: ["sleep", "3600"]
env:
# Define the environment variable
- name: PLAYER_INITIAL_LIVES # Notice that the case is different here
# from the key name in the ConfigMap.
valueFrom:
configMapKeyRef:
name: game-demo # The ConfigMap this value comes from.
key: player_initial_lives # The key to fetch.
- name: UI_PROPERTIES_FILE_NAME
valueFrom:
configMapKeyRef:
name: game-demo
key: ui_properties_file_name
volumeMounts:
- name: config
mountPath: "/config"
readOnly: true
volumes:
# You set volumes at the Pod level, then mount them into containers inside that Pod
- name: config
configMap:
# Provide the name of the ConfigMap you want to mount.
name: game-demo
# An array of keys from the ConfigMap to create as files
items:
- key: "game.properties"
path: "game.properties"
- key: "user-interface.properties"
path: "user-interface.properties"
This is an example of a Pod that mounts a ConfigMap in a volume:
apiVersion: v1
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: mypod
image: redis
volumeMounts:
- name: foo
mountPath: "/etc/foo"
readOnly: true
volumes:
- name: foo
configMap:
name: myconfigmap
Immutable ConfigMaps:
apiVersion: v1
kind: ConfigMap
metadata:
...
data:
...
immutable: true
CMDS:
microk8s kubectl explain secret
microk8s kubectl api-resources | grep -i sec
microk8s kubectl create secret --help
microk8s kubectl create secret generic --help | less
microk8s kubectl create secret generic first --from-literal=name=ajay
or
microk8s kubectl create secret generic myfilesec --from-file
microk8s kubectl get secrets
microk8s kubectl describe secret first
microk8s kubectl get secrets first
microk8s kubectl get secrets first -o yaml
echo -n "ajay" | base64
A Secret is an object that contains a small amount of sensitive data such as a password, a token, or a key. Such information might otherwise be put in a Pod specification or in a container image. Using a Secret means that you don't need to include confidential data in your application code.
This is an example of a Pod that mounts a Secret named mysecret in a volume:
apiVersion: v1
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: mypod
image: redis
volumeMounts:
- name: foo
mountPath: "/etc/foo"
readOnly: true
volumes:
- name: foo
secret:
secretName: mysecret
optional: false # default setting; "mysecret" must exist
Projection of Secret keys to specific paths:
apiVersion: v1
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: mypod
image: redis
volumeMounts:
- name: foo
mountPath: "/etc/foo"
readOnly: true
volumes:
- name: foo
secret:
secretName: mysecret
items:
- key: username
path: my-group/my-username
Secret files permissions:
apiVersion: v1
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: mypod
image: redis
volumeMounts:
- name: foo
mountPath: "/etc/foo"
volumes:
- name: foo
secret:
secretName: mysecret
defaultMode: 0400
Consuming Secret values from volumes
ls /etc/foo/
cat /etc/foo/username
cat /etc/foo/password
Using Secrets as environment variables:
apiVersion: v1
kind: Pod
metadata:
name: secret-env-pod
spec:
containers:
- name: mycontainer
image: redis
env:
- name: SECRET_USERNAME
valueFrom:
secretKeyRef:
name: mysecret
key: username
optional: false # same as default; "mysecret" must exist
# and include a key named "username"
- name: SECRET_PASSWORD
valueFrom:
secretKeyRef:
name: mysecret
key: password
optional: false # same as default; "mysecret" must exist
# and include a key named "password"
restartPolicy: Never
kubectl get events
Use cases Use case: As container environment variables
Create a secret
apiVersion: v1
kind: Secret
metadata:
name: mysecret
type: Opaque
data:
USER_NAME: YWRtaW4=
PASSWORD: MWYyZDFlMmU2N2Rm
kubectl apply -f mysecret.yaml
apiVersion: v1
kind: Pod
metadata:
name: secret-test-pod
spec:
containers:
- name: test-container
image: registry.k8s.io/busybox
command: [ "/bin/sh", "-c", "env" ]
envFrom:
- secretRef:
name: mysecret
restartPolicy: Never
Use case: Pod with SSH keys
Create a Secret containing some SSH keys:
kubectl create secret generic ssh-key-secret --from-file=ssh-privatekey=/path/to/.ssh/id_rsa --from-file=ssh-publickey=/path/to/.ssh/id_rsa.pub
Now you can create a Pod which references the secret with the SSH key and consumes it in a volume:
apiVersion: v1
kind: Pod
metadata:
name: secret-test-pod
labels:
name: secret-test
spec:
volumes:
- name: secret-volume
secret:
secretName: ssh-key-secret
containers:
- name: ssh-test-container
image: mySshImage
volumeMounts:
- name: secret-volume
readOnly: true
mountPath: "/etc/secret-volume"
When the container's command runs, the pieces of the key will be available in:
/etc/secret-volume/ssh-publickey
/etc/secret-volume/ssh-privatekey
Use case: Pods with prod / test credentials
kubectl create secret generic prod-db-secret --from-literal=username=produser --from-literal=password=Y4nys7f11
You can also create a secret for test environment credentials.
kubectl create secret generic test-db-secret --from-literal=username=testuser --from-literal=password=iluvtests
kubectl create secret generic dev-db-secret --from-literal=username=devuser --from-literal=password='S!B\*d$zDsb='
Now make the Pods:
cat <<EOF > pod.yaml
apiVersion: v1
kind: List
items:
- kind: Pod
apiVersion: v1
metadata:
name: prod-db-client-pod
labels:
name: prod-db-client
spec:
volumes:
- name: secret-volume
secret:
secretName: prod-db-secret
containers:
- name: db-client-container
image: myClientImage
volumeMounts:
- name: secret-volume
readOnly: true
mountPath: "/etc/secret-volume"
- kind: Pod
apiVersion: v1
metadata:
name: test-db-client-pod
labels:
name: test-db-client
spec:
volumes:
- name: secret-volume
secret:
secretName: test-db-secret
containers:
- name: db-client-container
image: myClientImage
volumeMounts:
- name: secret-volume
readOnly: true
mountPath: "/etc/secret-volume"
EOF
Add the pods to the same kustomization.yaml:
cat <<EOF >> kustomization.yaml
resources:
- pod.yaml
EOF
Apply all those objects on the API server by running:
kubectl apply -k .
Both containers will have the following files present on their filesystems with the values for each container's environment:
/etc/secret-volume/username
/etc/secret-volume/password
prod-user with the prod-db-secret
test-user with the test-db-secret
The Pod specification is shortened to:
apiVersion: v1
kind: Pod
metadata:
name: prod-db-client-pod
labels:
name: prod-db-client
spec:
serviceAccount: prod-db-client
containers:
- name: db-client-container
image: myClientImage
Use case: dotfiles in a secret volume:
apiVersion: v1
kind: Secret
metadata:
name: dotfile-secret
data:
.secret-file: dmFsdWUtMg0KDQo=
---
apiVersion: v1
kind: Pod
metadata:
name: secret-dotfiles-pod
spec:
volumes:
- name: secret-volume
secret:
secretName: dotfile-secret
containers:
- name: dotfile-test-container
image: registry.k8s.io/busybox
command:
- ls
- "-l"
- "/etc/secret-volume"
volumeMounts:
- name: secret-volume
readOnly: true
mountPath: "/etc/secret-volume"
Types of Secret:
Built-in Type Usage
Opaque arbitrary user-defined data
kubernetes.io/service-account-token ServiceAccount token
kubernetes.io/dockercfg serialized ~/.dockercfg file
kubernetes.io/dockerconfigjson serialized ~/.docker/config.json file
kubernetes.io/basic-auth credentials for basic authentication
kubernetes.io/ssh-auth credentials for SSH authentication
kubernetes.io/tls data for a TLS client or server
bootstrap.kubernetes.io/token bootstrap token data
Opaque secrets
kubectl create secret generic empty-secret
kubectl get secret empty-secret
Service account token Secrets
The following example configuration declares a service account token Secret:
apiVersion: v1
kind: Secret
metadata:
name: secret-sa-sample
annotations:
kubernetes.io/service-account.name: "sa-name"
type: kubernetes.io/service-account-token
data:
# You can include additional key value pairs as you do with Opaque Secrets
extra: YmFyCg==
Docker config Secrets:
kubernetes.io/dockercfg
kubernetes.io/dockerconfigjson
Below is an example for a kubernetes.io/dockercfg type of Secret:
apiVersion: v1
kind: Secret
metadata:
name: secret-dockercfg
type: kubernetes.io/dockercfg
data:
.dockercfg: |
"<base64 encoded ~/.dockercfg file>"
kubectl create secret docker-registry secret-tiger-docker
--docker-email=[email protected]
--docker-username=tiger
--docker-password=pass1234
--docker-server=my-registry.example:5000
kubectl get secret secret-tiger-docker -o jsonpath='{.data.*}' | base64 -d
then the output is equivalent to this JSON document (which is also a valid Docker configuration file):
{
"auths": {
"my-registry.example:5000": {
"username": "tiger",
"password": "pass1234",
"email": "[email protected]",
"auth": "dGlnZXI6cGFzczEyMzQ="
}
}
}
The following manifest is an example of a basic authentication Secret:
apiVersion: v1
kind: Secret
metadata:
name: secret-basic-auth
type: kubernetes.io/basic-auth
stringData:
username: admin # required field for kubernetes.io/basic-auth
password: t0p-Secret # required field for kubernetes.io/basic-auth
The following manifest is an example of a Secret used for SSH public/private key authentication:
apiVersion: v1
kind: Secret
metadata:
name: secret-ssh-auth
type: kubernetes.io/ssh-auth
data:
# the data is abbreviated in this example
ssh-privatekey: |
MIIEpQIBAAKCAQEAulqb/Y ...
The following YAML contains an example config for a TLS Secret:
apiVersion: v1
kind: Secret
metadata:
name: secret-tls
type: kubernetes.io/tls
data:
# the data is abbreviated in this example
tls.crt: |
MIIC2DCCAcCgAwIBAgIBATANBgkqh ...
tls.key: |
MIIEpgIBAAKCAQEA7yn3bRHQ5FHMQ ...
kubectl create secret tls my-tls-secret \
--cert=path/to/cert/file \
--key=path/to/key/file
As a Kubernetes manifest, a bootstrap token Secret might look like the following:
apiVersion: v1
kind: Secret
metadata:
name: bootstrap-token-5emitj
namespace: kube-system
type: bootstrap.kubernetes.io/token
data:
auth-extra-groups: c3lzdGVtOmJvb3RzdHJhcHBlcnM6a3ViZWFkbTpkZWZhdWx0LW5vZGUtdG9rZW4=
expiration: MjAyMC0wOS0xM1QwNDozOToxMFo=
token-id: NWVtaXRq
token-secret: a3E0Z2lodnN6emduMXAwcg==
usage-bootstrap-authentication: dHJ1ZQ==
usage-bootstrap-signing: dHJ1ZQ==
In fact, you can create an identical Secret using the following YAML:
apiVersion: v1
kind: Secret
metadata:
# Note how the Secret is named
name: bootstrap-token-5emitj
# A bootstrap token Secret usually resides in the kube-system namespace
namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
auth-extra-groups: "system:bootstrappers:kubeadm:default-node-token"
expiration: "2020-09-13T04:39:10Z"
# This token ID is used in the name
token-id: "5emitj"
token-secret: "kq4gihvszzgn1p0r"
# This token can be used for authentication
usage-bootstrap-authentication: "true"
# and it can be used for signing
usage-bootstrap-signing: "true"
Marking a Secret as immutable
You can create an immutable Secret by setting the immutable field to true. For example,
apiVersion: v1
kind: Secret
metadata:
...
data:
...
immutable: true
Service ClusterIP allocation:
How Service ClusterIPs are allocated?
dynamically
statically
Why do you need to reserve Service Cluster IPs?
Sometimes you may want to have Services running in well-known IP addresses, so other components and users in the cluster can use them.
The best example is the DNS Service for the cluster. As a soft convention, some Kubernetes installers assign the 10th IP address from the Service IP range to the DNS service. Assuming you configured your cluster with Service IP range 10.96.0.0/16 and you want your DNS Service IP to be 10.96.0.10, you'd have to create a Service like this:
apiVersion: v1
kind: Service
metadata:
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
kubernetes.io/name: CoreDNS
name: kube-dns
namespace: kube-system
spec:
clusterIP: 10.96.0.10
ports:
- name: dns
port: 53
protocol: UDP
targetPort: 53
- name: dns-tcp
port: 53
protocol: TCP
targetPort: 53
selector:
k8s-app: kube-dns
type: ClusterIP
How can you avoid Service ClusterIP conflicts?
The allocation strategy implemented in Kubernetes to allocate ClusterIPs to Services reduces the risk of collision.
The ClusterIP range is divided, based on the formula min(max(16, cidrSize / 16), 256), described as never less than 16 or more than 256 with a graduated step between them.
Dynamic IP assignment uses the upper band by default, once this has been exhausted it will use the lower range. This will allow users to use static allocations on the lower band with a low risk of collision.
Headless Services
Sometimes you don't need load-balancing and a single Service IP. In this case, you can create what are termed "headless" Services, by explicitly specifying "None" for the cluster IP (.spec.clusterIP).
You can use a headless Service to interface with other service discovery mechanisms, without being tied to Kubernetes' implementation.
For headless Services, a cluster IP is not allocated, kube-proxy does not handle these Services, and there is no load balancing or proxying done by the platform for them. How DNS is automatically configured depends on whether the Service has selectors defined: With selectors
For headless Services that define selectors, the Kubernetes control plane creates EndpointSlice objects in the Kubernetes API, and modifies the DNS configuration to return A or AAAA records (IPv4 or IPv6 addresses) that point directly to the Pods backing the Service. Without selectors
For headless Services that do not define selectors, the control plane does not create EndpointSlice objects. However, the DNS system looks for and configures either:
DNS CNAME records for type: ExternalName Services.
DNS A / AAAA records for all IP addresses of the Service's ready endpoints, for all Service types other than ExternalName.
For IPv4 endpoints, the DNS system creates A records.
For IPv6 endpoints, the DNS system creates AAAA records.
What is a Headless Service?
When there is no need of load balancing or single-service IP addresses.We create a headless service which is used for creating a service grouping. That does not allocate an IP address or forward traffic.So you can do this by explicitly setting ClusterIP to “None” in the mainfest file, which means no cluster IP is allocated.
Use Cases of Headless Service-
Create Stateful service
Deploying RabbitMQ to Kubernetes requires a stateful set for RabbitMQ cluster nodes.
Deployment of Relational databases
Deployment manifest file:-
apiVersion: apps/v1
kind: Deployment
metadata:
name: app
labels:
app: server
spec:
replicas: 3
selector:
matchLabels:
app: web
template:
metadata:
labels:
app: web
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
Regular Service:-
apiVersion: v1
kind: Service
metadata:
name: regular-service
spec:
selector:
app: web
ports:
- protocol: TCP
port: 80
targetPort: 8080
Headless Service:-
apiVersion: v1
kind: Service
metadata:
name: headless-svc
spec:
clusterIP: None
selector:
app: web
ports:
- protocol: TCP
port: 80
targetPort: 8080
Create all resources and run the pod
kubectl create -f deployment.yaml
kubectl create -f regular-service.yaml
kubectl create -f headless-service.yaml
kubectl run temporary --image=radial/busyboxplus:curl -i --tty
Cleanup the used resources
kubectl delete svc regular-service
kubectl delete svc headless-svc
kubectl delete deployment app
kubectl delete po temporary
The DNS server returns three different IPs for the pods
Multi-Port Services
For some Services, you need to expose more than one port. Kubernetes lets you configure multiple port definitions on a Service object. When using multiple ports for a Service, you must give all of your ports names so that these are unambiguous. For example:
apiVersion: v1 kind: Service metadata: name: my-service spec: selector: app.kubernetes.io/name: MyApp ports: - name: http protocol: TCP port: 80 targetPort: 9376 - name: https protocol: TCP port: 443 targetPort: 9377
Note:
As with Kubernetes names in general, names for ports must only contain lowercase alphanumeric characters and -. Port names must also start and end with an alphanumeric character.
How to expose multiple port in services in kubernetes or Multi-Port Services
names so that these are unambiguous. For example:
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
selector:
app: MyApp
ports:
- name: http
protocol: TCP
port: 80
targetPort: 9376
- name: https
protocol: TCP
port: 443
targetPort: 9377
How to work with command line?
kubectl create service clusterip svc3 --tcp=8080:80 --tcp=8090:80
service/svc3 created
kubectl describe svc svc3
Type NodePort
If you set the type field to NodePort, the Kubernetes control plane allocates a port from a range specified by --service-node-port-range flag (default: 30000-32767). Each node proxies that port (the same port number on every Node) into your Service. Your Service reports the allocated port in its .spec.ports[*].nodePort field.
Using a NodePort gives you the freedom to set up your own load balancing solution, to configure environments that are not fully supported by Kubernetes, or even to expose one or more nodes' IP addresses directly.
For a node port Service, Kubernetes additionally allocates a port (TCP, UDP or SCTP to match the protocol of the Service). Every node in the cluster configures itself to listen on that assigned port and to forward traffic to one of the ready endpoints associated with that Service. You'll be able to contact the type: NodePort Service, from outside the cluster, by connecting to any node using the appropriate protocol (for example: TCP), and the appropriate port (as assigned to that Service). Choosing your own port
If you want a specific port number, you can specify a value in the nodePort field. The control plane will either allocate you that port or report that the API transaction failed. This means that you need to take care of possible port collisions yourself. You also have to use a valid port number, one that's inside the range configured for NodePort use.
Here is an example manifest for a Service of type: NodePort that specifies a NodePort value (30007, in this example).
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
type: NodePort
selector:
app.kubernetes.io/name: MyApp
ports:
# By default and for convenience, the `targetPort` is set to the same value as the `port` field.
- port: 80
targetPort: 80
# Optional field
# By default and for convenience, the Kubernetes control plane will allocate a port from a range (default: 30000-32767)
nodePort: 30007
Custom IP address configuration for type: NodePort Services
You can set up nodes in your cluster to use a particular IP address for serving node port services. You might want to do this if each node is connected to multiple networks (for example: one network for application traffic, and another network for traffic between nodes and the control plane).
If you want to specify particular IP address(es) to proxy the port, you can set the --nodeport-addresses flag for kube-proxy or the equivalent nodePortAddresses field of the kube-proxy configuration file to particular IP block(s).
This flag takes a comma-delimited list of IP blocks (e.g. 10.0.0.0/8, 192.0.2.0/25) to specify IP address ranges that kube-proxy should consider as local to this node.
For example, if you start kube-proxy with the --nodeport-addresses=127.0.0.0/8 flag, kube-proxy only selects the loopback interface for NodePort Services. The default for --nodeport-addresses is an empty list. This means that kube-proxy should consider all available network interfaces for NodePort. (That's also compatible with earlier Kubernetes releases.) Note: This Service is visible as :spec.ports[].nodePort and .spec.clusterIP:spec.ports[].port. If the --nodeport-addresses flag for kube-proxy or the equivalent field in the kube-proxy configuration file is set, would be a filtered node IP address (or possibly IP addresses).
StatefulSet is the workload API object used to manage stateful applications.
Manages the deployment and scaling of a set of Pods, and provides guarantees about the ordering and uniqueness of these Pods.
Using StatefulSets
StatefulSets are valuable for applications that require one or more of the following.
Stable, unique network identifiers.
Stable, persistent storage.
Ordered, graceful deployment and scaling.
Ordered, automated rolling updates.
Components:
The example below demonstrates the components of a StatefulSet.
apiVersion: v1
kind: Service
metadata:
name: nginx
labels:
app: nginx
spec:
ports:
- port: 80
name: web
clusterIP: None
selector:
app: nginx
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: web
spec:
selector:
matchLabels:
app: nginx # has to match .spec.template.metadata.labels
serviceName: "nginx"
replicas: 3 # by default is 1
minReadySeconds: 10 # by default is 0
template:
metadata:
labels:
app: nginx # has to match .spec.selector.matchLabels
spec:
terminationGracePeriodSeconds: 10
containers:
- name: nginx
image: registry.k8s.io/nginx-slim:0.8
ports:
- containerPort: 80
name: web
volumeMounts:
- name: www
mountPath: /usr/share/nginx/html
volumeClaimTemplates:
- metadata:
name: www
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: "my-storage-class"
resources:
requests:
storage: 1Gi
apiVersion: apps/v1
kind: StatefulSet
...
spec:
persistentVolumeClaimRetentionPolicy:
whenDeleted: Retain
whenScaled: Delete
...
Type LoadBalancer
On cloud providers which support external load balancers, setting the type field to LoadBalancer provisions a load balancer for your Service. The actual creation of the load balancer happens asynchronously, and information about the provisioned balancer is published in the Service's .status.loadBalancer field. For example:
apiVersion: v1 kind: Service metadata: name: my-service spec: selector: app.kubernetes.io/name: MyApp ports: - protocol: TCP port: 80 targetPort: 9376 clusterIP: 10.0.171.239 type: LoadBalancer status: loadBalancer: ingress: - ip: 192.0.2.127