-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathone.py
executable file
·120 lines (108 loc) · 3.79 KB
/
one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python
from combine import *
import init
import chunker
import mlpy
import check_answers
import align
from packer import pack
from sequence_length import seq_length
from punctuation_location import punc_loc
from apposition import question_apposition, rewrite_apposition
from question_rewrite import literal_question_distance, literal_rewrite_distance, align_question_distance, align_rewrite_distance
from pos import pos_test
from bag_of_words import vector_bag, bag_of_words
from novelty_factor import novelty_bool, novelty_count
import cache_chunkers
from math import floor
import question_type
question_dict = dict(read_questions.read_questions_no_answers())
def get_question(q_id):
return question_dict[str(q_id)]
def cache_file(q_id):
base=int(10*floor(q_id/10))
low=base+1
high=base+10
name='chunks/'+str(low)+'-'+str(high)+'.txt'
return name
DIST_CUTOFF = 50
SCORE_CUTOFF = 5
def question_candidates(q_id):
'''Select some useful subset of the candidates for a particular question.
Return them in a list.
'''
init.get_corpus(qNum=q_id)
foo=cache_file(q_id)
candidate = cache_chunkers.uncache_chunks(open(foo))[q_id]
new_l = []
for c in candidate:
if (c[3] == "NP"):
dist = align_question_distance(get_question(q_id), c)
if dist[0] < DIST_CUTOFF and dist[1] > SCORE_CUTOFF:
new_l.append(c)
align.save_cache()
print len(new_l)
return new_l
def question_learning_data(evaluators,q_ids):
x=[]
y=[]
for q_id in q_ids:
cand=question_candidates(q_id)
x=x+run_evaluators(cand,evaluators)
y=y+map(lambda a:check_answers.check_answer(q_id,a),cand)
return y,x
def question_prediction_data(q_id,candidate,evaluators):
x=run_evaluators([candidate],evaluators)
return x[0],candidate
def run_question_predictions(evaluators,trained_model,q_ids):
answers=[]
for q_id in q_ids:
y_hat=[]
for candidate in question_candidates(q_id):
x_test,candidate= question_prediction_data(q_id,candidate,evaluators)
y_hat.append( ( test(trained_model,x_test) , candidate ) )
y_hat = sorted(y_hat, key=lambda (s,_): s,reverse=True)
y_hat = map(lambda a:(a[0],a[1][0]),y_hat)
for i in range(0,5):
answers.append((q_id,pack(y_hat, 50)[0]))
return answers
def answerLine(answer):
return str(answer[0])+' OVER9000 '+answer[1]
def answerFile(answers):
return "\n".join(map(answerLine,answers))
def writeAnswers(stuff,filename='tmp-answers.txt'):
answersHandle=open(filename,'w')
answersHandle.write(stuff)
answersHandle.close()
def main():
align.load_cache()
foo=map(int,question_type.classify_questions(1)['Where'])
trainIDs=foo[:-3]
validationIDs=foo[-3:]
# print trainIDs
# trainIDs=range(201,220)
# validationIDs=range(339,339)
# testIDs=range(338,338)
evaluator_combinations=[
# [],
# [seq_length,
[punc_loc]
# bag_of_words,
# novelty_bool]
# [pos_test]
# [seq_length,punc_loc,question_apposition,rewrite_apposition,pos_test,vector_bag,bag_of_words,novelty_bool] #,novelty_count]
# [novelty_count]
]
evaluatorCombinationID=1
for evaluators in evaluator_combinations:
y_train,x_train = question_learning_data(evaluators,trainIDs)
# print y_train
trained=train(mlpy.Srda,y_train,x_train)
results=run_question_predictions(evaluators,trained,validationIDs)
writeAnswers(answerFile(results),'results/combination'+str(evaluatorCombinationID)+'.txt')
evaluatorCombinationID=evaluatorCombinationID+1
align.load_cache()
align.save_cache()
if __name__ == '__main__':
main()
question_candidates (243)