forked from anshuljdhingra/Text-Summarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
375 lines (323 loc) · 13.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import streamlit as st
import numpy as np
import pandas as pd
import nltk
from nltk.corpus import brown
from nltk.cluster.util import cosine_distance
from nltk.stem import PorterStemmer
from nltk.tokenize import TreebankWordTokenizer
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from operator import itemgetter
from function import TextCleaner
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin_min
from gensim.models import Word2Vec
from multiprocessing import Pool
from pywsd.cosine import cosine_similarity
from rouge import Rouge
from time import time
start = time()
# nltk.download('brown')
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
stemming = PorterStemmer()
stops = set(stopwords.words("english"))
lem = WordNetLemmatizer()
st.set_page_config(
page_title="Summarization",
)
# st.sidebar.subheader("Dataset parameter")
# banyak_data = st.sidebar.slider("Berapa Dataset", 0, len(brown.fileids()), 10)
# dataset = st.sidebar.selectbox("Choose Brown Dataset?", brown.fileids()[:banyak_data])
# sentences = brown.sents(dataset)
# list_sentences = [' '.join(sent) for sent in sentences]
# st.header("Summarization Corpus Brown")
# st.dataframe(list_sentences)
# Function
def pagerank(M, eps=1.0e-8, d=0.85):
N = M.shape[1]
v = np.random.rand(N, 1)
v = v / np.linalg.norm(v, 1)
last_v = np.ones((N, 1), dtype=np.float32) * np.inf
M_hat = (d * M) + (((1 - d) / N) * np.ones((N, N), dtype=np.float32))
while np.linalg.norm(v - last_v, 2) > eps:
last_v = v
v = np.matmul(M_hat, v)
return v
def sentence_similarity(sent1, sent2):
text_cleaner = TextCleaner()
sent1 = text_cleaner.clean_up(sent1)
sent2 = text_cleaner.clean_up(sent2)
all_words = list(set(sent1 + sent2))
vector1 = [0] * len(all_words)
vector2 = [0] * len(all_words)
for w in sent1:
vector1[all_words.index(w)] += 1
for w in sent2:
vector2[all_words.index(w)] += 1
return 1 - cosine_distance(vector1, vector2)
def build_similarity_matrix(sentences):
S = np.zeros((len(sentences), len(sentences)))
for i in range(len(sentences)):
for j in range(len(sentences)):
if i == j:
continue
else:
S[i][j] = sentence_similarity(sentences[i], sentences[j])
for i in range(len(S)):
S[i] /= S[i].sum()
return S
def build_lexicon(corpus):
lexicon = set()
for doc in corpus:
lexicon.update([word for word in doc])
return lexicon
# word embedding
def word_embedding(sen):
embeded = 0
vocabulary = build_lexicon(sentences)
word_list = [word for word in vocabulary]
for i in range(len(word_list)):
if ((word_list[i] in word2vec_model.wv.index2word) == True):
embeded = embeded + word2vec_model.wv.get_vector(word_list[i])
else:
embeded = embeded + unknown_embedd
return embeded
# cleaning text
def apply_cleaning_function_to_list(X):
cleaned_X = []
for element in X:
cleaned_X.append(clean_text(element))
return cleaned_X
def clean_text(raw_text):
"""This function works on a raw text string, and:
1) changes to lower case
2) tokenizes (breaks down into words
3) removes punctuation and non-word text
4) finds word stems
5) removes stop words
6) rejoins meaningful stem words"""
# Convert to lower case
text = raw_text.lower()
# Tokenize
tokens = nltk.word_tokenize(text)
# Keep only words (removes punctuation + numbers)
# use .isalnum to keep also numbers
token_words = [w for w in tokens if w.isalpha()]
# # Stemming
# stemmed_words = [stemming.stem(w) for w in token_words]
# Lemmatization
lemma_words = [lem.lemmatize(w) for w in token_words]
# Remove stop words
meaningful_words = [w for w in lemma_words if not w in stops]
# Rejoin meaningful stemmed words
joined_words = ( " ".join(meaningful_words))
# Return cleaned data
return joined_words
st.subheader("Corpus Parameter")
# text_dataset = st.text_area("Enter your Text", height=200, value = "Type Here", key="kalimatutama")
import pandas as pd
text_dataset = pd.read_excel('GroundTruth.xlsx')
st.write(text_dataset)
pilihanDataset = st.selectbox("Pilih Dataset?", text_dataset['Raw File'])
colutama, colkedua = st.beta_columns([2, 2])
sentences = nltk.sent_tokenize(pilihanDataset)
timepros = time() - start
colutama.subheader("Dataset")
colutama.dataframe(sentences)
# Cleaning Text
text_to_clean = list(sentences)
cleaned_text = apply_cleaning_function_to_list(text_to_clean)
colkedua.subheader("cleaned")
colkedua.dataframe(cleaned_text)
st.sidebar.subheader("Method Parameter")
genre = st.sidebar.radio("What's your Method",('TextRank', 'disambiguationRank', 'disambiguationCluster', 'wordembedRank', 'wordembedCluster', 'validation'))
if genre == 'TextRank':
st.subheader("Sentence Ranking")
col1, col2 = st.beta_columns([3, 1])
S = build_similarity_matrix(sentences)
col1.write(S)
sentence_ranks = pagerank(S)
col2.write(sentence_ranks)
# Load Word Sense Disambiguation
st.subheader("Index Sentence Ranking")
col3, col4 = st.beta_columns([3, 1])
ranked_sentence_indexes = [item[0] for item in sorted(enumerate(sentence_ranks), key=lambda item: -item[1])]
col3.dataframe(ranked_sentence_indexes)
st.sidebar.subheader("Summary Parameter")
SUMMARY_SIZE = st.sidebar.slider("Berapa Jumlah Size?", 0, len(ranked_sentence_indexes), 5)
selected_sentences = sorted(ranked_sentence_indexes[:SUMMARY_SIZE])
col4.dataframe(selected_sentences)
st.subheader("Summary Result")
summary = itemgetter(*selected_sentences)(sentences)
st.write(' '.join(summary))
st.write("Waktu {} detik".format(timepros))
# for sent in summary:
# st.write(' '.join(sent))
elif genre == 'disambiguationRank':
st.subheader("Disambiguation Ranking")
col1, col2 = st.beta_columns([3, 1])
disambiguation_df = []
for angka in range(0, len(cleaned_text)):
a = [cosine_similarity(cleaned_text[angka], cleaned_text[num]) for num in range(0, len(cleaned_text))]
disambiguation_df.append(a)
hasil_disambiguation = pd.DataFrame(disambiguation_df)
col1.write(hasil_disambiguation)
sentence_ranks = pagerank(hasil_disambiguation)
col2.write(sentence_ranks)
# Load Word Sense Disambiguation
col3, col4 = st.beta_columns([3, 1])
ranked_sentence_indexes = [item[0] for item in sorted(enumerate(sentence_ranks), key=lambda item: -item[1])]
col3.subheader("Index Sentence")
col3.dataframe(ranked_sentence_indexes)
st.sidebar.subheader("Summary Parameter")
SUMMARY_SIZE = st.sidebar.slider("Berapa Jumlah Size?", 0, len(ranked_sentence_indexes), 5)
selected_sentences = sorted(ranked_sentence_indexes[:SUMMARY_SIZE])
col4.subheader("Sentence Rank")
col4.dataframe(selected_sentences)
st.subheader("Summary Result")
summary = itemgetter(*selected_sentences)(sentences)
# st.write(summary)
timepros = time() - start
st.write(' '.join(summary))
st.write("Waktu {} detik".format(timepros))
# for sent in summary:
# st.write(' '.join(sent))
elif genre == 'disambiguationCluster':
# Load word2vec pretrained
st.sidebar.subheader("Word2vec Parameter")
disambiguation_df = []
for angka in range(0, len(sentences)):
a = [cosine_similarity(sentences[angka], sentences[num]) for num in range(0, len(sentences))]
disambiguation_df.append(a)
st.subheader("Disambiguation Parameter")
hasil_disambiguation = pd.DataFrame(disambiguation_df)
st.dataframe(hasil_disambiguation)
vector = hasil_disambiguation
SUMMARY_SIZE = st.sidebar.slider("Berapa Jumlah Cluster?", 1, len(sentences), len(sentences)//3)
n = SUMMARY_SIZE
avg = []
n_clusters = len(sentences)//n
modelkm = KMeans(n_clusters=n_clusters, init='k-means++')
modelkm = modelkm.fit(vector)
for j in range(n_clusters):
idx = np.where(modelkm.labels_ == j)[0]
avg.append(np.mean(idx))
closest, _ = pairwise_distances_argmin_min(modelkm.cluster_centers_, vector)
ordering = sorted(range(n_clusters), key=lambda k: avg[k])
col5, col6 = st.beta_columns([1, 1])
col5.subheader("Closest Cluster")
col5.dataframe(closest)
col6.subheader("Ordering Cluster")
col6.dataframe(ordering)
st.subheader("Summary Result")
# summary = itemgetter(*ordering)(sentences)
# hasilRingkasan = []
# for sent in summary:
# a = ' '.join(sent)
# hasilRingkasan.append(a)
# st.write(hasilRingkasan)
# summary = ' '.join([list_sentences[closest[idx]] for idx in ordering])
summary = ' '.join([sentences[closest[idx]] for idx in ordering])
timepros = time() - start
st.write(summary)
st.write("Waktu {} detik".format(timepros))
elif genre == 'wordembedRank':
st.subheader("Sentence Ranking based on WordEmbedding")
# Load Word Sense Disambiguation
st.sidebar.subheader("Word2vec Parameter")
size_value = st.sidebar.slider("Berapa size?", 0, 200, len(sentences))
mode_value = st.sidebar.selectbox("Pilih Mode", [1, 0])
window_value = st.sidebar.slider("WIndows Size?", 0, 10, 3)
iteration_value = st.sidebar.slider("iteration size?", 0, 100, 10)
word2vec_model = Word2Vec(sentences = cleaned_text, size = size_value, sg = mode_value, window = window_value, min_count = 1, iter = iteration_value, workers = Pool()._processes)
word2vec_model.init_sims(replace = True)
embedd_vectors = word2vec_model.wv.vectors
col1, col2 = st.beta_columns([3, 1])
vector = embedd_vectors[:size_value]
# vector = embedd_vectors
# vector = [word_embedding(sentences[i]) for i in range(len(sentences))]
vector_df = pd.DataFrame(vector)
col1.write(vector_df)
sentence_ranks = pagerank(vector_df)
col2.write(sentence_ranks)
# Load Word Sense Disambiguation
col3, col4 = st.beta_columns([3, 1])
ranked_sentence_indexes = [item[0] for item in sorted(enumerate(sentence_ranks), key=lambda item: -item[1])]
col3.subheader("Index Sentence")
col3.dataframe(ranked_sentence_indexes)
st.sidebar.subheader("Summary Parameter")
SUMMARY_SIZE = st.sidebar.slider("Berapa Jumlah Size?", 0, len(sentences), len(sentences)//3)
selected_sentences = sorted(ranked_sentence_indexes[:SUMMARY_SIZE])
col4.subheader("Sentence Rank")
col4.dataframe(selected_sentences)
st.subheader("Summary Result")
summary = itemgetter(*selected_sentences)(sentences)
# st.write(summary)
timepros = time() - start
st.write(' '.join(summary))
st.write("Waktu {} detik".format(timepros))
# hasilSummary = [' '.join(sent) for sent in summary]
# st.write(hasilSummary)
# for sent in summary:
# st.write(' '.join(sent))
elif genre == 'wordembedCluster':
# Load word2vec pretrained
st.sidebar.subheader("Word2vec Parameter")
size_value = st.sidebar.slider("Berapa size?", 0, 200, len(cleaned_text))
mode_value = st.sidebar.selectbox("Pilih Mode", [1, 0])
window_value = st.sidebar.slider("WIndows Size?", 0, 10, 3)
iteration_value = st.sidebar.slider("iteration size?", 0, 100, 10)
word2vec_model = Word2Vec(sentences = sentences, size = size_value, sg = mode_value, window = window_value, min_count = 1, iter = iteration_value, workers = Pool()._processes)
word2vec_model.init_sims(replace = True)
embedd_vectors = word2vec_model.wv.vectors
unknown_embedd = np.zeros(300)
st.sidebar.subheader("Cluster Parameter")
SUMMARY_SIZE = st.sidebar.slider("Berapa Jumlah Cluster?", 1, len(word_embedding(sentences)), len(word_embedding(sentences))//3)
avg = []
n = SUMMARY_SIZE
vector = embedd_vectors[:size_value]
st.subheader("Vector Word Embedding")
st.dataframe(vector)
n_clusters = len(sentences)//n
modelmn = MiniBatchKMeans(n_clusters=n_clusters) #minibatch
modelmn = modelmn.fit(vector)
for j in range(n_clusters):
idx = np.where(modelmn.labels_ == j)[0]
avg.append(np.mean(idx))
closest, _ = pairwise_distances_argmin_min(modelmn.cluster_centers_, vector)
ordering = sorted(range(n_clusters), key=lambda k: avg[k])
col5, col6 = st.beta_columns([1, 1])
col5.subheader("Closest Cluster")
col5.dataframe(closest)
col6.subheader("Ordering Cluster")
col6.dataframe(ordering)
st.subheader("Summary Result")
# summary = itemgetter(*ordering)(sentences)
# hasilRingkasan = []
# for sent in summary:
# a = ' '.join(sent)
# hasilRingkasan.append(a)
# st.write(hasilRingkasan)
# summary = ' '.join([list_sentences[closest[idx]] for idx in ordering])
timepros = time() - start
summary = ' '.join([sentences[closest[idx]] for idx in ordering])
st.write(summary)
st.write("Waktu {} detik".format(timepros))
elif genre == 'validation':
st.subheader("Hypothesis")
message1 = st.text_area("Enter your Text", height=200, value = pilihanDataset, key="kalimat1")
st.subheader("Reference")
pilihanGroundtruth = st.selectbox("Pilih Dataset?", text_dataset['Ground Truth'])
message2 = st.text_area("Enter your Text", height=200, value = pilihanGroundtruth, key="kalimat2")
# penilaian rouge
hypothesis = (message1)
reference = (message2)
rouge = Rouge()
st.subheader("Nilai Rouge Validation")
scores = rouge.get_scores(hypothesis, reference)
st.dataframe(scores)