forked from jerryxyx/MonteCarlo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMonteCarlo.py
680 lines (572 loc) · 29.9 KB
/
MonteCarlo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
import numpy as np
import scipy as sp
import scipy.stats
from cvxopt import matrix, solvers
from sklearn.linear_model import LinearRegression
class MonteCarlo:
def __init__(self, S0, K, T, r, q, sigma, kappa=0, theta=0, xi=0, rho=0, V0=0,
underlying_process="geometric brownian motion"):
self.underlying_process = underlying_process
self.S0 = S0
self.K = K
self.T = T
self.r = r
self.q = q
self.sigma = sigma
self.kappa = kappa
self.theta = theta
self.rho = rho
self.V0 = V0
self.xi = xi
self.value_results = None
# view antithetic variates as a option of simulation method to reduce the variance
def simulate(self, n_trials, n_steps, antitheticVariates=False, boundaryScheme="Higham and Mao"):
dt = self.T / n_steps
mu = self.r - self.q
self.n_trials = n_trials
self.n_steps = n_steps
self.boundaryScheme = boundaryScheme
if (self.underlying_process == "geometric brownian motion"):
# first_step_prices = np.ones((n_trials,1))*np.log(self.S0)
log_price_matrix = np.zeros((n_trials, n_steps))
normal_matrix = np.random.normal(size=(n_trials, n_steps))
if (antitheticVariates == True):
n_trials *= 2
self.n_trials = n_trials
normal_matrix = np.concatenate((normal_matrix, -normal_matrix), axis=0)
cumsum_normal_matrix = normal_matrix.cumsum(axis=1)
# log_price_matrix = np.concatenate((first_step_prices,log_price_matrix),axis=1)
deviation_matrix = cumsum_normal_matrix * self.sigma * np.sqrt(dt) + \
(mu - self.sigma ** 2 / 2) * dt * np.arange(1, n_steps + 1)
log_price_matrix = deviation_matrix + np.log(self.S0)
price_matrix = np.exp(log_price_matrix)
price_zero = (np.ones(n_trials) * self.S0)[:, np.newaxis]
price_matrix = np.concatenate((price_zero, price_matrix), axis=1)
self.price_matrix = price_matrix
elif (self.underlying_process == "CIR model"):
# generate correlated random variables
randn_matrix_v = np.random.normal(size=(n_trials, n_steps))
if (antitheticVariates == True):
n_trials *= 2
self.n_trials = n_trials
randn_matrix_v = np.concatenate((randn_matrix_v, -randn_matrix_v), axis=0)
# boundary scheme fuctions
if (boundaryScheme == "absorption"):
f1 = f2 = f3 = lambda x: np.maximum(x, 0)
elif (boundaryScheme == "reflection"):
f1 = f2 = f3 = np.absolute
elif (boundaryScheme == "Higham and Mao"):
f1 = f2 = lambda x: x
f3 = np.absolute
elif (boundaryScheme == "partial truncation"):
f1 = f2 = lambda x: x
f3 = lambda x: np.maximum(x, 0)
elif (boundaryScheme == "full truncation"):
f1 = lambda x: x
f2 = f3 = lambda x: np.maximum(x, 0)
# simulate CIR process
V_matrix = np.zeros((n_trials, n_steps + 1))
V_matrix[:, 0] = self.S0
for j in range(self.n_steps):
V_matrix[:, j + 1] = f1(V_matrix[:, j]) - self.kappa * dt * (f2(V_matrix[:, j]) - self.theta) + \
self.xi * np.sqrt(f3(V_matrix[:, j])) * np.sqrt(dt) * randn_matrix_v[:, j]
V_matrix[:, j + 1] = f3(V_matrix[:, j + 1])
price_matrix = V_matrix
self.price_matrix = price_matrix
elif (self.underlying_process == "Heston model"):
# generate correlated random variables
randn_matrix_1 = np.random.normal(size=(n_trials, n_steps))
randn_matrix_2 = np.random.normal(size=(n_trials, n_steps))
randn_matrix_v = randn_matrix_1
randn_matrix_S = self.rho * randn_matrix_1 + np.sqrt(1 - self.rho ** 2) * randn_matrix_2
if (antitheticVariates == True):
n_trials *= 2
self.n_trials = n_trials
randn_matrix_v = np.concatenate((randn_matrix_v, +randn_matrix_v), axis=0)
randn_matrix_S = np.concatenate((randn_matrix_S, -randn_matrix_S), axis=0)
# boundary scheme fuctions
if (boundaryScheme == "absorption"):
f1 = f2 = f3 = lambda x: np.maximum(x, 0)
elif (boundaryScheme == "reflection"):
f1 = f2 = f3 = np.absolute
elif (boundaryScheme == "Higham and Mao"):
f1 = f2 = lambda x: x
f3 = np.absolute
elif (boundaryScheme == "partial truncation"):
f1 = f2 = lambda x: x
f3 = lambda x: np.maximum(x, 0)
elif (boundaryScheme == "full truncation"):
f1 = lambda x: x
f2 = f3 = lambda x: np.maximum(x, 0)
# simulate stochastic volatility process
V_matrix = np.zeros((n_trials, n_steps + 1))
V_matrix[:, 0] = self.V0
log_price_matrix = np.zeros((n_trials, n_steps + 1))
log_price_matrix[:, 0] = np.log(self.S0)
for j in range(self.n_steps):
# V_matrix[:,j+1] = self.kappa*self.theta*dt + (1-self.kappa*dt)*V_matrix[:,j] +\
# self.xi*np.sqrt(V_matrix[:,j]*dt)*randn_matrix_v[:,j]
V_matrix[:, j + 1] = f1(V_matrix[:, j]) - self.kappa * dt * (f2(V_matrix[:, j]) - self.theta) + \
self.xi * np.sqrt(f3(V_matrix[:, j])) * np.sqrt(dt) * randn_matrix_v[:, j]
V_matrix[:, j + 1] = f3(V_matrix[:, j + 1])
log_price_matrix[:, j + 1] = log_price_matrix[:, j] + (mu - V_matrix[:, j] / 2) * dt + \
np.sqrt(V_matrix[:, j] * dt) * randn_matrix_S[:, j]
price_matrix = np.exp(log_price_matrix)
self.price_matrix = price_matrix
return price_matrix
def LSM(self, option_type="c", func_list=[lambda x: x ** 0, lambda x: x],onlyITM=False,buy_cost=0,sell_cost=0):
"""
onlyITM=True: A1 strategy (i.e. LSM method from Longstaff and Schwartz)
onlyITM=False: A2b strategy (i.e. Hedged LSM method implemented by Yuxuan Xia)
"""
dt = self.T / self.n_steps
df = np.exp(-self.r * dt)
df2 = np.exp(-(self.r - self.q) * dt)
K = self.K
price_matrix = self.price_matrix
n_trials = self.n_trials
n_steps = self.n_steps
exercise_matrix = np.zeros(price_matrix.shape,dtype=bool)
american_values_matrix = np.zeros(price_matrix.shape)
def __calc_american_values(payoff_fun,func_list, sub_price_matrix,sub_exercise_matrix,df,onlyITM=False):
exercise_values_t = payoff_fun(sub_price_matrix[:,0])
ITM_filter = exercise_values_t > 0
OTM_filter = exercise_values_t <= 0
n_sub_trials, n_sub_steps = sub_price_matrix.shape
holding_values_t = np.zeros(n_sub_trials) # simulated samples: y
exp_holding_values_t = np.zeros(n_sub_trials) # regressed results: E[y]
itemindex = np.where(sub_exercise_matrix==1)
# print(sub_exercise_matrix)
for trial_i in range(n_sub_trials):
first = next(itemindex[1][i] for i,x in enumerate(itemindex[0]) if x==trial_i)
payoff_i = payoff_fun(sub_price_matrix[trial_i, first])
df_i = df**(n_sub_steps-first)
holding_values_t[trial_i] = payoff_i*df_i
A_matrix = np.array([func(sub_price_matrix[:,0]) for func in func_list]).T
b_matrix = holding_values_t[:, np.newaxis] # g_tau|Fi
ITM_A_matrix = A_matrix[ITM_filter, :]
ITM_b_matrix = b_matrix[ITM_filter, :]
lr = LinearRegression(fit_intercept=False)
lr.fit(ITM_A_matrix, ITM_b_matrix)
exp_holding_values_t[ITM_filter] = np.dot(ITM_A_matrix, lr.coef_.T)[:, 0] # E[g_tau|Fi] only ITM
if np.sum(OTM_filter): # if no trial falls into the OTM region it would cause empty OTM_A_Matrix and OTM_b_Matrix, and only ITM was applicable. In this step, we are going to estimate the OTM American values E[g_tau|Fi].
if onlyITM:
# Original LSM
exp_holding_values_t[OTM_filter] = np.nan
else:
# non-conformed approximation: do not assure the continuity of the approximation (regression in two region without iterpolation)
OTM_A_matrix = A_matrix[OTM_filter, :]
OTM_b_matrix = b_matrix[OTM_filter, :]
lr.fit(OTM_A_matrix, OTM_b_matrix)
exp_holding_values_t[OTM_filter] = np.dot(OTM_A_matrix, lr.coef_.T)[:, 0] # E[g_tau|Fi] only OTM
sub_exercise_matrix[:,0] = ITM_filter & (exercise_values_t>exp_holding_values_t)
american_values_t = np.maximum(exp_holding_values_t,exercise_values_t)
return american_values_t
if (option_type == "c"):
payoff_fun = lambda x: np.maximum(x - K, 0)
elif (option_type == "p"):
payoff_fun = lambda x: np.maximum(K - x, 0)
# when contract is at the maturity
stock_prices_t = price_matrix[:, -1]
exercise_values_t = payoff_fun(stock_prices_t)
holding_values_t = exercise_values_t
american_values_matrix[:,-1] = exercise_values_t
exercise_matrix[:,-1] = 1
# before maturaty
for i in np.arange(n_steps)[:0:-1]:
sub_price_matrix = price_matrix[:,i:]
sub_exercise_matrix = exercise_matrix[:,i:]
american_values_t = __calc_american_values(payoff_fun,func_list,sub_price_matrix,sub_exercise_matrix,df,onlyITM)
american_values_matrix[:,i] = american_values_t
# obtain the optimal policies at the inception
holding_matrix = np.zeros(exercise_matrix.shape, dtype=bool)
for i in np.arange(n_trials):
exercise_row = exercise_matrix[i, :]
if (exercise_row.any()):
exercise_idx = np.where(exercise_row == 1)[0][0]
exercise_row[exercise_idx + 1:] = 0
holding_matrix[i,:exercise_idx+1] = 1
else:
exercise_row[-1] = 1
holding_matrix[i,:] = 1
if onlyITM==False:
# i=0
# regular martingale pricing: LSM
american_value1 = american_values_matrix[:,1].mean() * df
# with delta hedging: OHMC
v0 = matrix((american_values_matrix[:,1] * df)[:,np.newaxis])
S0 = price_matrix[:, 0]
S1 = price_matrix[:, 1]
dS0 = df2 * S1 * (1-sell_cost) - S0*(1+buy_cost)
Q0 = np.concatenate((-np.ones(n_trials)[:, np.newaxis], dS0[:, np.newaxis]), axis=1)
Q0 = matrix(Q0)
P = Q0.T * Q0
q = Q0.T * v0
A = matrix(np.ones(n_trials, dtype=np.float64)).T * Q0
b = - matrix(np.ones(n_trials, dtype=np.float64)).T * v0
sol = solvers.coneqp(P=P, q=q, A=A, b=b)
self.sol = sol
residual_risk = (v0.T * v0 + 2 * sol["primal objective"]) / n_trials
self.residual_risk = residual_risk[0] # the value of unit matrix
american_value2 = sol["x"][0]
delta_hedge = sol["x"][1]
american_values_matrix[:,0] = american_value2
self.american_values_matrix = american_values_matrix
self.HLSM_price = american_value2
self.HLSM_delta = - delta_hedge
print("price: {}, delta-hedge: {}".format(american_value2,delta_hedge))
self.holding_matrix = holding_matrix
self.exercise_matrix = exercise_matrix
pass
def LSM2(self, option_type="c", func_list=[lambda x: x ** 0, lambda x: x],onlyITM=False,buy_cost=0,sell_cost=0):
dt = self.T / self.n_steps
df = np.exp(-self.r * dt)
df2 = np.exp(-(self.r - self.q) * dt)
K = self.K
price_matrix = self.price_matrix
n_trials = self.n_trials
n_steps = self.n_steps
exercise_matrix = np.zeros(price_matrix.shape,dtype=bool)
american_values_matrix = np.zeros(price_matrix.shape)
def __calc_american_values(payoff_fun,func_list, prices_t, american_values_tp1,df):
exercise_values_t = payoff_fun(prices_t[:])
ITM_filter = exercise_values_t > 0
OTM_filter = exercise_values_t <= 0
n_sub_trials = len(prices_t)
holding_values_t = df*american_values_tp1 # simulated samples: y
exp_holding_values_t = np.zeros(n_sub_trials) # regressed results: E[y]
A_matrix = np.array([func(prices_t[:]) for func in func_list]).T
b_matrix = holding_values_t[:, np.newaxis] # g_tau|Fi
ITM_A_matrix = A_matrix[ITM_filter, :]
ITM_b_matrix = b_matrix[ITM_filter, :]
lr = LinearRegression(fit_intercept=False)
lr.fit(ITM_A_matrix, ITM_b_matrix)
exp_holding_values_t[ITM_filter] = np.dot(ITM_A_matrix, lr.coef_.T)[:, 0] # E[g_tau|Fi] only ITM
OTM_A_matrix = A_matrix[OTM_filter, :]
OTM_b_matrix = b_matrix[OTM_filter, :]
lr.fit(OTM_A_matrix, OTM_b_matrix)
exp_holding_values_t[OTM_filter] = np.dot(OTM_A_matrix, lr.coef_.T)[:, 0] # E[g_tau|Fi] only OTM
american_values_t = np.maximum(exp_holding_values_t,exercise_values_t)
return american_values_t
if (option_type == "c"):
payoff_fun = lambda x: np.maximum(x - K, 0)
elif (option_type == "p"):
payoff_fun = lambda x: np.maximum(K - x, 0)
# when contract is at the maturity
exercise_values_t = payoff_fun(price_matrix[:,-1])
american_values_matrix[:,-1] = exercise_values_t
american_values_t = exercise_values_t
# before maturaty
for i in np.arange(n_steps)[:0:-1]:
prices_t = price_matrix[:,i]
american_values_tp1 = american_values_t
american_values_t = __calc_american_values(payoff_fun,func_list,prices_t, american_values_tp1,df)
american_values_matrix[:,i] = american_values_t
# obtain the optimal policies at the inception
# i=0
# regular martingale pricing: LSM
american_value1 = american_values_matrix[:,1].mean() * df
# with delta hedging: OHMC
v0 = matrix((american_values_matrix[:,1] * df)[:,np.newaxis])
S0 = price_matrix[:, 0]
S1 = price_matrix[:, 1]
dS0 = df2 * S1 * (1-sell_cost) - S0*(1+buy_cost)
Q0 = np.concatenate((-np.ones(n_trials)[:, np.newaxis], dS0[:, np.newaxis]), axis=1)
Q0 = matrix(Q0)
P = Q0.T * Q0
q = Q0.T * v0
A = matrix(np.ones(n_trials, dtype=np.float64)).T * Q0
b = - matrix(np.ones(n_trials, dtype=np.float64)).T * v0
sol = solvers.coneqp(P=P, q=q, A=A, b=b)
self.sol = sol
residual_risk = (v0.T * v0 + 2 * sol["primal objective"]) / n_trials
self.residual_risk = residual_risk[0] # the value of unit matrix
american_value2 = sol["x"][0]
delta_hedge = sol["x"][1]
american_values_matrix[:,0] = american_value2
self.american_values_matrix = american_values_matrix
self.HLSM_price = american_value2
self.HLSM_delta = - delta_hedge
print("price: {}, delta-hedge: {}".format(american_value2,delta_hedge))
pass
def LSM3(self, option_type="c", func_list=[lambda x: x ** 0, lambda x: x],onlyITM=False,buy_cost=0,sell_cost=0):
dt = self.T / self.n_steps
df = np.exp(-self.r * dt)
df2 = np.exp(-(self.r - self.q) * dt)
K = self.K
price_matrix = self.price_matrix
n_trials = self.n_trials
n_steps = self.n_steps
exercise_matrix = np.zeros(price_matrix.shape,dtype=bool)
american_values_matrix = np.zeros(price_matrix.shape)
def __calc_american_values(payoff_fun,func_list, sub_price_matrix,sub_exercise_matrix,df,onlyITM=False):
exercise_values_t = payoff_fun(sub_price_matrix[:,0])
ITM_filter = exercise_values_t > 0
OTM_filter = exercise_values_t <= 0
n_sub_trials, n_sub_steps = sub_price_matrix.shape
holding_values_t = np.zeros(n_sub_trials) # simulated samples: y
exp_holding_values_t = np.zeros(n_sub_trials) # regressed results: E[y]
itemindex = np.where(sub_exercise_matrix==1)
# print(sub_exercise_matrix)
for trial_i in range(n_sub_trials):
first = next(itemindex[1][i] for i,x in enumerate(itemindex[0]) if x==trial_i)
payoff_i = payoff_fun(sub_price_matrix[trial_i, first])
df_i = df**(n_sub_steps-first)
holding_values_t[trial_i] = payoff_i*df_i
A_matrix = np.array([func(sub_price_matrix[:,0]) for func in func_list]).T
b_matrix = holding_values_t[:, np.newaxis] # g_tau|Fi
ITM_A_matrix = A_matrix[ITM_filter, :]
ITM_b_matrix = b_matrix[ITM_filter, :]
lr = LinearRegression(fit_intercept=False)
lr.fit(ITM_A_matrix, ITM_b_matrix)
exp_holding_values_t[ITM_filter] = np.dot(ITM_A_matrix, lr.coef_.T)[:, 0] # E[g_tau|Fi] only ITM
if onlyITM:
# Original LSM
exp_holding_values_t[OTM_filter] = np.nan
else:
# non-conformed approximation: do not assure the continuity of the approximation.
OTM_A_matrix = A_matrix[OTM_filter, :]
OTM_b_matrix = b_matrix[OTM_filter, :]
lr.fit(OTM_A_matrix, OTM_b_matrix)
exp_holding_values_t[OTM_filter] = np.dot(OTM_A_matrix, lr.coef_.T)[:, 0] # E[g_tau|Fi] only OTM
sub_exercise_matrix[:,0] = ITM_filter & (exercise_values_t>exp_holding_values_t)
american_values_t = np.maximum(exp_holding_values_t,exercise_values_t)
return american_values_t
if (option_type == "c"):
payoff_fun = lambda x: np.maximum(x - K, 0)
elif (option_type == "p"):
payoff_fun = lambda x: np.maximum(K - x, 0)
# when contract is at the maturity
stock_prices_t = price_matrix[:, -1]
exercise_values_t = payoff_fun(stock_prices_t)
holding_values_t = exercise_values_t
american_values_matrix[:,-1] = exercise_values_t
exercise_matrix[:,-1] = 1
# before maturaty
for i in np.arange(n_steps)[:0:-1]:
sub_price_matrix = price_matrix[:,i:]
sub_exercise_matrix = exercise_matrix[:,i:]
american_values_t = __calc_american_values(payoff_fun,func_list,sub_price_matrix,sub_exercise_matrix,df,onlyITM)
american_values_matrix[:,i] = american_values_t
# obtain the optimal policies at the inception
holding_matrix = np.zeros(exercise_matrix.shape, dtype=bool)
for i in np.arange(n_trials):
exercise_row = exercise_matrix[i, :]
if (exercise_row.any()):
exercise_idx = np.where(exercise_row == 1)[0][0]
exercise_row[exercise_idx + 1:] = 0
holding_matrix[i,:exercise_idx+1] = 1
else:
exercise_row[-1] = 1
holding_matrix[i,:] = 1
if onlyITM==False:
# i=0
# regular martingale pricing: LSM
american_value1 = american_values_matrix[:,1].mean() * df
# with delta hedging: OHMC
# min dP0.T*dP0 + delta dS0.T dS0 delta + 2*dP0.T*delta*dS0
# subject to: e.T * (dP0 + delta dS0) = 0
# P = Q.T * Q
# Q = dS0
# q = 2*dP0.T*dS0
# A = e.T * dS0
# b = - e.T * dP0
v0 = matrix((american_values_matrix[:,1] * df)[:,np.newaxis])
S0 = price_matrix[:, 0]
S1 = price_matrix[:, 1]
dS0 = df2 * S1 * (1-sell_cost) - S0*(1+buy_cost)
dP0 = american_values_matrix[:,1] * df - american_value1
Q0 = dS0[:, np.newaxis]
Q0 = matrix(Q0)
P = Q0.T * Q0
q = 2*matrix(dP0[:,np.newaxis]).T*Q0
A = matrix(np.ones(n_trials, dtype=np.float64)).T * Q0
b = - matrix(np.ones(n_trials, dtype=np.float64)).T * matrix(dP0[:,np.newaxis])
sol = solvers.coneqp(P=P, q=q, A=A, b=b)
self.sol = sol
residual_risk = (v0.T * v0 + 2 * sol["primal objective"]) / n_trials
self.residual_risk = residual_risk[0] # the value of unit matrix
delta_hedge = sol["x"][0]
american_values_matrix[:,0] = american_value1
self.american_values_matrix = american_values_matrix
self.HLSM_price = american_value1
self.HLSM_delta = - delta_hedge
print("price: {}, delta-hedge: {}".format(american_value1,delta_hedge))
self.holding_matrix = holding_matrix
self.exercise_matrix = exercise_matrix
pass
def BlackScholesPricer(self, option_type='c'):
S = self.S0
K = self.K
T = self.T
r = self.r
q = self.q
sigma = self.sigma
d1 = (np.log(S / K) + (r - q) * T + 0.5 * sigma ** 2 * T) / (sigma * np.sqrt(T))
d2 = d1 - sigma * np.sqrt(T)
N = lambda x: sp.stats.norm.cdf(x)
call = np.exp(-q * T) * S * N(d1) - np.exp(-r * T) * K * N(d2)
put = call - np.exp(-q * T) * S + K * np.exp(-r * T)
if (option_type == "c"):
self.BSDelta = N(d1)
self.BSPrice = call
return call
elif (option_type == "p"):
self.BSDelta = -N(-d1)
self.BSPrice = put
return put
else:
print("please enter the option type: (c/p)")
pass
def MCPricer(self, option_type='c', isAmerican=False):
price_matrix = self.price_matrix
n_steps = self.n_steps
n_trials = self.n_trials
strike = self.K
risk_free_rate = self.r
time_to_maturity = self.T
dt = time_to_maturity / n_steps
if (option_type == "c"):
payoff_fun = lambda x: np.maximum(x-strike,0)
elif (option_type == "p"):
payoff_fun = lambda x: np.maximum(strike-x, 0)
else:
print("please enter the option type: (c/p)")
return
if (isAmerican == False):
payoff = payoff_fun(price_matrix[:, n_steps])
# vk = payoff*df
value_results = payoff * np.exp(-risk_free_rate * time_to_maturity)
self.payoff = payoff
else:
exercise_matrix = self.exercise_matrix
t_exercise_array = dt * np.where(exercise_matrix == 1)[1]
value_results = payoff_fun(price_matrix[np.where(exercise_matrix == 1)]) * np.exp(-risk_free_rate * t_exercise_array)
regular_mc_price = np.average(value_results)
self.mc_price = regular_mc_price
self.value_results = value_results
return regular_mc_price
def BSDeltaHedgedPricer(self, option_type="c"):
regular_mc_price = self.MCPricer(option_type=option_type)
dt = self.T / self.n_steps
df2 = np.exp(-(self.r - self.q) * dt)
# Delta hedged cash flow
def Delta_fun(x, tau, option_type):
d1 = (np.log(x / self.K) + (self.r - self.q) * tau + self.sigma ** 2 * tau / 2) / (
self.sigma * np.sqrt(tau))
if (option_type == 'c'):
return sp.stats.norm.cdf(d1)
elif (option_type == 'p'):
return -sp.stats.norm.cdf(-d1)
discounted_hedge_cash_flow = np.zeros(self.n_trials)
for i in range(self.n_trials):
Sk_array = self.price_matrix[i, :]
bi_diag_matrix = np.diag([-1] * (self.n_steps), 0) + np.diag([df2] * (self.n_steps - 1), 1)
# (Sk+1 exp(-r dt) - Sk) exp(-r*(tk-t0))
discounted_stock_price_change = np.dot(bi_diag_matrix, Sk_array[:-1])
discounted_stock_price_change[-1] += Sk_array[-1] * df2
discounted_stock_price_change *= np.exp(-self.r * np.arange(self.n_steps) * dt)
tau_array = dt * np.arange(self.n_steps, 0, -1)
Delta_array = np.array([Delta_fun(Sk, tau, option_type) for Sk, tau in zip(Sk_array[:-1], tau_array)])
discounted_hedge_cash_flow[i] = np.dot(Delta_array, discounted_stock_price_change)
BSDeltaBased_mc_price = regular_mc_price - discounted_hedge_cash_flow.mean()
# print("The average discounted hedge cash flow: {}".format(discounted_hedge_cash_flow.mean()))
value_results = self.payoff * np.exp(-self.r * self.T) - discounted_hedge_cash_flow
# print("Sanity check {} = {}".format(value_results.mean(),BSDeltaBased_mc_price))
self.value_results = value_results
return BSDeltaBased_mc_price
def OHMCPricer(self, option_type='c', isAmerican=False, func_list=[lambda x: x ** 0, lambda x: x]):
def _calculate_Q_matrix(S_k, S_kp1, df, df2, func_list):
dS = df2 * S_kp1 - S_k
A = np.array([func(S_k) for func in func_list]).T
B = (np.array([func(S_k) for func in func_list]) * dS).T
return np.concatenate((-A, B), axis=1)
price_matrix = self.price_matrix
# k = n_steps
dt = self.T / self.n_steps
df = np.exp(- self.r * dt)
df2 = np.exp(-(self.r - self.q) * dt)
n_basis = len(func_list)
n_trials = self.n_trials
n_steps = self.n_steps
strike = self.K
if (option_type == "c"):
payoff_fun = lambda x: np.maximum(x-strike,0)
# payoff = (price_matrix[:, n_steps] - strike)
elif (option_type == "p"):
payoff_fun = lambda x: np.maximum(strike-x,0)
# payoff = (strike - price_matrix[:, n_steps])
else:
print("please enter the option type: (c/p)")
return
if isAmerican is True:
holding_matrix = self.holding_matrix
else:
holding_matrix = np.ones(price_matrix.shape,dtype=bool)
# At maturity
holding_filter_k = holding_matrix[:, n_steps]
payoff = matrix(payoff_fun(price_matrix[holding_filter_k,n_steps]))
vk = payoff * df
Sk = price_matrix[holding_filter_k,n_steps]
# print("regular MC price",regular_mc_price)
# k = n_steps-1,...,1
for k in range(n_steps - 1, 0, -1):
holding_filter_kp1 = holding_filter_k
holding_filter_k = holding_matrix[:, k]
Skp1 = price_matrix[holding_filter_kp1, k+1]
Sk = price_matrix[holding_filter_kp1, k]
Qk = matrix(_calculate_Q_matrix(Sk, Skp1, df, df2, func_list))
P = Qk.T * Qk
q = Qk.T * vk
A = matrix(np.ones(holding_filter_kp1.sum(), dtype=np.float64)).T * Qk
b = - matrix(np.ones(holding_filter_kp1.sum(), dtype=np.float64)).T * vk
# print(Sk)
# print(Skp1)
sol = solvers.coneqp(P=P, q=q, A=A, b=b)
ak = sol["x"][:n_basis]
bk = sol["x"][n_basis:]
vk = matrix(np.array([func(price_matrix[holding_filter_k, k]) for func in func_list])).T * ak * df
# break
# k = 0
v0 = vk
holding_filter_1 = holding_filter_k
holding_filter_0 = holding_matrix[:, 0]
S0 = price_matrix[holding_filter_1, 0]
S1 = price_matrix[holding_filter_1, 1]
dS0 = df2 * S1 - S0
Q0 = np.concatenate((-np.ones(holding_filter_1.sum())[:, np.newaxis], dS0[:, np.newaxis]), axis=1)
Q0 = matrix(Q0)
P = Q0.T * Q0
q = Q0.T * v0
A = matrix(np.ones(holding_filter_1.sum(), dtype=np.float64)).T * Q0
b = - matrix(np.ones(holding_filter_1.sum(), dtype=np.float64)).T * v0
C1 = matrix(ak).T * np.array([func(S1) for func in func_list]).T
sol = solvers.coneqp(P=P, q=q, A=A, b=b)
self.sol = sol
residual_risk = (v0.T * v0 + 2 * sol["primal objective"]) / holding_filter_1.sum()
self.residual_risk = residual_risk[0] # the value of unit matrix
return sol["x"][0]
def standard_error(self):
# can not apply to the OHMC since its result is not obtained by averaging
# sample variance
sample_var = np.var(self.value_results, ddof=1)
std_estimate = np.sqrt(sample_var)
standard_err = std_estimate / np.sqrt(self.n_trials)
return standard_err
def pricing(self, option_type='c', func_list=[lambda x: x ** 0, lambda x: x]):
OHMC_price = self.OHMCPricer(option_type=option_type, func_list=func_list)
regular_mc_price = self.MCPricer(option_type=option_type)
black_sholes_price = self.BlackScholesPricer(option_type)
return ({"OHMC": OHMC_price, "regular MC": regular_mc_price, "Black-Scholes": black_sholes_price})
def hedging(self):
S = self.S0
K = self.K
T = self.T
r = self.r
q = self.q
sigma = self.sigma
d1 = (np.log(S / K) + (r - q) * T + 0.5 * sigma ** 2 * T) / (sigma * np.sqrt(T))
d2 = d1 - sigma * np.sqrt(T)
N = lambda x: sp.stats.norm.cdf(x)
return ({"OHMC optimal hedge": -self.sol["x"][1], "Black-Scholes delta hedge": N(d1),
"OHMC residual risk": self.residual_risk})