-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
185 lines (157 loc) · 7.31 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import logging
from statistics import mode
import yaml
import hydra
import os
from pathlib import Path
from omegaconf import DictConfig, OmegaConf
import sinc.launch.prepare # noqa
from tqdm import tqdm
import torch
from sinc.utils.eval_utils import sanitize, regroup_metrics
from sinc.utils.file_io import get_samples_folder, save_metric, get_metric_paths
logger = logging.getLogger(__name__)
@hydra.main(config_path="configs", config_name="eval")
def _eval(cfg: DictConfig):
return eval(cfg)
def eval(cfg: DictConfig) -> None:
logger.info(f"Evaluation script.")
# Load last config
output_dir = Path(hydra.utils.to_absolute_path(cfg.folder))
# Load previous config
prevcfg = OmegaConf.load(output_dir / ".hydra/config.yaml")
# Overload it
cfg = OmegaConf.merge(prevcfg, cfg)
from sinc.utils.inference import cfg_mean_nsamples_resolution, get_path
bak_save_path = Path(output_dir) / 'metrics'
bak_save_path.mkdir(exist_ok=True, parents=True)
onesample = cfg_mean_nsamples_resolution(cfg)
model_samples, jointstype = get_samples_folder(cfg.folder,
cfg.ckpt_name,
jointstype=cfg.jointstype)
split = cfg.split
path = get_path(model_samples, cfg.split, onesample, cfg.mean, cfg.fact)
if cfg.naive in ['gpt', 'concat']:
path = Path(f'{str(path)}_naive_{cfg.naive}_pairs')
else:
path = Path(f'{str(path)}_pairs')
save_paths = get_metric_paths(model_samples, cfg.set,
cfg.split, onesample, cfg.mean, cfg.fact)
if onesample:
save_path = save_paths
if cfg.naive is not None:
assert cfg.naive in ['gpt', 'concat']
save_path = save_path.parent / (save_path.name + f"_{cfg.naive}")
logger.info(f"The outputs will be stored in: {save_path}")
else:
# TODO: update this branch
avg_path, best_path = save_paths
logger.info(f"The outputs will be stored in: {avg_path} and {best_path}")
if cfg.set =='small':
bak_save_path = bak_save_path / ('JointsBased_' + save_path.name + '_' + str(cfg.ckpt_name) +'_small')
save_path = Path(f'{save_path}_small')
else:
bak_save_path = bak_save_path / ('JointsBased_' + save_path.name + '_' + str(cfg.ckpt_name))
logger.info("Loading the libraries")
import numpy as np
import torch
import json
from hydra.utils import instantiate
from space.model.metrics import ComputeMetricsBest, ComputeMetricsSpace
logger.info("Libraries loaded")
rots2joints = instantiate(cfg.rots2joints, jointstype=jointstype)
# If mmmns, it is smpl scale, so it is already in meters
force_in_meter = cfg.jointstype != "mmmns"
if onesample:
CMetrics = ComputeMetricsSpace(force_in_meter=force_in_meter)
else:
CMetrics_best = ComputeMetricsBest(force_in_meter=force_in_meter)
CMetrics_avg = [ComputeMetricsSpace(force_in_meter=force_in_meter) for index in range(cfg.number_of_samples)]
logger.info(f"Computing the {split} metrics")
# keep infos for computing
logger.info("Loading data module")
cfg.data.dtype = 'spatial_pairs+seg+seq'
data_module = instantiate(cfg.data)
logger.info(f"Data module '{cfg.data.dataname}' loaded")
dataset = getattr(data_module, f"{cfg.split}_dataset")
eval_pairs = cfg.set == 'pairs'
if cfg.set == 'submission':
from sinc.utils.inference import sinc_eval_set
keyids = sinc_eval_set
elif cfg.set == 'small':
from sinc.utils.inference import validation_nostand_notrain
keyids = validation_nostand_notrain
elif cfg.set == 'supmat':
from sinc.utils.inference import sinc_supmat
keyids = sinc_supmat
else:
if cfg.set == 'pairs':
keyids = [k for k in dataset.keyids if k.split('-')[0] == 'spatial_pairs']
elif cfg.set == 'single':
keyids = [k for k in dataset.keyids if k.split('-')[0] in ['seq', 'seg']]
else:
keyids = dataset.keyids
with torch.no_grad():
for keyid in tqdm(keyids):
# if (keyid.split('-')[0] == 'spatial_pairs' and eval_pairs) or not eval_pairs:
datapoint = dataset.load_keyid(keyid, mode='inference')
if len(datapoint['text']) > 2:
continue
ref_datastruct = datapoint['datastruct']
ref_joints = rots2joints(ref_datastruct)
if not onesample:
model_joints_all = []
ref_joints_all = []
length_all = []
for index in range(cfg.number_of_samples):
# Load model joints
seq_id = "" if onesample else f"_{index}"
try:
model_joints = np.load(path / f"{keyid}{seq_id}.npy",
allow_pickle=True).item()['motion']
except:
print( f"{keyid}{seq_id}.npy not found")
continue
model_joints = torch.from_numpy(model_joints).float()
# Take the common lengths to facilitate the computation
length = min(len(model_joints), len(ref_joints))
if onesample:
# Compute part of the metrics
CMetrics.update(model_joints[None], ref_joints[None], [length])
else:
CMetrics_avg[index].update(model_joints[None], ref_joints[None], [length])
# keep them all to compute the best one
model_joints_all.append(model_joints[None])
ref_joints_all.append(ref_joints[None])
length_all.append([length])
if not onesample:
CMetrics_best.update(model_joints_all, ref_joints_all, length_all)
if onesample:
metrics = sanitize(regroup_metrics(CMetrics.compute(mode='test')))
logger.info(f"All done, saving at {save_path}")
save_metric(save_path, metrics)
metrics['samples-path'] = str(path)
save_metric(bak_save_path, metrics)
logger.info(f"Saved metrics in {str(bak_save_path)}")
logger.info(f"Samples loaded from path: {str(path)}")
#for key in ["APE_root", "AVE_root"]:
# logger.info(f"{key}: {metrics[key]}")
else:
# TODO: update
# best metrics
best_metrics = sanitize(regroup_metrics(CMetrics_best.compute(mode='test')))
avgs = []
for index in range(cfg.number_of_samples):
avgs.append(regroup_metrics(CMetrics_avg[index].compute(mode='test')))
# avg metrics
avg_metrics = sanitize({key: np.mean([avg[key] for avg in avgs]) for key in avgs[0].keys()})
logger.info(f"All done, saving at {best_path} and {avg_path}")
save_metric(avg_path, avg_metrics)
save_metric(best_path, best_metrics)
logger.info("Done.")
for name, metrics in [("avg", avg_metrics), ("best", best_metrics)]:
logger.info(f"{name}")
for key in ["APE_root", "AVE_root"]:
logger.info(f" {key}: {metrics[key]}")
if __name__ == '__main__':
_eval()