-
Notifications
You must be signed in to change notification settings - Fork 4
/
eval_obj.py
455 lines (385 loc) · 13.5 KB
/
eval_obj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import sys, os
# sys.path.append(rootdir)
import torch
import torch.nn as nn
import torch.optim
import tqdm
from ema_pytorch import EMA
import matplotlib.pyplot as plt
from source.models.objs.knet import AKOrN
from source.models.objs.vit import ViT
from source.utils import get_worker_init_fn
from torch.nn import functional as F
from source.layers.common_layers import RGBNormalize
import numpy as np
import timm
from timm.models import VisionTransformer
from source.utils import gen_saccade_imgs, apply_pca_torch, str2bool
import argparse
from source.evals.objs.mbo import calc_mean_best_overlap
from source.evals.objs.fgari import calc_fgari_score
from typing import Callable
class Wrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.module = model
from collections import OrderedDict
from typing import Dict, Callable
import torch
noise = 0.0
def remove_all_forward_hooks(model: torch.nn.Module) -> None:
for name, child in model._modules.items():
if child is not None:
if hasattr(child, "_forward_hooks"):
child._forward_hooks: Dict[int, Callable] = OrderedDict()
remove_all_forward_hooks(child)
def model_preds(model, org_images):
activation = {}
imsize_h, imsize_w = org_images.shape[-2], org_images.shape[-1]
def get_activation(name):
def hook(model, input, output):
activation[name] = output.detach()
return hook
if isinstance(model, AKOrN):
model.out[0].register_forward_hook(get_activation("z"))
elif isinstance(model, ViT):
model.out[0].register_forward_hook(get_activation("z"))
else:
raise Exception()
model.eval()
imgs = org_images.cuda()
with torch.no_grad():
if (
isinstance(model, AKOrN)
or isinstance(model, ViT)
):
output, _xs = model(imgs, return_xs=True)
else:
output = model(imgs)
_xs = None
v = activation["z"]
if isinstance(model, AKOrN) or isinstance(model, ViT):
v = F.normalize(v, dim=1)
#elif isinstance(model, ViTWrapper):
# v = F.normalize(v, dim=2)
# v = v.permute(0, 2, 1)[..., 1:]
# h, w = int(np.sqrt(x.shape[-1])), int(np.sqrt(x.shape[-1])) # estimated inpsize
# v = v.unflatten(-1, (h, w))
remove_all_forward_hooks(model)
return v
def clustering(x, h, w, method="spectral", n_clusters=3):
from sklearn.cluster import KMeans
if method == "agglomerative":
import fastcluster
from scipy.cluster.hierarchy import fcluster
from scipy.cluster.hierarchy import linkage
x = x.view(x.shape[0], -1).transpose(-2, -1).to("cpu").detach()
Z = fastcluster.average(x)
label = fcluster(Z, t=n_clusters, criterion="maxclust")
return label.reshape(h, w)
elif method == "kmeans":
kmeans = KMeans(n_clusters=n_clusters, random_state=0, n_init="auto").fit(
x.view(x.shape[0], -1).transpose(-2, -1).to("cpu").detach()
)
label = kmeans.labels_
return label.reshape(h, w)
else:
raise ValueError("Clustering method not found")
from source.layers.common_fns import positionalencoding2d
def eval(
model,
images,
gt,
method="agglomerative",
n_clusters=7,
saccade_r=1,
pca=False,
pca_dim=128,
):
preds = []
N = images.shape[0]
_imgs, _ = gen_saccade_imgs(images, model.psize, model.psize // saccade_r)
outputs = []
for img in _imgs:
v = model_preds(model, img)
outputs.append(v.detach().cpu())
nh, nw = int(np.sqrt(len(_imgs))), int(np.sqrt(len(_imgs)))
ho, wo = outputs[0].shape[-2], outputs[0].shape[-1]
nimg = torch.zeros(N, outputs[0].shape[1], ho, nh, wo, nw)
for h in range(nh):
for w in range(nw):
nimg[:, :, :, h, :, w] = outputs[h * (nh) + w]
nimg = nimg.view(N, -1, ho * nh, wo * nw)
from source.utils import apply_pca_torch
with torch.no_grad():
if pca:
pcaimg_ = apply_pca_torch(nimg, n_components=pca_dim)
x = pcaimg_
else:
x = nimg
for idx in range(N):
_x = x[idx]
pred = clustering(_x, *_x.shape[1:], method, n_clusters)
pred = torch.nn.Upsample(
scale_factor=(images.shape[-2]/pred.shape[-2], images.shape[-1]/pred.shape[-1]),
mode='nearest')(torch.Tensor(pred[None, None]).float())[0, 0]
preds.append(pred)
preds = torch.stack(preds, 0).long()
scores = {}
evaluate_sem = False
if isinstance(gt, list):
gt_sem = gt[1]
gt = gt[0]
evaluate_sem = True
_gt = ((gt > 0).float() * gt).long() # set ignore bg (-1) to 0
# compute fgari
scores["fgari"] = np.array(calc_fgari_score(_gt, preds))
# compute mean best overlap
score, _scores = calc_mean_best_overlap(gt.numpy(), preds.numpy())
scores["mbo"] = score
scores["mbo_scores"] = _scores
if evaluate_sem:
score, _scores = calc_mean_best_overlap(gt_sem.numpy(), preds.numpy())
scores["mbo_c"] = score
scores["mbo_c_scores"] = _scores
return scores, preds
def get_loader(data, data_root, imsize, batchsize):
from source.data.datasets.objs.load_data import load_data
dataset, imsize, collate_fn = load_data(data, data_root, imsize, is_eval=True)
if data == "clevrtex_full" or data == "clevrtex_outd" or data == "clevrtex_camo":
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batchsize,
num_workers=0,
shuffle=True,
collate_fn=collate_fn,
)
elif data == "coco":
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batchsize,
num_workers=0,
shuffle=True,
collate_fn=collate_fn,
)
else:
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batchsize,
num_workers=0,
shuffle=True,
)
return loader, imsize
def eval_dataset(
model,
data,
data_root=None,
imsize=None,
batchsize=100,
method="agglomerative",
instance=True,
saccade_r=1,
pca=False,
):
scores = []
preds = []
masks = []
loader, imsize = get_loader(data, data_root, imsize, batchsize)
for ret in tqdm.tqdm(loader):
pca_dim = 128
if data == "clevr":
images = ret[0]
if instance:
labels = ret[1]["pixelwise_instance_labels"]
else:
labels = ret[1]["pixelwise_class_labels"]
n_clusters = 11
elif data == "clevrtex_camo" or data == "clevrtex_full" or data == "clevrtex_outd":
images = ret[1]
labels = ret[2][:, 0]
n_clusters = 11
elif data == "pascal":
images = ret[0]
labels_instance = ret[1]["pixelwise_instance_labels"]
labels_sem = ret[1]["pixelwise_class_labels"]
labels = [labels_instance, labels_sem]
n_clusters = 4
elif data == "coco":
images = ret["img"]
labels_instance = ret["masks"].long()
labels_sem = ret["sem_masks"].long()
ovlp = ret["inst_overlap_masks"].long()
labels_instance[ovlp == 1] = -1
labels_sem[ovlp == 1] = -1
labels = [labels_instance, labels_sem]
n_clusters = 7
score, pred = eval(
model,
images,
labels,
method,
n_clusters,
saccade_r=saccade_r,
pca=pca,
pca_dim=pca_dim,
)
scores.append(score)
preds.append(pred)
masks.append(labels)
return scores, preds
def print_stats(scores):
fgaris = []
mbos = []
mbocs = []
for _s in scores:
fgaris.append(_s["fgari"])
mbos.append(_s["mbo_scores"])
if "mbo_c" in _s:
mbocs.append(_s["mbo_c_scores"])
print(np.concatenate(fgaris, 0).mean(), np.concatenate(fgaris, 0).std())
_mbos = np.concatenate(mbos)
_mbos = _mbos[_mbos != -1]
print(np.mean(_mbos), np.std(_mbos))
if len(mbocs) > 0:
_mbocs = np.concatenate(mbocs)
_mbocs = _mbocs[_mbocs != -1]
print(np.mean(_mbocs), np.std(_mbocs))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Eval options
parser.add_argument("--model_path", type=str, help="path to the model")
parser.add_argument("--saccade_r", type=int, default=1, help="Uptiling factor")
parser.add_argument("--pca", type=str2bool, default=True)
# Data loading
parser.add_argument("--limit_cores_used", type=str2bool, default=False)
parser.add_argument("--cpu_core_start", type=int, default=0, help="start core")
parser.add_argument("--cpu_core_end", type=int, default=32, help="end core")
parser.add_argument("--data", type=str, default="clevrtex_full")
parser.add_argument(
"--data_root",
type=str,
default=None,
help="optional. you can specify the dir path if the default path of each dataset is not appropritate one. Currently only applied to ImageNet",
)
parser.add_argument("--batchsize", type=int, default=250)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument(
"--data_imsize",
type=int,
default=None,
help="Image size. If None, use the default size of each dataset",
)
# General model options
parser.add_argument("--model", type=str, default="knet", help="model")
parser.add_argument("--L", type=int, default=2, help="num of layers")
parser.add_argument("--ch", type=int, default=256, help="num of channels")
parser.add_argument(
"--model_imsize",
type=int,
default=None,
help="""
Model's imsize that was set when it was initialized.
This is used when evaluating or when finetuning a pretrained model.
""",
)
parser.add_argument("--autorescale", type=str2bool, default=False)
parser.add_argument("--psize", type=int, default=8, help="patch size")
parser.add_argument("--ksize", type=int, default=1, help="kernel size")
parser.add_argument("--T", type=int, default=8, help="num of recurrence")
parser.add_argument(
"--maxpool", type=str2bool, default=True, help="max pooling or avg pooling"
)
parser.add_argument(
"--heads", type=int, default=8, help="num of heads in self-attention"
)
parser.add_argument(
"--gta",
type=str2bool,
default=True,
help="""
use Geometric Transform Attention (https://github.com/autonomousvision/gta) as positional encoding.
If False, use standard absolute positional encoding
""",
)
# AKOrN options
parser.add_argument("--N", type=int, default=4, help="num of rotating dimensions")
parser.add_argument("--J", type=str, default="conv", help="connectivity")
parser.add_argument("--use_omega", type=str2bool, default=False)
parser.add_argument("--global_omg", type=str2bool, default=False)
parser.add_argument(
"--c_norm",
type=str,
default="gn",
help="normalization. gn, sandb(scale and bias), or none",
)
parser.add_argument(
"--use_ro_x",
type=str2bool,
default=False,
help="apply linear transform to oscillators between consecutive layers",
)
# ablation of some components in the AKOrN's block
parser.add_argument(
"--no_ro", type=str2bool, default=False, help="ablation: no use readout module"
)
parser.add_argument(
"--project",
type=str2bool,
default=True,
help="use projection or not in the Kuramoto layer",
)
args = parser.parse_args()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.enable_flash_sdp(enabled=True)
if args.limit_cores_used:
def worker_init_fn(worker_id):
os.sched_setaffinity(0, range(args.cpu_core_start, args.cpu_core_end))
if args.model == "akorn":
net = AKOrN(
args.N,
ch=args.ch,
L=args.L,
T=args.T,
J=args.J, # "conv" or "attn",
use_omega=args.use_omega,
global_omg=args.global_omg,
c_norm=args.c_norm,
psize=args.psize,
imsize=args.model_imsize,
autorescale=args.autorescale,
maxpool=args.maxpool,
project=args.project,
heads=args.heads,
use_ro_x=args.use_ro_x,
no_ro=args.no_ro,
gta=args.gta,
).to("cuda")
elif args.model == "vit":
net = ViT(
psize=args.psize,
imsize=args.model_imsize,
autorescale=args.autorescale,
ch=args.ch,
blocks=args.L,
heads=args.heads,
mlp_dim=2 * args.ch,
T=args.T,
maxpool=args.maxpool,
gta=args.gta,
).cuda()
model = EMA(net)
model.load_state_dict(torch.load(args.model_path, weights_only=True)["model_state_dict"])
model = model.ema_model
with torch.no_grad():
scores, preds = eval_dataset(
model,
data=args.data,
data_root=args.data_root,
imsize=args.data_imsize,
batchsize=args.batchsize,
instance=True,
method="agglomerative",
saccade_r=args.saccade_r,
pca=args.pca,
)
print_stats(scores)