|
| 1 | +class Solution { |
| 2 | + int dp[71][71][71]; |
| 3 | + int delta[3] = {0, -1, 1}; |
| 4 | + |
| 5 | + bool isNotInRange(int &c1, int &c2, int &m, int &n) { |
| 6 | + return c1 < 0 || c2 < 0 || c1 >= n || c2 >= n; |
| 7 | + } |
| 8 | + |
| 9 | + int cherryPickupHelper(vector<vector<int>>& grid, int r, int c1, int c2) { |
| 10 | + int m = grid.size(), n = grid[0].size(); |
| 11 | + |
| 12 | + if(r == m) { |
| 13 | + return 0; |
| 14 | + } |
| 15 | + |
| 16 | + if(isNotInRange(c1, c2, m, n)) { |
| 17 | + return INT_MIN; |
| 18 | + } |
| 19 | + |
| 20 | + if(dp[r][c1][c2] != -1) { //memoized call |
| 21 | + return dp[r][c1][c2]; |
| 22 | + } |
| 23 | + |
| 24 | + int currMaxCherryCount = 0; |
| 25 | + |
| 26 | + for(int i = 0; i < 3; ++i) { |
| 27 | + for(int j = 0; j < 3; ++j) { |
| 28 | + currMaxCherryCount = max(currMaxCherryCount, cherryPickupHelper(grid, r + 1, c1 + delta[i], c2 + delta[j])); |
| 29 | + } |
| 30 | + } |
| 31 | + |
| 32 | + currMaxCherryCount += (c1 == c2) ? grid[r][c1] : grid[r][c1] + grid[r][c2]; |
| 33 | + |
| 34 | + return dp[r][c1][c2] = currMaxCherryCount; //store computation |
| 35 | + } |
| 36 | + |
| 37 | +public: |
| 38 | + int cherryPickup(vector<vector<int>>& grid) { |
| 39 | + |
| 40 | + //too much of work in this problem!! DP |
| 41 | + //both robots move simultaneously (this reduces a dimension in terms of storage for the dp matrix) |
| 42 | + //three directions .. max_cherries: 3 * r1 + 3 * r2 => 9 different states |
| 43 | + //one edgecase - r1 and r2 at same position, add value of grid only once |
| 44 | + //Top Down approach |
| 45 | + |
| 46 | + int m = grid.size(); |
| 47 | + if(!m) return 0; |
| 48 | + |
| 49 | + int n = grid[0].size(); |
| 50 | + |
| 51 | + memset(dp, -1, sizeof dp); |
| 52 | + return cherryPickupHelper(grid, 0, 0, n - 1); |
| 53 | + } |
| 54 | +}; |
| 55 | + |
0 commit comments