-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeed_test_plot.py
126 lines (102 loc) · 3.78 KB
/
speed_test_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import numpy as np
from skimage import measure
import cc3d
from cc3d_gpu import gpu_connected_components
from timeit import timeit
import matplotlib.pyplot as plt
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def create_matrix(size):
matrix = np.zeros((50, size, size))
matrix[0, size//4:size//2, size//4:size//2] = 1
matrix[0, 3*size//4:7*size//8, size//4:size//2] = 1
matrix[0, size//4:size//2, 5*size//8:3*size//4] = 1
return matrix
def torch_cc(matrix):
result = gpu_connected_components(matrix)
torch.cuda.synchronize()
return result
def torch_cc_nosync(matrix):
return gpu_connected_components(matrix)
def cc3d_cc(matrix):
return cc3d.connected_components(matrix)
def skimage_cc(matrix):
return measure.label(matrix)
def numpy_cc(matrix):
# Convert numpy array to torch tensor and move to device
matrix_torch = torch.as_tensor(matrix, dtype=torch.float32).to(device)
return gpu_connected_components(matrix_torch)
sizes = [32, 64, 128, 256, 512, 1024, 1200]
numpy_times = []
torch_times = []
torch_nosync_times = []
cc3d_times = []
skimage_cc_times = []
runs = 10
for size in sizes:
matrix = create_matrix(size)
matrix_torch = torch.as_tensor(matrix, dtype=torch.float32).to(device)
torch_time = timeit(lambda: torch_cc(matrix_torch), number=runs) / runs #GPU | Torch
torch_nosync_time = timeit(lambda: torch_cc_nosync(matrix_torch), number=runs) / runs #GPU | Torch
numpy_time = timeit(lambda: numpy_cc(matrix), number=runs) / runs #GPU | Numpy
cc3d_time = timeit(lambda: cc3d_cc(matrix), number=runs) / runs #CPU | Numpy
skimage_cc_time = timeit(lambda: skimage_cc(matrix), number=runs) / runs #CPU | Numpy
torch_times.append(torch_time)
torch_nosync_times.append(torch_nosync_time)
cc3d_times.append(cc3d_time)
skimage_cc_times.append(skimage_cc_time)
numpy_times.append(numpy_time)
plt.figure(figsize=(12, 6))
plt.plot(sizes, torch_times, marker='s', label='PyTorch')
plt.plot(sizes, torch_nosync_times, marker='s', label='PyTorch (no sync)')
plt.plot(sizes, cc3d_times, marker='^', label='cc3d')
plt.plot(sizes, skimage_cc_times, marker='o', label='skimage')
plt.plot(sizes, numpy_times, marker='x', label='Numpy')
plt.title('Execution Time vs Matrix Size')
plt.xlabel('Matrix Size')
plt.ylabel('Time (seconds)')
plt.legend()
plt.xscale('log', base=2)
plt.yscale('log')
plt.grid(True)
plt.savefig('connected_components_comparison_line_graph.png')
# plt.show() # Removed to avoid displaying
# Create separate plots for each method
fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(1, 5, figsize=(18, 6))
ax1.plot(sizes, skimage_cc_times, marker='o', color='blue')
ax1.set_title('Ski-image')
ax1.set_xlabel('Matrix Size')
ax1.set_ylabel('Time (seconds)')
ax1.set_xscale('log', base=2)
ax1.set_yscale('log')
ax1.grid(True)
ax2.plot(sizes, torch_times, marker='s', color='orange')
ax2.set_title('PyTorch')
ax2.set_xlabel('Matrix Size')
ax2.set_ylabel('Time (seconds)')
ax2.set_xscale('log', base=2)
ax2.set_yscale('log')
ax2.grid(True)
ax3.plot(sizes, cc3d_times, marker='^', color='green')
ax3.set_title('cc3d')
ax3.set_xlabel('Matrix Size')
ax3.set_ylabel('Time (seconds)')
ax3.set_xscale('log', base=2)
ax3.set_yscale('log')
ax3.grid(True)
ax4.plot(sizes, numpy_times, marker='x', color='red')
ax4.set_title('Numpy')
ax4.set_xlabel('Matrix Size')
ax4.set_ylabel('Time (seconds)')
ax4.set_xscale('log', base=2)
ax4.set_yscale('log')
ax4.grid(True)
ax5.plot(sizes, torch_nosync_times, marker='o', color='purple')
ax5.set_title('PyTorch (no sync)')
ax5.set_xlabel('Matrix Size')
ax5.set_ylabel('Time (seconds)')
ax5.set_xscale('log', base=2)
ax5.set_yscale('log')
plt.tight_layout()
plt.savefig('connected_components_comparison_separate_plots.png')
# plt.show() # Removed to avoid displaying