-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmlp.py
423 lines (362 loc) · 20.9 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import random
import numpy as np
import pandas as pd
#
# Shorthand:
# "pd_" as a variable prefix means "partial derivative"
# "d_" as a variable prefix means "derivative"
# "_wrt_" is shorthand for "with respect to"
# "w_ho" and "w_ih" are the index of weights from hidden to output layer neurons and input to hidden layer neurons respectively
# "hi" and "oh" are the shorthand for hidden to input and output to hidden
#
# Comment references:
#
# [1] Wikipedia article on Backpropagation
# http://en.wikipedia.org/wiki/Backpropagation#Finding_the_derivative_of_the_error
# [2] Step by step Backpropagation Example
# https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
#
# [3] Fundamentals of Neural Networks - Laurene V. Fausett
#
class NeuralNetwork:
#LEARNING_RATE = 0.5
def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None, choice_act = None, LEARNING_RATE=None, choice_wrt_weight_update = None, momentum = 0.75):
self.num_inputs = num_inputs
self.choice_act = choice_act #activation function
self.LEARNING_RATE = LEARNING_RATE
self.choice_wrt_weight_update = choice_wrt_weight_update #weight update method
self.momentum = momentum
self.hidden_layer = []
for i in range(len(num_hidden)):
self.hidden_layer.append(NeuronLayer(num_hidden[i], hidden_layer_bias[i]))
self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights[0])
self.init_weights_between_hidden_layer_neurons(hidden_layer_weights)
self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
self.inspect()
def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
weight_num = 0
for h in range(len(self.hidden_layer[0].neurons)):
for i in range(self.num_inputs):
if hidden_layer_weights[weight_num] == 0:
self.hidden_layer[0].neurons[h].weights.append(random.random())
else:
self.hidden_layer[0].neurons[h].weights.append(hidden_layer_weights[weight_num])
weight_num += 1
def init_weights_between_hidden_layer_neurons(self, hidden_layer_weights):
"""
Creates connections between each hidden layer
:param hidden_layer_weights:
:return:
"""
weight_num = 0
for l in range(len(hidden_layer_weights)-1):
for h in range(len(self.hidden_layer[l+1].neurons)):
for i in range(len(self.hidden_layer[l].neurons)):
if not hidden_layer_weights[l+1]:
self.hidden_layer[l+1].neurons[h].weights.append(random.random())
else:
self.hidden_layer[l+1].neurons[h].weights.append(hidden_layer_weights[l+1][weight_num])
weight_num += 1
def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
weight_num = 0
for o in range(len(self.output_layer.neurons)):
for h in range(len(self.hidden_layer[-1].neurons)):
if not output_layer_weights:
self.output_layer.neurons[o].weights.append(random.random())
else:
self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
weight_num += 1
def inspect(self):
print('------')
print('* Inputs: {}'.format(self.num_inputs))
for layer in self.hidden_layer:
print('-------')
print('Hidden Layer')
layer.inspect()
print('------')
print('* Output Layer')
self.output_layer.inspect()
print('------')
def feed_forward(self, inputs, choice_act):
#The activation will update with each pass through the network
activation = inputs
for layer in self.hidden_layer:
activation = layer.feed_forward(inputs, choice_act)
return self.output_layer.feed_forward(activation, choice_act)
# Uses online learning, ie updating the weights after each training case
def train(self, training_inputs, training_outputs, choice_act):
self.feed_forward(training_inputs, choice_act)
if self.choice_wrt_weight_update == 1: # delta rule
# 1. Output neuron deltas
pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
for o in range(len(self.output_layer.neurons)):
# ∂E/∂zⱼ
pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
# 2. Hidden neuron deltas
pd_errors_wrt_hidden_neuron_total_net_input = [];
for i in range(len(self.hidden_layer)):
pd_errors_wrt_hidden_neuron_total_net_input = [[0] *
len(self.hidden_layer[
-1 - i].neurons)] + pd_errors_wrt_hidden_neuron_total_net_input;
for h in range(len(self.hidden_layer[-1 - i].neurons)):
# We need to calculate the derivative of the error with respect to the output of each hidden layer neuron
# dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
d_error_wrt_hidden_neuron_output = 0
if i == 0:
for o in range(len(self.output_layer.neurons)):
d_error_wrt_hidden_neuron_output += \
pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
else:
for o in range(len(self.hidden_layer[-i].neurons)):
d_error_wrt_hidden_neuron_output += \
pd_errors_wrt_hidden_neuron_total_net_input[1][o] * \
self.hidden_layer[-i].neurons[o].weights[h]
# ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
pd_errors_wrt_hidden_neuron_total_net_input[0][h] = d_error_wrt_hidden_neuron_output * \
self.hidden_layer[-i - 1].neurons[
h].calculate_pd_total_net_input_wrt_input()
# 3. Update output neuron weights
for o in range(len(self.output_layer.neurons)):
for w_ho in range(len(self.output_layer.neurons[o].weights)):
# ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
# Δw = α * ∂Eⱼ/∂wᵢ
self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
# 4. Update hidden neuron weights
for l in range(len(self.hidden_layer)):
for h in range(len(self.hidden_layer[l].neurons)):
for w_ih in range(len(self.hidden_layer[l].neurons[h].weights)):
# ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[l][h] * \
self.hidden_layer[l].neurons[h].calculate_pd_total_net_input_wrt_weight(
w_ih)
# Δw = α * ∂Eⱼ/∂wᵢ
self.hidden_layer[l].neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
#Δw = α * (tarj - outj) * xi
elif self.choice_wrt_weight_update == 2: #Adaline
d_error_wrt_output = [0] * len(self.output_layer.neurons)
for o in range(len(self.output_layer.neurons)):
for w_oh in range(len(self.output_layer.neurons[o].weights)):
d_error_wrt_output[o] = self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_oh) * self.output_layer.neurons[o].calculate_pd_error_wrt_output(training_outputs[o])
# Δw = α * (tarj - outj) * xi
self.output_layer.neurons[o].weights[w_oh] -= self.LEARNING_RATE * d_error_wrt_output[o]
elif self.choice_wrt_weight_update == 3: #momentum
# 1. Output neuron deltas
pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
for o in range(len(self.output_layer.neurons)):
# ∂E/∂zⱼ
pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
# 2. Hidden neuron deltas
pd_errors_wrt_hidden_neuron_total_net_input = [];
for i in range(len(self.hidden_layer)):
pd_errors_wrt_hidden_neuron_total_net_input = [[0] *
len(self.hidden_layer[
-1 - i].neurons)] + pd_errors_wrt_hidden_neuron_total_net_input;
for h in range(len(self.hidden_layer[-1 - i].neurons)):
# We need to calculate the derivative of the error with respect to the output of each hidden layer neuron
# dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
d_error_wrt_hidden_neuron_output = 0
if i == 0:
for o in range(len(self.output_layer.neurons)):
d_error_wrt_hidden_neuron_output += \
pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
else:
for o in range(len(self.hidden_layer[-i].neurons)):
d_error_wrt_hidden_neuron_output += \
pd_errors_wrt_hidden_neuron_total_net_input[1][o] * \
self.hidden_layer[-i].neurons[o].weights[h]
# ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
pd_errors_wrt_hidden_neuron_total_net_input[0][h] = d_error_wrt_hidden_neuron_output * \
self.hidden_layer[-i - 1].neurons[
h].calculate_pd_total_net_input_wrt_input()
ho_prev_weight = 0
ih_prev_weight = 0
# 3. Update output neuron weights
for o in range(len(self.output_layer.neurons)):
for w_ho in range(len(self.output_layer.neurons[o].weights)):
# ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[
o].calculate_pd_total_net_input_wrt_weight(w_ho)
delta = -1.0 * self.LEARNING_RATE * pd_error_wrt_weight
# Δw
self.output_layer.neurons[o].weights[w_ho] += delta + self.LEARNING_RATE * ho_prev_weight
ho_prev_weight = delta
# 4. Update hidden neuron weights
for l in range(len(self.hidden_layer)):
for h in range(len(self.hidden_layer[l].neurons)):
for w_ih in range(len(self.hidden_layer[l].neurons[h].weights)):
# ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[l][h] * \
self.hidden_layer[l].neurons[h].calculate_pd_total_net_input_wrt_weight(
w_ih)
delta = -1.0 * self.LEARNING_RATE * pd_error_wrt_weight
# Δw
self.hidden_layer[l].neurons[h].weights[w_ih] += delta + self.momentum * ih_prev_weight
ih_prev_weight = delta
def calculate_total_error(self, training_sets):
total_error = 0
for t in range(len(training_sets)):
training_inputs, training_outputs = training_sets[t]
self.feed_forward(training_inputs, self.choice_act)
for o in range(len(training_outputs)):
total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
return total_error
def test(self, test_inputs, test_outputs):
self.feed_forward(test_inputs, self.choice_act)
pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
for o in range(len(self.output_layer.neurons)):
# ∂E/∂zⱼ
pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(test_outputs[o])
return pd_errors_wrt_output_neuron_total_net_input.index(min(pd_errors_wrt_output_neuron_total_net_input))
class NeuronLayer:
def __init__(self, num_neurons, bias):
# Every neuron in a layer shares the same bias
self.bias = bias if bias else random.random()
self.neurons = []
for i in range(num_neurons):
self.neurons.append(Neuron(self.bias))
def inspect(self):
print('Neurons:', len(self.neurons))
for n in range(len(self.neurons)):
print(' Neuron', n)
for w in range(len(self.neurons[n].weights)):
print(' Weight:', self.neurons[n].weights[w])
print(' Bias:', self.bias)
def feed_forward(self, inputs, choice_act):
outputs = []
for neuron in self.neurons:
outputs.append(neuron.calculate_output(inputs, choice_act))
return outputs
def get_outputs(self):
outputs = []
for neuron in self.neurons:
outputs.append(neuron.output)
return outputs
class Neuron:
def __init__(self, bias):
self.bias = bias
self.weights = []
def calculate_output(self, inputs, choice_act):
self.inputs = inputs
self.choice_act = choice_act
self.output = self.activation(self.calculate_total_net_input(), self.choice_act)
return self.output
def calculate_total_net_input(self):
total = 0
for i in range(len(self.inputs)):
total += self.inputs[i] * self.weights[i]
return total + self.bias
# Apply the sigmoid, tanh or ReLU to squash the output of the neuron
# The result is sometimes referred to as 'net' [2] or 'net' [1]
def activation(self, total_net_input, choice):
if choice == 1:
return 1 / (1 + np.exp(-total_net_input))
elif choice == 2:
return np.tanh(total_net_input)
elif choice == 3:
if total_net_input > 0 :
return total_net_input
else:
return 0.01
# Determine how much the neuron's total input has to change to move closer to the expected output
#
# Now that we have the partial derivative of the error with respect to the output (∂E/∂yⱼ) and
# the derivative of the output with respect to the total net input (dyⱼ/dzⱼ) we can calculate
# the partial derivative of the error with respect to the total net input.
# This value is also known as the delta (δ) [1]
# δ = ∂E/∂zⱼ = ∂E/∂yⱼ * dyⱼ/dzⱼ
#
def calculate_pd_error_wrt_total_net_input(self, target_output):
return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();
# The error for each neuron is calculated by the Mean Square Error method:
def calculate_error(self, target_output):
return 0.5 * (target_output - self.output) ** 2
# The partial derivate of the error with respect to actual output then is calculated by:
# = 2 * 0.5 * (target output - actual output) ^ (2 - 1) * -1
# = -(target output - actual output)
#
# The Wikipedia article on backpropagation [1] simplifies to the following, but most other learning material does not [2]
# = actual output - target output
#
# Alternative, you can use (target - output), but then need to add it during backpropagation [3]
#
# Note that the actual output of the output neuron is often written as yⱼ and target output as tⱼ so:
# = ∂E/∂yⱼ = -(tⱼ - yⱼ)
def calculate_pd_error_wrt_output(self, target_output):
return -(target_output - self.output)
# The total net input into the neuron is squashed using logistic function to calculate the neuron's output:
# yⱼ = φ = 1 / (1 + e^(-zⱼ))
# Note that where ⱼ represents the output of the neurons in whatever layer we're looking at and ᵢ represents the layer below it
#
# The derivative (not partial derivative since there is only one variable) of the output then is:
# dyⱼ/dzⱼ = yⱼ * (1 - yⱼ)
def calculate_pd_total_net_input_wrt_input(self):
if self.choice_act == 1:
return self.output * (1 - self.output)
elif self.choice_act == 2: #pd_tanh
return (1-(self.output ** 2))
elif self.choice_act == 3: #pd_ReLU
if self.output > 0:
return 1
else:
return 0.01
# The total net input is the weighted sum of all the inputs to the neuron and their respective weights:
# = zⱼ = netⱼ = x₁w₁ + x₂w₂ ...
#
# The partial derivative of the total net input with respective to a given weight (with everything else held constant) then is:
# = ∂zⱼ/∂wᵢ = some constant + 1 * xᵢw₁^(1-0) + some constant ... = xᵢ
def calculate_pd_total_net_input_wrt_weight(self, index):
return self.inputs[index]
### Trial Values ###
epoch_sayisi = 5
momentum = 0.75 #temporary
hidden_layer_inputs_len = [2]
hidden_layer_weights= []
hidden_layer_bias=[0.35]
output_layer_bias=0.6
output_layer_weights = [0.5,0.5,0.5,0.5,0.5,0.5]
################## MENU ##############################
test = 15
print("Enter 1 for Iris Dataset, 2 for Seeds Dataset: ")
add=int(input())
if add == 1:
df = pd.read_csv('iris.csv', sep=';', header=None)
else:
df = pd.read_csv('seeds_dataset.csv', sep=';', header=None)
training_inputs_len = [df.shape[0] - test, df.shape[1]]
training_inputs = (df.loc[0:(df.shape[0] - test), df.columns != df.shape[1] - 1]).as_matrix()
train_outputs = (df.loc[0:(df.shape[0] - test), df.columns == df.shape[1] - 1]).as_matrix()
test_inputs = (df.loc[(df.shape[0] - test):df.shape[0], df.columns != df.shape[1] - 1]).as_matrix()
test_tmp_outputs = (df.loc[(df.shape[0] - test):df.shape[0], df.columns == df.shape[1] - 1]).as_matrix()
epoch_sayisi = int(input("Enter epoch count: "))
print("Selection of Activation Function \n Enter 1 for Sigmoid, 2 for Tanh, 3 for ReLU: ")
choice_act = int(input())
print("Selection of Weight Update Function \n Enter 1 for Delta Bar, 2 for Adaptive Learning, 3 for Momentum: ")
choice_wrt_weight_update = int(input())
if choice_wrt_weight_update == 3:
momentum = float(input("Enter momentum value: "))
hidden_layer_weights_len = [int(input("hidden layer neuron count: "))]
hidden_layer_weights = [[0]* training_inputs.shape[1]*2]
hidden_layer_bias = [0.35]
output_layer_bias = 0.6
learning_rate = float(input("Enter Learning Rate: "))
############### Train #################
nn = NeuralNetwork(training_inputs.shape[1], [2], len(np.unique(train_outputs)), hidden_layer_weights=hidden_layer_weights, hidden_layer_bias=hidden_layer_bias, output_layer_weights=output_layer_weights, output_layer_bias=output_layer_bias, choice_act=choice_act, LEARNING_RATE=learning_rate, choice_wrt_weight_update = choice_wrt_weight_update, momentum = momentum)
for j in range(epoch_sayisi):
for i in range(training_inputs.shape[0]):
real_outputs = [-1] * len(np.unique(train_outputs))
real_outputs[list(train_outputs[i])[0]-1] = 1
nn.train(list(training_inputs[i]), real_outputs, nn.choice_act)
if(j == epoch_sayisi-1 and i == df.shape[0]-test):
print("Error in last epoch for last value: "+ str(np.round(nn.calculate_total_error([[list(training_inputs[i]), real_outputs]]), 9)))
print("output, target")
counter = 0
for i in range(test_inputs.shape[0]):
test_outputs = [-1] * len(np.unique(train_outputs))
test_outputs[list(test_tmp_outputs[i])[0]-1] = 1
a = nn.test(list(test_inputs[i]), test_outputs)
print(a, test_outputs.index(max(test_outputs)))
if a == test_outputs.index(max(test_outputs)):
counter += 1
print("Test Accuracy= "+ str(counter*100 / test_inputs.shape[0]))