-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
290 lines (246 loc) · 10.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# from __future__ import division, print_function
import csv
from flask import Flask, render_template,request,redirect,url_for, flash
import diseaseprediction
import joblib
from PIL import Image as pil_image
import numpy as np
import tensorflow as tf
import random
import os
import re
from flask import send_from_directory
from keras.preprocessing import image
from keras.models import model_from_json
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from tensorflow.compat.v1 import ConfigProto
from keras.models import load_model
import cv2
import json
import sys
from glob import glob
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from skimage import io
from gevent.pywsgi import WSGIServer
from werkzeug.utils import secure_filename
from forms import RegistrationForm,LoginForm,ContactForm
app=Flask(__name__)
app.config['TEMPLATES_AUTO_RELOAD'] = True
########################################################Skin Cancer#########################################################################
########################################################covid model###########################################################################################
model222=load_model("my_model.h5")
def api1(full_path):
data = image.load_img(full_path, target_size=(64, 64, 3))
data = np.expand_dims(data, axis=0)
data = data * 1.0 / 255
#with graph.as_default():
predict = model222.predict(data)
return predict
@app.route('/upload11', methods=['POST','GET'])
def upload11_file():
table=["Pneumonia", "Covid-19", "Normal"]
generator=random.choice(table)
if request.method == 'GET':
return render_template('covid.html')
else:
try:
file = request.files['image']
full_name = os.path.join(UPLOAD_FOLDER, file.filename)
file.save(full_name)
indices = {0: 'Normal', 1: 'Pneumonia'}
result = api1(full_name)
if(result>50):
label= indices[1]
accuracy= result
else:
label= indices[0]
accuracy= 100-result
return render_template('covid_predict.html', image_file_name = file.filename, label = label, accuracy = accuracy, generator=generator)
except:
flash("Please select the image first !!", "danger")
return redirect(url_for("Pneumonia"))
@app.route('/uploads/<filename>')
def send_file(filename):
return send_from_directory(UPLOAD_FOLDER, filename)
#####################################################FOR THE BRAIN TUMOR MODEL###############################################################
# Classification model
classification_model = load_model('model_classification.h5')
# Segmentation model
def dice_coef(y_true, y_pred):
y_truef=K.flatten(y_true)
y_predf=K.flatten(y_pred)
And=K.sum(y_truef* y_predf)
return((2* And + smooth) / (K.sum(y_truef) + K.sum(y_predf) + smooth))
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def iou(y_true, y_pred):
intersection = K.sum(y_true * y_pred)
sum_ = K.sum(y_true + y_pred)
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return jac
def jac_distance(y_true, y_pred):
y_truef=K.flatten(y_true)
y_predf=K.flatten(y_pred)
return - iou(y_true, y_pred)
segmentation_model = load_model('model_segmentation.h5',custom_objects={'dice_coef':dice_coef,'jac_distance':jac_distance,'dice_coef_loss': dice_coef_loss,"iou":iou})
classification_model.make_predict_function()
def predict_label(img_path):
img = cv2.imread(img_path)
img = cv2.resize(img ,(256,256))
img = img.reshape(1,256,256,3)
img = np.array(img)
pred1 = classification_model.predict(img)
pred1 = np.argmax(pred1,axis=1)
#https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
if pred1 == 0:
return 'Glioma'
elif pred1 == 1:
return "Meningioma"
elif pred1 == 2:
return "No Tumour"
return "Pituitary"
def predict_segmentation_mask(image_path):
# reads an brain MRI image
img = io.imread(image_path)
img = cv2.resize(img,(256,256))
img = np.array(img, dtype=np.float64)
img -= img.mean()
img /= img.std()
#img = np.reshape(img, (1,256,256,3) # this is the shape our model expects
X = np.empty((1,256,256,3))
X[0,] = img
predict = segmentation_model.predict(X)
return predict.reshape(256,256)
@app.route("/submit", methods = ['GET', 'POST'])
def get_output():
if request.method == 'POST':
img = request.files['my_image']
img_path = "Brain Dataset/" + img.filename
#img.save(img_path)
p = predict_label(img_path)
predicted_mask = predict_segmentation_mask(img_path)
original_img = cv2.imread(img_path)
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5))
plt.axis('off')
axes[0].imshow(original_img)
axes[0].get_xaxis().set_visible(False)
axes[0].get_yaxis().set_visible(False)
axes[1].imshow(predicted_mask)
axes[1].get_xaxis().set_visible(False)
axes[1].get_yaxis().set_visible(False)
fig.tight_layout()
seg_path = "static/seg_images/" + img.filename
plt.savefig(seg_path)
return render_template("brain.html", prediction = p,seg_path=seg_path)
#####################################################FOR THE MALERIA MODEL###############################################################
dir_path = os.path.dirname(os.path.realpath(__file__))
app.config['SECRET_KEY'] = '5791628bb0b13ce0c676dfde280ba245'
UPLOAD_FOLDER = 'uploads'
STATIC_FOLDER = 'static'
model = load_model('model111.h5') #malaria model
# call model to predict an image
def api(full_path):
data = image.load_img(full_path, target_size=(50, 50, 3))
data = np.expand_dims(data, axis=0)
data = data * 1.0 / 255
#with graph.as_default():
predicted = model.predict(data)
return predicted
# procesing uploaded file and predict it
@app.route('/upload', methods=['POST','GET'])
def upload_file():
if request.method == 'GET':
return render_template('maleria.html')
else:
try:
file = request.files['image']
full_name = os.path.join(UPLOAD_FOLDER, file.filename)
file.save(full_name)
indices = {0: 'PARASITIC', 1: 'Uninfected', 2: 'Invasive carcinomar', 3: 'Normal'}
result = api(full_name)
print(result)
predicted_class = np.asscalar(np.argmax(result, axis=1))
accuracy = round(result[0][predicted_class] * 100, 2)
label = indices[predicted_class]
return render_template('maleria_predict.html', image_file_name = file.filename, label = label, accuracy = accuracy)
except:
flash("Please select the image first !!", "danger")
return redirect(url_for("Malaria"))
@app.route("/maleria")
def maleria():
return render_template('maleria.html')
######################routes for default home page#########################################################################################
@app.route('/', methods=['GET'])
def home():
return render_template('index.html', symptoms=symptoms)
################################routes for common disease prediction#########################################################################
with open('dataset/Testing.csv', newline='') as f:
reader = csv.reader(f)
symptoms = next(reader)
symptoms = symptoms[:len(symptoms)-1]
@app.route('/disease', methods=['POST', 'GET'])
def disease_predict():
selected_symptoms = []
if(request.form['Symptom1']!="") and (request.form['Symptom1'] not in selected_symptoms):
selected_symptoms.append(request.form['Symptom1'])
if(request.form['Symptom2']!="") and (request.form['Symptom2'] not in selected_symptoms):
selected_symptoms.append(request.form['Symptom2'])
if(request.form['Symptom3']!="") and (request.form['Symptom3'] not in selected_symptoms):
selected_symptoms.append(request.form['Symptom3'])
if(request.form['Symptom4']!="") and (request.form['Symptom4'] not in selected_symptoms):
selected_symptoms.append(request.form['Symptom4'])
if(request.form['Symptom5']!="") and (request.form['Symptom5'] not in selected_symptoms):
selected_symptoms.append(request.form['Symptom5'])
disease = diseaseprediction.dosomething(selected_symptoms)
return render_template('disease.html',disease=disease,symptoms=symptoms)
#####################################################routes for diabetes###########################################
@app.route("/skin")
def skin():
return render_template('skin.html')
#routes for all the front end page features
@app.route("/about")
def about_page():
return render_template('about.html')
@app.route("/models")
def service_page():
return render_template('models.html')
@app.route("/contact", methods=['GET', 'POST'])
def contact():
form = ContactForm()
if form.validate_on_submit():
flash(f'Message Sent {form.name.data}!', 'success')
return redirect(url_for('home'))
return render_template('contact.html',form=form)
@app.route("/brain")
def brain_page():
return render_template('brain.html')
@app.route("/hospitals")
def hospitals_page():
return render_template('hospitals.html')
@app.route("/covid")
def review_page():
return render_template('covid.html')
@app.route("/404")
def error_page():
return render_template('404.html')
@app.route("/register", methods=['GET', 'POST'])
def register():
form= RegistrationForm()
if form.validate_on_submit():
flash(f'Account created for {form.username.data}!', 'success')
return redirect(url_for('home'))
return render_template('register.html',title='Register', form=form)
@app.route("/login", methods=['GET', 'POST'])
def login():
form= LoginForm()
if form.validate_on_submit():
if form.email.data=='[email protected]' and form.password.data=='password':
flash('You have been logged in!','success')
return redirect(url_for('home'))
else:
flash('Login Unsuccessfull','danger')
return render_template('login.html',title='Login', form=form)
if __name__ == '__main__':
app.run(debug=True)