-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
214 lines (182 loc) · 7.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import itertools
import random
import numpy as np
import torch
import torch.nn.functional as F
class MessengerDataLoader(object):
def __init__(self, batch_size, num_digits, size_signature=2):
self.batch_size = batch_size
self.num_digits = num_digits
self.size_signature = size_signature
self.collect_train_data = []
signatures = [
10 * p + b for p, b in zip(
np.random.choice(
range(num_digits), size_signature * 2, replace=False),
np.random.choice(range(10), size_signature * 2, replace=True))
]
self._signature_test_set = sorted(signatures[:size_signature])
self._signature_eval_set = sorted(signatures[size_signature:])
self._max_test_eval_sets = 10**4
self._max_trainval_set = 10**3
self._max_train_test_set = self._max_test_eval_sets
self._create_test_set()
self._create_eval_set()
self._create_trainval_set()
def get_batch(self, subset, batch_size=None):
batch_size = batch_size or self.batch_size
if subset == 'test':
batch_size = np.minimum(batch_size, self._test_size)
batch = self._test_data[np.random.choice(
self._test_size, batch_size, replace=False)]
elif subset == 'eval':
batch_size = np.minimum(batch_size, self._eval_size)
batch = self._eval_data[np.random.choice(
self._eval_size, batch_size, replace=False)]
elif subset == 'trainval':
batch_size = np.minimum(batch_size, self._max_trainval_set)
batch = self._trainval_data[np.random.choice(
self._max_trainval_set, batch_size, replace=False)]
else:
batch = self._create_train_data(batch_size)
return batch
def _make_data(self, size):
return [
tuple([
10 * indice + np.random.randint(10)
for indice in range(self.num_digits)
])
for _ in range(size)
]
def get_all_data(self):
all_ranges = [
range(10 * k, 10 * (k + 1)) for k in range(self.num_digits)
]
return np.array([e for e in itertools.product(*all_ranges)])
def _create_set(self, signature, ex_set):
all_ranges = [
range(10 * k, 10 * (k + 1)) for k in range(self.num_digits)
]
for sig in signature:
all_ranges[int(sig / 10)] = [sig]
ret = [e for e in itertools.product(*all_ranges) if e not in ex_set]
random.shuffle(ret)
ret = ret[:self._max_test_eval_sets]
return np.array(ret), set(ret)
def _create_test_set(self):
self._test_data, self._test_set = self._create_set(
self._signature_test_set, set())
self._test_size = len(self._test_data)
def _create_eval_set(self):
if not self._test_set:
raise Exception("No test set")
self._eval_data, self._eval_set = self._create_set(
self._signature_eval_set, self._test_set)
self._eval_size = len(self._eval_data)
def _create_trainval_set(self):
trainval_data = []
while len(trainval_data) < self._max_trainval_set:
random_data = self._make_data(self._max_trainval_set -
len(trainval_data))
random_data = list(
set([
k for k in random_data
if k not in self._test_set and k not in self._eval_set
]))
trainval_data.extend(random_data)
self._trainval_data = np.array(trainval_data)
self._trainval_set = set(trainval_data)
def _create_train_data(self, batch_size):
train_data = []
while len(train_data) < batch_size:
random_data = self._make_data(batch_size - len(train_data))
random_data = list(
set([
k for k in random_data if k not in self._test_set and
k not in self._eval_set and k not in self._trainval_set
]))
train_data.extend(random_data)
for data in train_data:
if len(self.collect_train_data) >= self._max_train_test_set:
break
if data not in self.collect_train_data:
self.collect_train_data.append(data)
return np.array(train_data)
def cal_acc(real, generated):
all_count = 0
ind_acc = [0 for _ in range(len(real[0]))]
for (r, g) in zip(real, generated):
count = 0
for ind, r_num in enumerate(r):
if r_num in g:
ind_acc[ind] += 1
count += 1
if count == len(r):
all_count += 1
ind_acc = [a / len(real) for a in ind_acc]
return all_count / len(real), ind_acc
def xent_loss(scores, label):
p_hat = F.log_softmax(scores, -1)
p = label
loss = -p * p_hat
preds = torch.argmax(p_hat, dim=-1, keepdim=True)
return loss, preds
def check_correct_preds(preds):
batch_size = preds.shape[0]
num_digits = preds.shape[1]
bins = np.zeros((batch_size, num_digits))
for i in range(batch_size):
sorted_out = sorted(preds[i])
for j in range(num_digits):
for s in range(num_digits):
minc, maxc = 10 * s, 10 * (s + 1)
if minc <= sorted_out[j] < maxc:
bins[i][s] += 1
break
no_rep = bins[np.all(bins == 1, -1)]
return no_rep.shape[0]
def get_residual_entropy(lang, target):
num_bits = lang.shape[1]
num_digits = target.shape[1]
speaker = np.zeros((10 * num_digits, lang.shape[1] * 2))
for (t, l) in zip(target, lang):
for num, bit in enumerate(l):
for char in t:
speaker[char][num * 2 + int(bit)] += 1
spknorm = np.zeros((10 * num_digits, lang.shape[1] * 2))
for char in range(10 * num_digits):
for i in range(0, lang.shape[1] * 2, 2):
spknorm[char][i] = speaker[char][i] / (speaker[char][i] + speaker[char][i + 1])
spknorm[char][i + 1] = speaker[char][i + 1] / (speaker[char][i] + speaker[char][i + 1])
spkprobs_0 = spknorm[:, ::2]
spkprobs_0_diff = abs(spkprobs_0 - spkprobs_0.mean(axis=0))
ranks = np.zeros((num_digits, num_bits))
for category in range(num_digits):
ranks[category] = np.mean(spkprobs_0_diff[category * 10:(category + 1) * 10], axis=0)
indx = [[] for _ in range(num_digits)]
for b in range(num_bits):
v = np.argmax(ranks[:, b])
indx[int(v)].append(b)
probs = []
probs_n = []
ents = np.zeros(num_digits)
for cat in range(num_digits):
dat = lang[:, indx[cat]]
indx_length = len(indx[cat])
vec = 2 ** np.array(range(indx_length))
probs.append(np.zeros((2 ** indx_length, 10)) + 1e-8)
probs_n.append(np.zeros((2 ** indx_length, 10)) + 1e-8)
fp = dat.dot(vec)
for i in range(len(fp)):
probs[cat][int(fp[i]), target[i, cat] - cat * 10] += 1
probs_n[cat] = probs[cat] / (np.reshape(np.sum(probs[cat], axis=1), [-1, 1]))
ent = np.sum(probs_n[cat] * np.log(probs_n[cat]), 1)
ents[cat] = np.sum(ent * (probs[cat].sum(1) / probs[cat].sum()))
ent = -np.mean(ents) / np.log(10)
return ent
def sample_gumbel(shape, device, eps=1e-8):
values = torch.empty(shape, device=device).uniform_(0, 1)
return -torch.log(-torch.log(values + eps) + eps)
def gumbel_softmax(logits, temperature, device):
y = logits + sample_gumbel(logits.shape, device)
return F.softmax(y / temperature, -1)