-
Notifications
You must be signed in to change notification settings - Fork 0
/
dfdet_r50_dota1.py
85 lines (80 loc) · 2.41 KB
/
dfdet_r50_dota1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
_base_ = [
'../_base_/datasets/dota.py', '../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
model = dict(
type='ATSSOBB',
pretrained=
'https://download.openmmlab.com/pretrain/third_party/resnet50_caffe-788b5fa3.pth',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='caffe'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs=True,
extra_convs_on_inputs=False, # use P5
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='ScaleAdaptiveHead',
num_classes=15,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
scale_theta=True,
reg_loss_wh_thre=5,
bbox_coder=dict(
type='OBB2DistCoder',
target_means=(0., 0., 0., 0., 0.),
target_stds=(1., 1., 1., 1., 1.)),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='CIoULoss', loss_weight=1.0),
loss_trig=dict(type="L1Loss", loss_weight=0.2),
anchor_generator=dict(
type="Theta0AnchorGenerator",
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
center_offset=0.5,
strides=[8, 16, 32, 64, 128]),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)))
# training and testing settings
train_cfg = dict(
assigner=dict(type='OBBATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False)
test_cfg = dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='obb_nms', iou_thr=0.1),
max_per_img=2000)
# optimizer
optimizer = dict(_delete_=True, type='AdamW', lr=0.000025, weight_decay=0.0001)
optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=1, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[55, 88, 121])
total_epochs = 200
checkpoint_config = dict(interval=10)