-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathpcr.py
executable file
·367 lines (294 loc) · 11 KB
/
pcr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python
import os
import sys
import zlib
import cv2
import time
import random
from threading import Thread
from sklearn.cluster import MiniBatchKMeans
from scipy.sparse import lil_matrix, csr_matrix
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import AdaBoostClassifier
try:
import cPickle as pickle
from urllib2 import urlopen
from Queue import Queue
except ImportError:
import pickle
from urllib.request import urlopen
from queue import Queue
FILE_LOAD_THREADS = 1
FILE_SEED = 24
CLUSTER_SEED = 24
CLUSTERS_NUMBER = 1000
BAYES_ALPHA = 0.1
ADA_BOOST_ESTIMATORS = 110
VERBOSE = True
USE_CACHE = True
_g_removed = False
class PCR:
def __init__(self):
self.__clustersNumber = CLUSTERS_NUMBER
self.__queue = Queue()
self.__verbose = VERBOSE
self.__useCache = USE_CACHE
for i in range(FILE_LOAD_THREADS):
t = Thread(target=self.__worker)
t.daemon = True
t.start()
self.__kmeans = MiniBatchKMeans(
n_clusters=self.__clustersNumber,
random_state=CLUSTER_SEED,
verbose=self.__verbose)
self.__tfidf = TfidfTransformer()
self.__tfidf1 = TfidfTransformer()
self.__clf = AdaBoostClassifier(MultinomialNB(alpha=BAYES_ALPHA), n_estimators=ADA_BOOST_ESTIMATORS)
self.__clf1 = AdaBoostClassifier(MultinomialNB(alpha=BAYES_ALPHA), n_estimators=ADA_BOOST_ESTIMATORS)
def __worker(self):
while True:
task = self.__queue.get()
func, args = task
try:
func(args)
except Exception as e:
print('EXCEPTION:', e)
self.__queue.task_done()
def train(self, positiveFiles, negativeFiles):
cachedData = self.__loadCache()
if cachedData is None:
self.__log('loading positives')
positiveSamples = self.__loadSamples(positiveFiles)
self.__log('loading negatives')
negativeSamples = self.__loadSamples(negativeFiles)
totalDescriptors = []
self.__addDescriptors(totalDescriptors, positiveSamples)
self.__addDescriptors(totalDescriptors, negativeSamples)
self.__kmeans.fit(totalDescriptors)
clusters = self.__kmeans.predict(totalDescriptors)
self.__printDistribution(clusters)
self.__saveCache((positiveSamples, negativeSamples, self.__kmeans, clusters))
else:
self.__log('using cache')
positiveSamples, negativeSamples, self.__kmeans, clusters = cachedData
totalSamplesNumber = len(negativeSamples) + len(positiveSamples)
counts = lil_matrix((totalSamplesNumber, self.__clustersNumber))
counts1 = lil_matrix((totalSamplesNumber, 256))
self.__currentSample = 0
self.__currentDescr = 0
self.__calculteCounts(positiveSamples, counts, counts1, clusters)
self.__calculteCounts(negativeSamples, counts, counts1, clusters)
counts = csr_matrix(counts)
counts1 = csr_matrix(counts1)
self.__log('training bayes classifier')
tfidf = self.__tfidf.fit_transform(counts)
tfidf1 = self.__tfidf1.fit_transform(counts1)
classes = [True] * len(positiveSamples) + [False] * len(negativeSamples)
self.__clf.fit(tfidf, classes)
self.__clf1.fit(tfidf1, classes)
self.__log('training complete')
def predict(self, files):
self.__log('loading files')
samples = self.__loadSamples(files)
totalDescriptors = []
self.__addDescriptors(totalDescriptors, samples)
self.__log('predicting classes')
clusters = self.__kmeans.predict(totalDescriptors)
counts = lil_matrix((len(samples), self.__clustersNumber))
counts1 = lil_matrix((len(samples), 256))
self.__currentSample = 0
self.__currentDescr = 0
self.__calculteCounts(samples, counts, counts1, clusters)
counts = csr_matrix(counts)
counts1 = csr_matrix(counts1)
tfidf = self.__tfidf.transform(counts)
tfidf1 = self.__tfidf1.transform(counts1)
self.__log('classifying')
weights = self.__clf.predict_log_proba(tfidf.toarray())
weights1 = self.__clf1.predict_log_proba(tfidf1.toarray())
predictions = []
for i in range(0, len(weights)):
w = weights[i][0] - weights[i][1]
w1 = weights1[i][0] - weights1[i][1]
pred = w < 0
pred1 = w1 < 0
if pred != pred1:
pred = w + w1 < 0
predictions.append(pred)
self.__log('prediction complete')
return predictions
def saveModel(self, fileName):
data = pickle.dumps((self.__clustersNumber, self.__kmeans, self.__tfidf,
self.__tfidf1, self.__clf, self.__clf1), -1)
data = zlib.compress(data)
open(fileName, 'wb').write(data)
def loadModel(self, fileName):
data = open(fileName, 'rb').read()
data = zlib.decompress(data)
data = pickle.loads(data)
self.__clustersNumber, self.__kmeans, self.__tfidf, self.__tfidf1, self.__clf, self.__clf1 = data
def __log(self, message):
if self.__verbose:
print(message)
def __saveCache(self, data):
if not self.__useCache:
return
data = pickle.dumps(data, -1)
data = zlib.compress(data)
open('cache.bin', 'w').write(data)
def __loadCache(self):
if not self.__useCache:
return None
if not os.path.isfile('cache.bin'):
return None
data = open('cache.bin', 'r').read()
data = zlib.decompress(data)
data = pickle.loads(data)
return data
def __calculteCounts(self, samples, counts, counts1, clusters):
cn = self.__clustersNumber
for s in samples:
currentCounts = {}
for d in s[0]:
currentCounts[clusters[self.__currentDescr]] = currentCounts.get(clusters[self.__currentDescr], 0) + 1
self.__currentDescr += 1
for clu, cnt in currentCounts.iteritems():
counts[self.__currentSample, clu] = cnt
for i, histCnt in enumerate(s[1]):
counts1[self.__currentSample, i] = histCnt[0]
self.__currentSample += 1
def __printDistribution(self, clusters):
if not self.__verbose:
return
distr = {}
for c in clusters:
distr[c] = distr.get(c, 0) + 1
v = sorted(distr.values(), reverse=True)
print('distribution:', v[0:15], '...', v[-15:])
def __addDescriptors(self, totalDescriptors, samples):
for sample in samples:
for descriptor in sample[0]:
totalDescriptors.append(descriptor)
def __loadSamples(self, files):
samples = [[]] * len(files)
n = 0
for f in files:
self.__queue.put((self.__loadSingleSample, (f, samples, n)))
n += 1
self.__queue.join()
if _g_removed:
print(' === REMOVED = TERMINATE')
sys.exit(44)
return samples
def __loadSingleSample(self, args):
global _g_removed
fileName, samples, sampleNum = args
des, hist = self.__getFeatures(fileName)
if des is None:
print('ERROR: failed to load', fileName)
os.remove(fileName)
_g_removed = True
# sys.exit(44)
des = []
hist = [[0]] * 256
samples[sampleNum] = (des, hist)
def __getFeatures(self, fileName):
fid = 'cache/' + str(zlib.crc32(fileName))
self.__log('loading %s' % fileName)
if os.path.isfile(fid):
des, hist = pickle.loads(open(fid, 'rb').read())
else:
img = cv2.imread(fileName)
if img.shape[1] > 1000:
cf = 1000.0 / img.shape[1]
newSize = (int(cf * img.shape[0]), int(cf * img.shape[1]), img.shape[2])
img.resize(newSize)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
s = cv2.SIFT(nfeatures=400)
d = cv2.DescriptorExtractor_create("OpponentSIFT")
kp = s.detect(gray, None)
kp, des = d.compute(img, kp)
hist = self.__getColorHist(img)
#open(fid, 'wb').write(pickle.dumps((des, hist), -1))
return des, hist
def __getColorHist(self, img):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
dist = cv2.calcHist([hsv], [0], None, [256], [0, 256])
return dist
def loadDir(dirName):
files = os.listdir(dirName)
fnames = []
for f in files:
if not f.endswith('.jpg'):
continue
fileName = dirName + '/' + f
fnames.append(fileName)
return fnames
def loadFileLists():
random.seed(FILE_SEED)
positiveFiles = sorted(loadDir('2'))
negativeFiles = sorted(loadDir('1'))
random.shuffle(positiveFiles)
random.shuffle(negativeFiles)
minLen = min(len(positiveFiles), len(negativeFiles))
p20 = int(0.2 * minLen)
testFiles = positiveFiles[:p20] + negativeFiles[:p20]
positiveFiles = positiveFiles[p20:]
negativeFiles = negativeFiles[p20:]
print(testFiles[0], negativeFiles[0], positiveFiles[0])
testFiles = loadDir('1test')
return positiveFiles, negativeFiles, testFiles
def train():
positiveFiles, negativeFiles, testFiles = loadFileLists()
pcr = PCR()
pcr.train(positiveFiles, negativeFiles)
pcr.saveModel('model.bin')
def predict():
positiveFiles, negativeFiles, testFiles = loadFileLists()
testFiles = testFiles
pcr = PCR()
pcr.loadModel('model.bin')
pred = pcr.predict(testFiles)
total = 0
correct = 0
for i in xrange(0, len(testFiles)):
isCorrect = ((testFiles[i][0] == '1' and not pred[i]) or (testFiles[i][0] == '2' and pred[i]))
print(isCorrect, pred[i], testFiles[i])
# if not isCorrect:
# print testFiles[i]
correct += int(isCorrect)
total += 1
print('sum: \t', float(correct) / total)
def predictTest():
files = ['test.jpg']
pcr = PCR()
pcr.loadModel('model.bin')
pred = pcr.predict(files)
print('\n\n ===', pred[0], '===\n\n')
def predictUrl(url):
f = open('test.jpg', 'wb')
f.write(urlopen(url).read())
f.close()
time.sleep(0.5)
predictTest()
def printUsage():
print('Usage: ')
print(' %s train - train model' % sys.argv[0])
print(' %s url http://sample.com/img.jpg - check given url' % sys.argv[0])
sys.exit(42)
if __name__ == '__main__':
if len(sys.argv) < 2:
printUsage()
mode = sys.argv[1]
if mode == 'train':
train()
time.sleep(0.5)
predict()
elif mode == 'url':
if len(sys.argv) < 3:
printUsage()
url = sys.argv[2]
predictUrl(url)
else:
printUsage()