forked from VinAIResearch/MISCA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·141 lines (110 loc) · 6.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
from trainer import Trainer
from utils import init_logger, load_tokenizer, read_prediction_text, set_seed, MODEL_CLASSES, MODEL_PATH_MAP, get_intent_labels, get_slots_all
from data_loader import TextLoader, TextCollate
def main(args):
init_logger()
set_seed(args)
slot_label_lst, hiers = get_slots_all(args)
collate = TextCollate(0, len(get_intent_labels(args)), args.max_seq_len)
train_dataset = TextLoader(args, 'train')
dev_dataset = TextLoader(args, 'dev')
test_dataset = TextLoader(args, 'test')
trainer = Trainer(args, collate, train_dataset, dev_dataset, test_dataset)
if args.do_train:
trainer.train()
if args.do_eval:
trainer.load_model()
trainer.evaluate('dev', 0)
trainer.evaluate("test", -1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--task", default=None, required=True, type=str, help="The name of the task to train")
parser.add_argument("--model_dir", default=None, required=True, type=str, help="Path to save, load model")
parser.add_argument("--data_dir", default="./data", type=str, help="The input data dir")
parser.add_argument("--intent_label_file", default="intent_label.txt", type=str, help="Intent Label file")
parser.add_argument("--slot_label_file", default="slot_label.txt", type=str, help="Slot Label file")
parser.add_argument("--slot_label_clean", default="slot_clean.txt", type=str, help="Slot Label file")
parser.add_argument("--logging", default="log.txt", type=str, help="Logging file")
# LAAT
parser.add_argument("--n_levels", default=1, type=int, help="Number of attention")
parser.add_argument("--attention_mode", default=None, type=str)
parser.add_argument("--level_projection_size", default=32, type=int)
parser.add_argument("--d_a", default=-1, type=int)
parser.add_argument("--char_embed", default=64, type=int)
parser.add_argument("--char_out", default=64, type=int)
parser.add_argument("--use_charcnn", action="store_false", help="Whether to use CharCNN")
parser.add_argument("--use_charlstm", action="store_false", help="Whether to use CharLSTM")
parser.add_argument("--word_embedding_dim", default=128, type=int)
parser.add_argument("--encoder_hidden_dim", default=128, type=int)
parser.add_argument("--decoder_hidden_dim", default=256, type=int)
parser.add_argument("--attention_hidden_dim", default=256, type=int)
parser.add_argument("--attention_output_dim", default=256, type=int)
# Config training
parser.add_argument("--model_type", default="bert", type=str, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument('--seed', type=int, default=1234, help="random seed for initialization")
parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.")
parser.add_argument("--eval_batch_size", default=64, type=int, help="Batch size for evaluation.")
parser.add_argument("--max_seq_len", default=100, type=int, help="The maximum total input sequence length after tokenization.")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs", default=50, type=float, help="Total number of training epochs to perform.")
parser.add_argument("--weight_decay", default=0, type=float, help="Weight decay if we apply some.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--dropout_rate", default=0.1, type=float, help="Dropout for fully-connected layers")
parser.add_argument('--logging_steps', type=int, default=-1, help="Log every X updates steps.")
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.")
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument("--tuning_metric", default="mean_intent_slot", type=str, help="Metric to save checkpoint")
parser.add_argument("--only_intent", default=0, type=float, help="The first epochs to optimize intent")
parser.add_argument("--ignore_index", default=0, type=int,
help='Specifies a target value that is ignored and does not contribute to the input gradient')
parser.add_argument(
"--token_level",
type=str,
default="word-level",
help="Tokens are at syllable level or word level (Vietnamese) [word-level, syllable-level]",
)
parser.add_argument('--intent_loss_coef', type=float, default=0.5, help='Coefficient for the intent loss.')
parser.add_argument('--aux_loss_coef', type=float, default=0.5, help='Coefficient for the aux task.')
parser.add_argument('--early_stopping', type=float, default=-1, help='Early stopping strategy')
parser.add_argument("--base_model", default=None, type=str, help="The pretrained model path")
parser.add_argument(
"--num_intent_detection",
action="store_true",
help="Whether to use two-stage intent detection",
)
parser.add_argument(
"--auxiliary_tasks",
action="store_true",
help="Whether to optimize with auxiliary tasks",
)
parser.add_argument(
"--slot_decoder_size", type=int, default=512, help="hidden size of attention output vector"
)
parser.add_argument(
"--intent_slot_attn_size", type=int, default=256, help="hidden size of attention output vector"
)
parser.add_argument(
"--min_freq", type=int, default=1, help="Minimum number of frequency to be considered in the vocab"
)
parser.add_argument(
'--intent_slot_attn_type', choices=['coattention', 'attention_flow'],
)
parser.add_argument(
'--embedding_type', choices=['soft', 'hard'], default='soft',
)
parser.add_argument(
"--label_embedding_size", type=int, default=256, help="hidden size of label embedding vector"
)
# CRF option
parser.add_argument("--use_crf", action="store_true", help="Whether to use CRF")
parser.add_argument("--slot_pad_label", default="PAD", type=str, help="Pad token for slot label pad (to be ignore when calculate loss)")
args = parser.parse_args()
args.model_name_or_path = MODEL_PATH_MAP[args.model_type]
main(args)