-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext_to_scene.py
279 lines (264 loc) · 9.07 KB
/
text_to_scene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import argparse
import json
import os
import random
import dotenv
import numpy as np
from colorama import Fore, Style
from openai import OpenAI
from misc.create_scene_from_json import create_seed, scene_generation
from prompt import (
SYSTEM_PROMPT,
check_analysis_output,
check_planning_output,
check_retreival_output,
)
from prompt.format import (
ANALYSIS_FORMAT,
ANALYSIS_FORMAT_WITH_ERROR,
PLANNING_FORMAT,
PLANNING_FORMAT_WITH_ERROR,
ROAD_RETREIVAL_FORMAT,
ROAD_RETREIVAL_FORMAT_WITH_ERROR,
)
dotenv.load_dotenv()
def parse_args():
parser = argparse.ArgumentParser(description="Text to scene")
parser.add_argument(
"--input-prompt",
type=str,
required=True,
help="The input prompt",
)
parser.add_argument(
"--model-name",
type=str,
default="gpt-4o",
help="The model name",
)
parser.add_argument(
"--map-folder",
type=str,
default="maps",
help="The map folder",
)
parser.add_argument(
"--ip-address",
type=str,
default="localhost",
help="The ip address",
)
parser.add_argument(
"--port",
type=int,
default=2000,
help="The port",
)
parser.add_argument(
"--save-dir",
type=str,
default="save_dir",
help="The save directory",
)
parser.add_argument(
"--use-cache",
action="store_true",
help="Use cache",
default=False,
)
parser.add_argument(
"--cache-dir",
type=str,
default="graph_cache",
help="The cache directory",
)
parser.add_argument(
"--return-ego",
action="store_true",
help="Return the ego information",
default=False,
)
parser.add_argument(
"--plan-only",
action="store_true",
help="Plan only",
default=False,
)
parser.add_argument(
"--max-retry",
type=int,
default=3,
help="The maximum retry for each stage",
)
return parser.parse_args()
def split_planning_response(response):
road_condition, agent_info = response.split("---")
return eval(road_condition.strip()), eval(agent_info.strip())
def text_to_scene(
input_prompt: str,
model_name: str = "gpt-4o",
map_folder: str = "maps",
ip_address: str = "localhost",
port: int = 2000,
plan_only: bool = False,
save_dir: str = "text_to_scene",
use_cache: bool = True,
cache_dir: str = "graph_cache",
return_ego: bool = False,
max_retry: int = 3,
):
chat_client = OpenAI()
analysis_success = False
analysis_check_output = None
analysis_output = None
count_analysis_retry = 0
while not analysis_success and count_analysis_retry < max_retry:
if analysis_check_output is None or analysis_output is None:
analysis_input = ANALYSIS_FORMAT.format(
description=input_prompt,
return_ego="True" if return_ego else "False",
)
else:
analysis_input = ANALYSIS_FORMAT_WITH_ERROR.format(
description=input_prompt,
return_ego="True" if return_ego else "False",
error=analysis_check_output,
previous_output=analysis_output,
)
analysis_response = chat_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": analysis_input},
],
temperature=0.9,
)
try:
analysis_output = analysis_response.choices[0].message.content
analysis_success, analysis_check_output = check_analysis_output(analysis_output)
print(f"{Style.BRIGHT}Analysis input{Style.RESET_ALL}: {analysis_input}")
print(f"{Style.BRIGHT}Analysis output{Style.RESET_ALL}: {analysis_output}")
print(
f"{Style.BRIGHT}Analysis check message{Style.RESET_ALL}: {Fore.GREEN + 'success' + Style.RESET_ALL if analysis_success else Fore.RED + analysis_check_output + Style.RESET_ALL}"
)
except Exception as e:
print(str(e))
analysis_output = None
count_analysis_retry += 1
retreival_success = False
retreival_check_output = None
retreival_output = None
count_retreival_retry = 0
while not retreival_success and count_retreival_retry < max_retry:
if retreival_check_output is None or retreival_output is None:
retreival_input = ROAD_RETREIVAL_FORMAT.format(
description=input_prompt,
analysis_context=analysis_output,
return_ego="True" if return_ego else "False",
)
else:
retreival_input = ROAD_RETREIVAL_FORMAT_WITH_ERROR.format(
description=input_prompt,
analysis_context=analysis_output,
return_ego="True" if return_ego else "False",
error=retreival_check_output,
previous_output=retreival_output,
)
retreival_response = chat_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": retreival_input},
],
temperature=0.9,
)
try:
retreival_output = retreival_response.choices[0].message.content
retreival_success, retreival_check_output = check_retreival_output(retreival_output)
print(f"{Style.BRIGHT}Retreival input{Style.RESET_ALL}: {retreival_input}")
print(f"{Style.BRIGHT}Retreival output{Style.RESET_ALL}: {retreival_output}")
print(
f"{Style.BRIGHT}Retreival check message{Style.RESET_ALL}: {Fore.GREEN + 'success' + Style.RESET_ALL if retreival_success else Fore.RED + retreival_check_output + Style.RESET_ALL}"
)
except Exception:
retreival_output = None
count_retreival_retry += 1
planning_success = False
planning_check_output = None
planning_output = None
count_planning_retry = 0
while not planning_success and count_planning_retry < max_retry:
if planning_check_output is None or planning_output is None:
planning_input = PLANNING_FORMAT.format(
description=input_prompt,
analysis_context=analysis_output,
return_ego={"True" if return_ego else "False"},
)
else:
planning_input = PLANNING_FORMAT_WITH_ERROR.format(
description=input_prompt,
analysis_context=analysis_output,
return_ego={"True" if return_ego else "False"},
error=planning_check_output,
previous_output=planning_output,
)
planning_response = chat_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": planning_input},
],
temperature=0.9,
)
try:
planning_output = planning_response.choices[0].message.content
planning_success, planning_check_output = check_planning_output(planning_output)
print(f"{Style.BRIGHT}Planning input{Style.RESET_ALL}: {planning_input}")
print(f"{Style.BRIGHT}Planning output{Style.RESET_ALL}: {planning_output}")
print(
f"{Style.BRIGHT}Planning check message{Style.RESET_ALL}: {Fore.GREEN + 'success' + Style.RESET_ALL if planning_success else Fore.RED + planning_check_output + Style.RESET_ALL}"
)
except Exception:
planning_output = None
count_planning_retry += 1
os.makedirs(save_dir, exist_ok=True)
with open(f"{save_dir}/agent_output.json", "w") as f:
json.dump(
{
"analysis": analysis_check_output,
"retreival": retreival_check_output,
"planning": planning_check_output,
},
f,
indent=2,
)
with open(f"{save_dir}/prompt.txt", "w") as f:
f.write(str(input_prompt))
if not plan_only:
scene_generation(
retreival_check_output,
planning_check_output,
save_dir=save_dir,
use_cache=use_cache,
cache_dir=cache_dir,
ip_address=ip_address,
port=port,
map_folder=map_folder,
return_ego=return_ego,
)
if __name__ == "__main__":
args = parse_args()
# create_seed()
text_to_scene(
input_prompt=args.input_prompt,
model_name=args.model_name,
map_folder=args.map_folder,
ip_address=args.ip_address,
port=args.port,
plan_only=args.plan_only,
save_dir=args.save_dir,
use_cache=args.use_cache,
cache_dir=args.cache_dir,
return_ego=args.return_ego,
max_retry=args.max_retry,
)