forked from CompVis/stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 469
/
optimized_img2img.py
362 lines (314 loc) · 10.6 KB
/
optimized_img2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import argparse, os, re
import torch
import numpy as np
from random import randint
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
from einops import rearrange, repeat
from ldm.util import instantiate_from_config
from optimUtils import split_weighted_subprompts, logger
from transformers import logging
import pandas as pd
logging.set_verbosity_error()
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
def load_img(path, h0, w0):
image = Image.open(path).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from {path}")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
print(f"New image size ({w}, {h})")
image = image.resize((w, h), resample=Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
config = "optimizedSD/v1-inference.yaml"
ckpt = "models/ldm/stable-diffusion-v1/model.ckpt"
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render"
)
parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/img2img-samples")
parser.add_argument("--init-img", type=str, nargs="?", help="path to the input image")
parser.add_argument(
"--skip_grid",
action="store_true",
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action="store_true",
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=None,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=None,
help="image width, in pixel space",
)
parser.add_argument(
"--strength",
type=float,
default=0.75,
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
)
parser.add_argument(
"--n_samples",
type=int,
default=5,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="CPU or GPU (cuda/cuda:0/cuda:1/...)",
)
parser.add_argument(
"--unet_bs",
type=int,
default=1,
help="Slightly reduces inference time at the expense of high VRAM (value > 1 not recommended )",
)
parser.add_argument(
"--turbo",
action="store_true",
help="Reduces inference time on the expense of 1GB VRAM",
)
parser.add_argument(
"--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast"
)
parser.add_argument(
"--format",
type=str,
help="output image format",
choices=["jpg", "png"],
default="png",
)
parser.add_argument(
"--sampler",
type=str,
help="sampler",
choices=["ddim"],
default="ddim",
)
opt = parser.parse_args()
tic = time.time()
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
grid_count = len(os.listdir(outpath)) - 1
if opt.seed == None:
opt.seed = randint(0, 1000000)
seed_everything(opt.seed)
# Logging
logger(vars(opt), log_csv = "logs/img2img_logs.csv")
sd = load_model_from_config(f"{ckpt}")
li, lo = [], []
for key, value in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config}")
assert os.path.isfile(opt.init_img)
init_image = load_img(opt.init_img, opt.H, opt.W).to(opt.device)
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
model.cdevice = opt.device
model.unet_bs = opt.unet_bs
model.turbo = opt.turbo
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelCS.cond_stage_model.device = opt.device
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
if opt.device != "cpu" and opt.precision == "autocast":
model.half()
modelCS.half()
modelFS.half()
init_image = init_image.half()
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
assert opt.prompt is not None
prompt = opt.prompt
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = batch_size * list(data)
data = list(chunk(sorted(data), batch_size))
modelFS.to(opt.device)
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
if opt.device != "cpu":
mem = torch.cuda.memory_allocated(device=opt.device) / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem:
time.sleep(1)
assert 0.0 <= opt.strength <= 1.0, "can only work with strength in [0.0, 1.0]"
t_enc = int(opt.strength * opt.ddim_steps)
print(f"target t_enc is {t_enc} steps")
if opt.precision == "autocast" and opt.device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
seeds = ""
with torch.no_grad():
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompts[0])))[:150]
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
with precision_scope("cuda"):
modelCS.to(opt.device)
uc = None
if opt.scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
if opt.device != "cpu":
mem = torch.cuda.memory_allocated(device=opt.device) / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem:
time.sleep(1)
# encode (scaled latent)
z_enc = model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(opt.device),
opt.seed,
opt.ddim_eta,
opt.ddim_steps,
)
# decode it
samples_ddim = model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
sampler = opt.sampler
)
modelFS.to(opt.device)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, "seed_" + str(opt.seed) + "_" + f"{base_count:05}.{opt.format}")
)
seeds += str(opt.seed) + ","
opt.seed += 1
base_count += 1
if opt.device != "cpu":
mem = torch.cuda.memory_allocated(device=opt.device) / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated(device=opt.device) / 1e6 >= mem:
time.sleep(1)
del samples_ddim
print("memory_final = ", torch.cuda.memory_allocated(device=opt.device) / 1e6)
toc = time.time()
time_taken = (toc - tic) / 60.0
print(
(
"Samples finished in {0:.2f} minutes and exported to "
+ sample_path
+ "\n Seeds used = "
+ seeds[:-1]
).format(time_taken)
)