-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_optuna.py
193 lines (164 loc) · 5.39 KB
/
example_optuna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# pylint: disable=import-error
from pathlib import Path
import pandas as pd
import numpy as np
import optuna
from optuna.samplers import TPESampler
from argparse import Namespace
import argparse
from PCM.optuna import (
Objective_ST,
Objective_ST_ext,
Objective_MT,
Objective_MT_withPRT,
)
from pytorch_lightning import seed_everything
def arg_parser():
parser = argparse.ArgumentParser(
description="Run Optune to determine optimal model HPs"
)
parser.add_argument("--model_dir", type=str,
help="Model directory", required=True)
parser.add_argument(
"--method",
type=str,
help="Which approach to use",
required=True,
)
parser.add_argument("--censored", action="store_true")
parser.add_argument("--batch_size", type=int,
help="Batch size", default=512)
parser.add_argument(
"--noise",
type=float,
help="Noise level applied to cmp and prt at training time",
default=0.05,
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = vars(arg_parser())
print(args)
# prepare data
model_dir = Path(args["model_dir"])
optuna_dir = Path(model_dir / "OptunaHPSearch")
par = {
"censored": args["censored"],
"batch_size": args["batch_size"],
"noise": args["noise"],
}
# Get the data
N_train = 1000
N_val = 100
cmp_tr = np.random.rand(N_train, 512) * 2 - 1.0
prt_tr = np.random.rand(N_train, 256)
pIC50_tr = np.random.rand(N_train) + 5
prefixes_tr = np.random.randint(low=-1, high=2, size=N_train)
cmp_val = np.random.rand(N_val, 512) * 2 - 1.0
prt_val = np.random.rand(N_val, 256)
pIC50_val = np.random.rand(N_val) + 5
prefixes_val = np.random.randint(low=-1, high=2, size=N_val)
if args["method"] == "PCM":
asy_tr = np.vstack([[0, 1], [1, 0]] * int(N_train / 2))
asy_val = np.vstack([[0, 1], [1, 0]] * int(N_val / 2))
data_params = Namespace(**par)
data_train = {
"prt": prt_tr,
"cmp": cmp_tr,
"asy": asy_tr,
"pIC50": pIC50_tr,
"prefixes": prefixes_tr,
}
data_val = {
"prt": prt_val,
"cmp": cmp_val,
"asy": asy_val,
"pIC50": pIC50_val,
"prefixes": prefixes_val,
}
objective = Objective_ST(
optuna_dir, data_params, data_train, data_val, data_test=None
)
elif args["method"] == "PCM_ext":
par["num_tasks"] = 5
data_params = Namespace(**par)
asy_tr = np.array([0, 1, 2, 3, 4] * int(N_train / 5)).astype(int)
asy_val = np.array([0, 1, 2, 3, 4] * int(N_val / 5)).astype(int)
data_train = {
"prt": prt_tr,
"cmp": cmp_tr,
"asy": asy_tr,
"pIC50": pIC50_tr,
"prefixes": prefixes_tr,
}
data_val = {
"prt": prt_val,
"cmp": cmp_val,
"asy": asy_val,
"pIC50": pIC50_val,
"prefixes": prefixes_val,
}
objective = Objective_ST_ext(
optuna_dir, data_params, data_train, data_val, data_test=None
)
elif args["method"] == "PCM_MT":
par["num_tasks"] = 5
taskind_tr = np.array([0, 1, 2, 3, 4] * int(N_train / 5)).astype(int)
taskind_val = np.array([0, 1, 2, 3, 4] * int(N_val / 5)).astype(int)
data_params = Namespace(**par)
data_train = {
"cmp": cmp_tr,
"pIC50": pIC50_tr,
"prefixes": prefixes_tr,
"taskind": taskind_tr,
}
data_val = {
"cmp": cmp_val,
"pIC50": pIC50_val,
"prefixes": prefixes_val,
"taskind": taskind_val,
}
objective = Objective_MT(
optuna_dir, data_params, data_train, data_val, data_test=None
)
elif args["method"] == "PCM_MT_withPRT":
par["num_tasks"] = 5
taskind_tr = np.array([0, 1, 2, 3, 4] * int(N_train / 5)).astype(int)
taskind_val = np.array([0, 1, 2, 3, 4] * int(N_val / 5)).astype(int)
data_params = Namespace(**par)
data_train = {
"prt": prt_tr,
"cmp": cmp_tr,
"pIC50": pIC50_tr,
"prefixes": prefixes_tr,
"taskind": taskind_tr,
}
data_val = {
"prt": prt_val,
"cmp": cmp_val,
"pIC50": pIC50_val,
"prefixes": prefixes_val,
"taskind": taskind_val,
}
objective = Objective_MT_withPRT(
optuna_dir, data_params, data_train, data_val, data_test=None
)
seed_everything(42, workers=True)
study_name = args["method"]
sampler = TPESampler(seed=10)
study = optuna.create_study(
study_name=study_name,
storage="sqlite:///%s/%s.db" % (str(optuna_dir), study_name),
pruner=optuna.pruners.MedianPruner(n_warmup_steps=10),
direction="maximize",
load_if_exists=True,
sampler=sampler,
)
study.optimize(objective, n_trials=2)
print("Number of finished trials: {}".format(len(study.trials)))
print("Best trial:")
trial = study.best_trial
print(" Value: {}".format(trial.value))
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))