-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathbuild_data.py
98 lines (71 loc) · 4.82 KB
/
build_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import utils
import parsers
from sklearn.externals import joblib
import os.path
""""Read the configuration file and set the parameters of the model"""
class build_data():
def __init__(self,fname):
config_file=parsers.read_properties(fname)
#print("\nConfiguration file {} loaded \n".format(fname))
self.config_fname=fname
# load data
self.filename_embeddings = config_file.getProperty("filename_embeddings")
self.filename_train=config_file.getProperty("filename_train")
self.filename_test=config_file.getProperty("filename_test")
self.filename_dev=config_file.getProperty("filename_dev")
self.train_id_docs = parsers.readHeadFile(self.filename_train)
self.dev_id_docs = parsers.readHeadFile( self.filename_dev)
self.test_id_docs = parsers.readHeadFile(self.filename_test)
# get labels for the whole collection
dataset_documents = []
dataset_documents.extend(self.train_id_docs)
dataset_documents.extend(self.dev_id_docs)
dataset_documents.extend(self.test_id_docs)
self.dataset_set_characters = utils.getCharsFromDocuments(dataset_documents)
self.dataset_set_bio_tags, self.dataset_set_ec_tags = utils.getEntitiesFromDocuments(dataset_documents)
self.dataset_set_relations = utils.getRelationsFromDocuments(dataset_documents)
if os.path.isfile(self.filename_embeddings+".pkl")==False:
self.wordvectors, self.representationsize, self.words = utils.readWordvectorsNumpy(self.filename_embeddings, isBinary=True if self.filename_embeddings.endswith(".bin") else False)
self.wordindices = utils.readIndices(self.filename_embeddings,
isBinary=True if self.filename_embeddings.endswith(".bin") else False)
joblib.dump((self.wordvectors, self.representationsize, self.words,self.wordindices), self.filename_embeddings+".pkl")
else:
self.wordvectors, self.representationsize, self.words,self.wordindices = joblib.load(self.filename_embeddings + ".pkl") # loading is faster
parsers.preprocess(self.train_id_docs, self.wordindices, self.dataset_set_characters,
self.dataset_set_bio_tags, self.dataset_set_ec_tags, self.dataset_set_relations)
parsers.preprocess(self.dev_id_docs, self.wordindices, self.dataset_set_characters,
self.dataset_set_bio_tags, self.dataset_set_ec_tags, self.dataset_set_relations)
parsers.preprocess(self.test_id_docs, self.wordindices, self.dataset_set_characters,
self.dataset_set_bio_tags, self.dataset_set_ec_tags, self.dataset_set_relations)
# training
self.nepochs = int(config_file.getProperty("nepochs"))
self.optimizer = config_file.getProperty("optimizer")
self.activation =config_file.getProperty("activation")
self.learning_rate =float(config_file.getProperty("learning_rate"))
self.gradientClipping = utils.strToBool(config_file.getProperty("gradientClipping"))
self.nepoch_no_imprv = int(config_file.getProperty("nepoch_no_imprv"))
self.use_dropout = utils.strToBool(config_file.getProperty("use_dropout"))
self.ner_loss = config_file.getProperty("ner_loss")
self.ner_classes = config_file.getProperty("ner_classes")
self.use_chars = utils.strToBool(config_file.getProperty("use_chars"))
self.use_adversarial = utils.strToBool(config_file.getProperty("use_adversarial"))
# hyperparameters
self.dropout_embedding = float(config_file.getProperty("dropout_embedding"))
self.dropout_lstm = float(config_file.getProperty("dropout_lstm"))
self.dropout_lstm_output = float(config_file.getProperty("dropout_lstm_output"))
self.dropout_fcl_ner = float(config_file.getProperty("dropout_fcl_ner"))
self.dropout_fcl_rel = float(config_file.getProperty("dropout_fcl_rel"))
self.hidden_size_lstm =int(config_file.getProperty("hidden_size_lstm"))
self.hidden_size_n1 = int(config_file.getProperty("hidden_size_n1"))
#self.hidden_size_n2 = config_file.getProperty("hidden_size_n2")
self.num_lstm_layers = int(config_file.getProperty("num_lstm_layers"))
self.char_embeddings_size = int(config_file.getProperty("char_embeddings_size"))
self.hidden_size_char = int(config_file.getProperty("hidden_size_char"))
self.label_embeddings_size = int(config_file.getProperty("label_embeddings_size"))
self.alpha = float(config_file.getProperty("alpha"))
# evaluation
self.evaluation_method =config_file.getProperty("evaluation_method")
self.root_node=utils.strToBool(config_file.getProperty("root_node"))
self.shuffle=False
self.batchsize=1