-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathtrain_es.py
85 lines (50 loc) · 2.51 KB
/
train_es.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import utils
import tf_utils
from build_data import build_data
import numpy as np
import tensorflow as tf
import sys
import os.path
'Train the model on the train set and evaluate on the evaluation and test sets until ' \
'(1) maximum epochs limit or (2) early stopping break'
def checkInputs():
if (len(sys.argv) <= 3) or os.path.isfile(sys.argv[0])==False :
raise ValueError(
'The configuration file and the timestamp should be specified.')
if __name__ == "__main__":
checkInputs()
config=build_data(sys.argv[1])
train_data = utils.HeadData(config.train_id_docs, np.arange(len(config.train_id_docs)))
dev_data = utils.HeadData(config.dev_id_docs, np.arange(len(config.dev_id_docs)))
test_data = utils.HeadData(config.test_id_docs, np.arange(len(config.test_id_docs)))
tf.reset_default_graph()
tf.set_random_seed(1)
utils.printParameters(config)
with tf.Session() as sess:
embedding_matrix = tf.get_variable('embedding_matrix', shape=config.wordvectors.shape, dtype=tf.float32,
trainable=False).assign(config.wordvectors)
emb_mtx = sess.run(embedding_matrix)
model = tf_utils.model(config,emb_mtx,sess)
obj, m_op, predicted_op_ner, actual_op_ner, predicted_op_rel, actual_op_rel, score_op_rel = model.run()
train_step = model.get_train_op(obj)
operations=tf_utils.operations(train_step,obj, m_op, predicted_op_ner, actual_op_ner, predicted_op_rel, actual_op_rel, score_op_rel)
sess.run(tf.global_variables_initializer())
best_score=0
nepoch_no_imprv = 0 # for early stopping
for iter in range(config.nepochs+1):
model.train(train_data,operations,iter)
dev_score=model.evaluate(dev_data,operations,'dev')
model.evaluate(test_data, operations,'test')
if dev_score>=best_score:
nepoch_no_imprv = 0
best_score = dev_score
print ("- Best dev score {} so far in {} epoch".format(dev_score,iter))
else:
nepoch_no_imprv += 1
if nepoch_no_imprv >= config.nepoch_no_imprv:
print ("- early stopping {} epochs without " \
"improvement".format(nepoch_no_imprv))
with open(sys.argv[3]+"/es_"+sys.argv[2]+".txt", "w+") as myfile:
myfile.write(str(iter))
myfile.close()
break