-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy paths_Estimators_normalIQLinearWage.nb
972 lines (958 loc) · 50.9 KB
/
s_Estimators_normalIQLinearWage.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 51888, 963]
NotebookOptionsPosition[ 51332, 939]
NotebookOutlinePosition[ 51678, 954]
CellTagsIndexPosition[ 51635, 951]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g1", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"PDF", "[",
RowBox[{
RowBox[{"NormalDistribution", "[",
RowBox[{"100", ",", "20"}], "]"}], ",", "IQ"}], "]"}], ",",
RowBox[{"{",
RowBox[{"IQ", ",", "0", ",", "200"}], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontSize", "\[Rule]", "16"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<IQ \>\"", ",", "\"\<density \>\""}], "}"}]}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "None"}], "}"}]}], ",",
RowBox[{"ImagePadding", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"30", ",", "100"}], "}"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "30"}], "}"}]}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.629662240411336*^9, 3.6296622897921605`*^9}, {
3.629663272267355*^9, 3.629663376614323*^9}, {3.6296634794772067`*^9,
3.629663479675218*^9}, {3.629663644391639*^9, 3.6296636454497*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJw1mnc8V+/7xxFSqewVshKSkZGk+76yR/Z6v42s9yoje4Vo2ftdZqgklUKF
UoSsJPmoaFGEJGVkZeT7/v3x++ecx/Nx7nPOdV2v133d5348jqTnKRsyCxMT
Uy/j8H9nqfT160Xi/6HjfkfK7OeDUB2H/G5fWiUeXBb9hvWCUXP4vVI52jM8
c2Ii3j47GLWrBFDZaa9xy9i+zXwHQ1BnSp/xAvULZmtlYyOkhqIX2uceT1Gn
8dkH0REb4RHojg5vjEblDG5U5HRq+ByBZj+RioNvz2L9UsPc2aORKEaEY2Su
5A/2tqUq9nGdRjk5FtTp1CVcvTnr0tbmKNSV+SlggrqBv7N52MtqxaKE3Msv
slWZYESzGrGHxSJFGnZSq2SC9tXYy69rY1Hg5szTgbeZwd/veey+Q3Hon4F6
40zJJggcatxHNjmLhJ5H6v1K3QxcFk88p/LPoydZ0m9TtnEAbW0x5N+P8+i4
ZzdJMZEDMpXPfT2gfQGVMotf9D6/BUwWvhXzDF1AqtDc+SNyG8Q91P6xWz0e
mTZsthin7oTekzeqlMWSkOqG54LAzE4I7TAldiYkoRQJtx5pHS5gfarezbGY
hII960PsWrkgxfX3z7x3yUh/3L+15i03lBcVjlXeSkVa8eJCPUI8MD/iLn5I
Og0pynV7j7vwQNrPMPGiojTEe3Ivr+AYDxDth/cJFqSjkV+DHuELvKBpk+rd
/i4D9acl12Qc4gMd1epYV5FM1KV8aMutaD6Y2aUQtOGWie4H0Ks+sPFD3uWb
7kG/M1HcgumGtoAAfHuzm5IklI0k1usK1zWFQET9euyuG5cQXxF5hv+0EMjk
bA06tnYJcWBefaVnQnCmqiWg2+4ymo71+3ncSBi4Pyrf796SgxpZ92g3OYpA
7ozUHcfzuej+jb7U9wUi8IdwdD1xPBeVGcYOz3wRAYcTkyZqpnkoLeFTgiRt
F/iqvedmEshHrpxZA2fDRcHrw9Htu5oKkNVdvK/gqSgYh0acvKJUiPQtfsU8
YBKD6NV68edFhUgxw1h2NEEMJFW/SXOdv4LWeDeCDfLEwUepScbJqxi92q65
hdVVAsI+7dizu+Eq6jPjye2JkgBIqr1q8u8qep/4WzavUALCtyWvOcI1NMp2
U1/pswT8MGsQVOy4htbWBWMJzpKALjwOZP96HSn8/rtYQZSCqVV1gtHRMqSi
2H8hLEIKHB+ZsuzJKkOaJ+/z6eZJwabLTpwio2VId/zkgYH3UrD08fM5QvJN
RBz65MtMkAbNT+2HU7+Xo4SehlF7Bxn4IqbSoPjxDkrjzA+SCJUB9qPjZ/VQ
BaKbhrL8vCQDH1MuDFVer0DF7UoSse9kYHDwdVJ+4F1U21jsfNtuDzytYZo/
IFmJxu7F9f2zkYUs9ujZes9qNDnl6vEiUBaiFRc6zpZUoxkF7ZnsLFmo6c4b
EvlSjdbK5rbL98nC+KtY6fbj9xFfsZeJrfVe+OJtJmJLe4B00w2ablrKQZlD
v0J1WQ2KNX14q89PDhRT3m3Xm61BjWzS2eupcpBfzm7QqVOLtKOYKLbdciDk
N+zyqL8WqZ14sm3DWB5U5z2enRV4hGT0VB0ddBXAcoT/T3hnPfL8VwxxHgqw
SSh7a5X0E1TyeIdCRawCkMQuC2yPfYJEVabWmJ8pQM7BH38MdZ4ifrGb1+4e
3geOX/11xJ43IPYl0d+sGoow295zsvNiE9K/nzygbKcIGzsW4/0am9BZ35Um
pyBFiCl6UN+22IT+fRvIrqpWhD/Jl66ln2hGS71Zh1yU9sPFctrFbscWNHGb
48KDvUqgcyv8YD+hFclSwvyGDJVgHgYDMgtbEUly3HELRQl6bjKHSg63oq85
zxXcSpVAN0z92gufNvThfEzvVkll+De57h2b1o7IyivbVberwIGy09qv1jvR
sU/xN4TEVUD/1h5LTscXSD2e/wiTsgpMvEpqCKt+gVi/qPi8tlKBsaOFtJET
XehaGrXLl64CZprJdP8fL9GXX28v3t6lCtNaRYbDsq9Re56neJaiKhxvmtGo
o79G9wxmaiKOqIL4n0Ota8y9KObKtjFjN1VIVeGIOBnUi0TNdfW+X1OFvxfO
Ug+4/YeIFZUb0goHwH52r2WcyxsEhCM52w4fAANBfHe0+A2SY32p9MfsANzg
LveQGX2Dlp3HXVt8D0CHC5OB3qm36PI2safu1QcgOcXzP5OMd+jNyaTwK1pq
cE6p0fvHxgCqFxDiumCiBk9zzOnONu/RtZYbN32c1GBtYdhp4MZ7FCjS3H84
Sg26XzHJL1t+QFxdS+ofn6kBersj4GD1R2QuT54VMFIH8Us7yWm3B9FKcsiT
QQd1SIzi0XPnGELlvy9cKKWog1J6zaQRdQixPiwTPnBRHYrmdkWS5L6gejRx
1LxNHbCTQy2vy1cka+eddU5PAzac0thNOUbQ29rTLqa2DLYJdi6AERQnnCLL
7aUBVTfb+DIjRtDnoYr6orMacMywuNj/1wjKPvF75HGzBpSl/fJVHfyGmM4E
qM1gTfjZ3dBtMzSG7g3HrddaaoKF/9yrFslx5Kyf1RHtpgkq3lfezZPHUe2W
B87bzmiCjOLSv7KZceRDnz8n26gJmZVLc1E7J9CHW2FvXXQOwiW6wIEXwZPo
ImdCkfSxgyA12XXKrm0SqZ/KpU06HwQjcX6OVoGfKEP98VrY6YMwFJiaQXz6
Exk+W5HJrj8InB9a9pbw/EL330aHvNDSAp7Hti2Nv6ZR+QWS54iJFnT/Lmf7
pjCDijTNLFedtODpIYd9591mUFKukPz+aC0YPF708kbXDPJyefA5o1kLbo6E
sOaUzyK+0Qk9gukhiNMVy2s9/wdtvfRaJcD5EAyZkx+GPP+DmAxrxZJ8DoEc
72zyMMs8mrp5bulJ2iEIuu3mMntuHrV5i9/Z/eYQLMp7sSqkL6DQP7Y83521
wbBKOezNyyXkU6q9seGjDQ9+5/LKCS4jT3vJKaEYbZi3a7Qnei0ji7rfbaYl
2nAoo33J6d8y2ns6MeLeqDZYndEXEMUr6D3Ls68hvofhmOnrvvu/1lDPgxuv
0mIOg6DKa9MZo3XUSkqpv5l+GOY+qeapXl9H1e1E+ofqwxD2Jsq8y+UfSkqa
NzqyeBiQZFdg8ecNdJhHoZL1jA58s94zej2BGfcwO714la4D54LjqYkNzNh9
NvHb5RIduIX6PjL/Ycbne38IyrfogOtUqVW1GwvuSbsVa852BJLzf3ipwSbs
vk3e5nLyEbBYK57g382G51YIPm6FR2CF/Jc86MqGz08mXJS7ewRmptn0rK6w
4VsvJurre46AEk/xHSTOjufiy6W/cCPYlOT3zUduMz7PKrewNxcBpe3k+3S3
LVhg3nHnbDmCycpc5w+3tuDyb/Hy9Y8RCJpz8U/Ob8GvWr67HvuEIEBsvZiW
uhULxN1s9xfHwLVfWHxn5zZ8a10293EphlCtXRW15B2Yupp15QYBgK2a81ew
HA+mW0w9j3AH+Laxs/ACgQc3XTWYNKcBcLEtyW9N5MFCxsuai2EAu4VaGwN/
8uBOumuvYQ7A1FDsgcEaXiyvJLdp4h1Aen3T3mUPfuwQFyf/dBAg8UGVYmMe
Pz779qNlxhiAW+v2Yxx9/PhjZGqh1gIAnIzbu19fACd1zGkk8h0FBenq/gEl
QfzTvYGmYHsUOMyPk+6IC2OhhwLp/5yOgv67gI2DbsJYf7N/TZ/nUUjIMW11
KhHGhXelWE4HHoXECKssqowIPrYSX/Ay8yh0X/Lb3aS2C9/Ntunx6WXcf00j
9ay/GD7V/l2t0lwXCrWqA+5rSOImqPBWdNCF6Zgm90MkScz1xP/6reO6QFvZ
8FPNlsRVlX95Sk/pQlkirSR8ThLP5W6by83UBYsrBVXRtVI41Fu56uw7XeCO
exmgbS+D28f+fN8Y1AXzBRUOw2QZLOj+aHf0uC6st7lZ9TXL4Ed2R9PDlnSh
iXyKJ0BlD/57xNbPR1gP2g6/jBnllcVRXGGKDq56cCNZiZY5vxd3Jx0mvSHr
wYvq3//JqslhMTamQis/PSCceSpmESiHG/8mbDM7owdN+XwjDnNymOlb/iS+
qgfkUMl9AX/l8bmaxnL5MT04n2LV3SOjiJOc2Pes++jDLtbP/K5RKhipcC7+
CNaHb50Jw3LXVfAsG09Hf5Q+NF7f7WfQpYIJ1WInqlL0QSf69lqgsCrew6Fx
16tCH2RrpcMrn6jiphovja6f+pATJB6iyKWGg5NPsNf90YfykyYVRjpqeK/H
qYHrq/pwVUfy2VOaGk7jPB0Rvc0Abr4e7q9tUcPOXlkNKvsMwI62K301Uh0v
cjUb5Jw0ADHZ0kDLdQ18e7xd4HygAVi1saxaKWti16fd3/0jDWDmdqxirYcm
bqW+TzRNMoCogQ6Bex2aOLNx+tX6LQNQ3+y4iZJ7ECv6iDuQfhgA6ccl9wTz
Q9ir4zRFlWYI3xuZNptvO4JJOrIWi6cMwbWqPKbL5AimVPdqPAkzhBRFoctP
E45gWsEeNoN4Q+hqNj3OzIGw36nX1wllhnCpQjhVghPjSEHp4TOjhpCX01lY
fglwFrXLucfdCMTfursdGdPF9M/Betk0I6gofbEazKmHL1nv3kfwN4K5jmXy
nJoezj0cvDJ8xggitez3Np3Tw0U7xfMWiozAofXK5vuy+vh2XUC/6KARuEnI
hRpEGuDmzcLW3kRjyGjk+jfpZIzHryuZfvAwhiz+5Jet6caYE/T1jE4aw5m9
C/c2Wo0xIfyUhvRpY6jrvvVfvooJnp5oE/5UaAxP8GeLEE5TLNYVOGL61Rhq
YNTnwIAZjkjpDlKgmgBJRtn58lNLXCQ34pN7ygSstc6IXflniVtbl8js4Saw
a3JQLlnCCnOtSxFGEkwg9tP0nmovK3zTN0In/7YJjKsHijyassLvLGTZtv42
Adr6yPTMFhusyh17+UewKWinZB7ZGmSH6zkG5DqiTCHnUZ4hW54d1mVSelJ6
3hQGzziyaj+zw3bTn7640U1Ba8ouxZrTHoe+Oijf/8AU6D6+tviWPX6aOP2k
Zc4UrM4afjf57YCNWdyGC/zNIMFfvvZJGRH/97cmKCLcDMZusN5xf0vETrOc
7I6xZiD0hqPZkMUJe3+tV+DJMANR3tDDA8edcFqjQHBCpRk00O36du5yxm8j
e9hDfpsBe/H3BJ4SF+z+54iihc8xKAqX2zI76Ia38zD1vg0+BibTffGunO64
XqUlyDn6GJRWxLH9knfHfH6GT2hpx8DpycW1ZLI77pywMD1XdQzGivbfejXk
jlWG3GiP5o+B4MUzAjEfPDDTi7hSqWhzAK3fn6JmvPDd73rGty6Yw1e9hAeB
vCTsxM4+pZxmDgN1V/fkaJLwQ70ktSPF5tB408PGJ5qEaY1ZLY7N5vCJJZvH
bDsZ9z64/jWFzQKa1BrK/mhQ8NWiNtGlVAvYHijuUH2HhgtdFAfsL1tAImdn
48wbGs4Vyc58WGQB+xORpfsaDadddmcPrLQAss/dI73mJ3Bk2ur0VK8FkP4r
LFyYO4FtYlSfj/BagmJn2heqoTdmPX7lRE+eJbR38llTefzwgzTtT302VmAs
4urdLxGIPQt2sNU7WMFOLtmBU4cCMU/5iNJVJytId/CO3G0TiP2bk86e8rSC
V7MrlOZzgVhx/qM8Z6AV3Hu8p3vnRCAuJZ4ON8i0gsfS6YPvHgZhusxT/kev
rcBK0nbT0vEQHFx/xOrKMWvAod8ywubDcY1TB8sHK2uIaPTftoM/Ai+uWNXw
2VvDaTURlgaNCBxxmCSS4moNQt8O7CWFReCYp0mjkX7WkLH2OPfdagSObxwI
J2RYwx0DR2/NLadxfkvAVd631rDVLny/t0Y0ftZ1Yy7R2QYadsc8Pvo9Fp8w
OtRwgmALlwxfnNRIvYALy1VrvE/awVtKdQW8S8KZfxri/MPsIS00tVvqTTr2
68vwcDltD28ORzk2j6bjY9VeR43P2EP/qboV+8V0zH5qC7NEvD30vOpLq+LM
wFGTdrGvL9uD6EzhdLRyBqYM/4xRqrUH6XPPBviDM7DOa+GoqXl7cOdZ8/y8
nIGF7005v1+2h0jfuN1/mDLxYsqzw61r9jDw7YzOpi2ZuNqUvFrA6gA1zOVe
O4UzsWx7VaQZnwMQZ/RW3mllYu4Go4jbag5w7Nm9Va6wTDx+OySUFugAjn/S
g8d+ZWIHsX9D5aEOwKy4lHBrIRO3pV80+hHpAF1U+rLXeiYuDc4ROnnOAZSi
5CqecGZhT/S43pvuAKrn5urnFbLw0H9r//xqHeDXtKxzLDkLv1s+Fx+y4gDy
b9zlc/uysL4350zNPwdoHPaS2vYhCz8cpBMWWRxBo/PhncAvWTir5YZ82DZH
CPet0949lYWtUjpehos6woG9HF+mWLNx9+5tXFHIEfoTKhUt1bNxq2FW7tmz
jtBxt6rrU2I2HqM8eRV50RGSmNkehKRlY/b4UZagJEfQXTJzYs3OxsYdmr5e
WY5wz8W0daOA8TyjT0f1rzlCS2WEhN/dbPzGWOYnW4sj1F1R2SHVk43naeYS
/9ocYdEyQIa1LxvzJYbaL75whNo7HNEf32Vjhxedz8b/c4Qw/8H3XoPZ+KOJ
L71j2BHYSDIREz+z8Yhp7ZFEZgJYSrBmPWCn403eXwLj2AiwTehCWf8WOpZJ
5iiP2EIAN8+kS7846Zjy0onnJDcBnNZkphZ56HjSbGPcVJIAnazJX0LF6Xib
j5yo3h4CpFle2KclSceKKdbWh+UJ8NLWXPaXNB37dV9/sk+VcX2Kn++APB3P
HTPO4DxKAB/H/cZ71eiY1zegjdWAAGcLC+IuaNCxemr+ypoxAYLftusNHKQz
+vEU6ZcVATRyNqzsdeh4xTzzUI87AXq2PRV5ok/Hu/zq/dpJBDgdcGBPjSEd
66R9u95II8BiulDuNWM6junR2FHpTwBmgRfljsfomNny40h6LAGOpy3wK9jS
cWejvXTweQL827dbuc6OjjOU/vMiJBCgS72eT8uBjiV2dI5KZBDgyWqwNj+R
jiei9faw0QlQs+IVEuBEx1W/Gsk/cghwcNEzsNmZjuFVzXh1MQFi5aVu6Ryn
Y44jqnsvX2fU28FziOpGx70VFdTImwRwDLvffdGdjt1Trk/oVhKgICy0u9iT
juXWxOX3PiBA7YddH/O86HjGO//EtjoC6B9Vz4sn0XGsWebkm0YCJEsJ7EEU
OjZ+wrnvUQsBZMnPf7NT6ZhrX4J3YTsjP+M7Xs8Z/D5/U0VsFwGsU8POBtHo
uGTrmSlSDwF+2k2YCJ6gY1rkiqJJHwHqpN8+usdglckQ3/39BHAe29tz6CQd
LxNn73J/JMDH6fGERwxueuHze2GQAJfZ900oeNNxwqEJpY/DBOBwlfmZwWCr
W16nGscIoJgnnDnJYCHhL5XXfhCg+R31w0EfOv6a4DRz8RcB9pWefR7O4PLl
dyreswSQ3DFvcZfB/jTrAMsFAvDmuJx+x2Ct993Van8JYHgkyHiWwUzGxnOC
6wSoj2SrZfJl6Ff3/MAaExEeGyw938TgjL046CsrEdS59QJXGOMJOfUPWjmI
8Kr7b9MogyU2a86XcxLh7qhuVQuDJ0Kr1VO5iMB81IWx5jP0HFcMCeAjgpFB
fgCRweEO5TX2QkQwf03V52EwtEsvHhIlwqSG4eNGRn4cmsWa4hJECDd61Xuc
wb03RMJYZIjAaXwneY5Rr1z+y3Xje4ngNl06GcFg9wvcy137iHCGcun3PKPe
cgspWpXKRNA28Mv1YvAMiSMiW40Ih9MP/mhj6BWrv/HX+TARZKP2nScz9DR+
GKkNmAheMv291xj6c8ksRsroEWFZO+DFGzJD302/VqdMibD7oV8rF8MvtCCa
zn8WRCB/39QlyvCTyrdvUTU2RGiVmI4TZfitqeXjerQTEZZOSXEtMfyZcMAB
eR4nAm+85eR/DP9aXfsvxtCTCBwFhTElrgz94jo3dpwkwpYfdkNCDL8zHa1l
LokgwqlK46eh9nTspP+96300EQqJcpOvGPProZEQnfsskdEPPjQI2DDisYiU
PZdEhE57P3K0BR3/54zMKAVESB1C0sWM+avodoqvuJgIQRL3ps4x5vdFz5LB
geuMekzFRDnp0rH2CRZ/kwpGvnc7mQeP0PG10Ha6YgMRTofs2qelTsdrEUuu
5GYiUKK/3bujSscO0XJ7i9qI8MtJWJJbmY63nk96vLOHCCz72L9XM/pRUKbF
0NwQEWzO9OSbMfqZfkX/3sdMTnDAK5ZrjJWOiyo3z86yMtiv3TqSmTEf7mvV
K2xxAuvfgd+Z/2Xjisf5xwq5ncB43H3/xGI25u84HnBGygls31sucU9k4/Hh
8XoDfSdQMT17ergjG8OY4PkYYydgcy28W/w8G+dPGJvXHXMCxcKttVbPsrHF
9O0vcvZO4CPH4Zdcm43r1vxYOSlOkHtII5pUmo0TBJfM++KdQHKmJO5udDam
d3Z+a0l2gqsHmM7Oh2fj4oj8iAfpTjApdTBbJTgb1346coOe4wSt3flbE04y
1qPi82sON53g+pK6bo1DNtaV47nzqd0JuG/11HLtz8ZrWvs5xticgfe6jtEO
xvrIMfnvyrstzlD/6h1hS3cW5i3oVWvf7gwS12wrV9qysMJ6kNtNfmfYLltu
3/Q4CxOb62tP7HGGq4NJNe9LsnCtiTH5tz5jfAK/m5FvFvZ38mpZOucM2gVD
f703MvGO4smvOgnOsBy3cv7OUiau+BawEZfiDDesB62HpzPxd59YHc5LzrD0
wW5a+WsmPn7mSq1EmTPQ7O7PODVl4mOlA7dNOp1BldyxuBCTieV+m2UXcLrA
cS6R4eqFDDwcp07Cl1zgwKmF+aG8dMyXnfcx8aorbMpNbnLJT8JlXAoRHQXH
QXjsxte37Rdwc+Bug7133OC/kxob6EUsLpIoET1i5w78nfvFrxlH4B1Jqp37
HdyhaaN5qkghAp/50xIkTnCHxVMBBlWcEdi9faxrw9kd+OKEnnP9F46lfPZF
tHi5Q5/Sftkup3BcVlf7zijIHWYyrxXsDQzD9yxepdlkuQPPkmrpy6oQLP7o
uLYe3R0K5x4e87kUgtMlZ8bULrsDkv+cIRUZgv3neY7w57vD2p9O5l69EHwg
n/Bz4Ko76O9b4lV+H4xrx74ZuVa7A5Ok61tmtmDcELXCROt1B0nzkks7TwXi
xcrxmbN97hCtU7PT1i6Q0Q/6vl556w6mPmmkKsb3cqnJnaY3792BY+lx0SPW
QJwk4BKLh93BdlnTdKMgADtUNWwIzDHiEW0JI732x9PfYv+18XqA+9XcF4tZ
flhO0Pf3V34PEA/X6Z/y8sOepsShVUEP6FVm6ufX8MP9VaqNqqIewPbbJZrp
vS9+Gj0SfUXGA24z26xrSvgy/K2/HqzhARPv6zRF672xpNnmNWlHD/h2fJxi
w3sCq7/T6xMhekDIUfN03V80bOgWW87t7AFDLtsPuHbQ8Mmgv3Ybxz3ATKii
iDuKhh8W/Lz7keIBLIQP3CHfqdhw6rVbZqgHrGS/vM3fTsEnU3Of/7vkAX6b
EpKUrpFwlOC7vIUcD9h3YneZURwJp13l9p/KY3BwVmmCOwk/qEkS/XjFA/6Y
2UzF7SbhtcGokJobHsDe77rTstgLpyt57PWp8YDSD4XBqMwTP3wtn/zhrQfw
Dfv1Nve64wzp5hsr/R5w6yEz9dh9d+wdRmja9cEDSF7XpFjo7lhqd/yC66AH
pJSxnPnt6I7T/UbdRsY8oEK3+V/qczd8cnux+s9FD+B8XVBbteKKJcz4htaE
PGHi749GljInvFZ0Z1lslydcPyh8yTHICQ/M6fJiMU/wccur/QuM/Wd+gHGc
pCe4HJiulhkk4tUfPffZFDyhzIDosV2YiPsTEuN3HPaEpNelwhNFjjil/Z+K
hKsntOWNXXrw1Q5DwLiqmJsn5Ntu7P7y2A7P7+o5IOLhCanxTkMG2XbYJeCK
Oh/ZE1ju+TC3Gtrh/aI6Why+nlD8al0mqsoW9wRE4JkoT8i1TecrS7PBXGLz
5k2FnmDXJrlVPdgKt3Z8smgo8oTNQf9ZWNpZ4fDA55b1JZ5wyTxqT5G6Ff7a
kWX9sJQRz5lYlTs/LXF1oKp9eYUneHLd4TBdsMA2nX4uGU89gZRrlSC9yxxn
B/046f7ZE4wj5mM475lgEcPIANshT5Cuq13QP22CrwltCzf86gkBioGhfcYm
+H6D4gXFUU94eJfzx+SoMe7d7F+8/NMTosYtxtkkjfGOwsU3GauesE9f9kZ8
uSFOaN10pFnEC3y9+U+PzOphrhy63kNRL+DwxeKznXo458Qe05viXtAnMDFk
VKKHy3YYOaZKeQFfgdT+bks93EZICiAqeMGDWEudPfd1McsvrrLZQ15wVn6C
p/XcURzFL75TiugFIXpWgQerEH5VvcUJO3vBoR1coeQTCItbLJS6uHqB4OsF
oqQ0ws8udmvneHjBVKScOs49glmWIymcJ73g6R69uJUEHRz/caBhMdILlHrp
XyvOaeP3oc85+KK9oNaeT9DKQBvL8Vbaqp7xgpcueS5Bm7Vxl9nFH97nvGBV
ofOZZuohzNmgzj+c7AUWMmPteUVaOKs40+dlISPflME+kfea+Nvh6LqJIi8Q
7RIbd7mqidXf01jYr3rBpZYhMR5vTfyOC3LhhhdkpfN/7dvQwEJnfz+vuesF
LyqeyeYqaeAiktmukkYvoB2MDEkoUcO35Nm6gr96AVX9ZvZYrwruEz266jvi
BVo7opdGbqngtZ3RitRRL9hdk5mhck4FWyzOpxEnvODyJ1Htek0VPN8yaotm
vGCUhX9qRlcZg0vr4GYmEvh2fsYOW/fjk5ZMO5lZSHDR8jPLhzZFnK2rAyub
SKC+opD4M04Rj8s9vDa1mQQcauGjT1b34ZSF69T/dpJg3bQOfi8o4Pdp52bz
d5PgyPZo5eZN8pjl7DMpuiQJjlnLeL/skMP7QlZtU6VJsBbjzOeQIodjnINq
z+wlwWcd6c0/BOSwjJzXaZIyCVyimkWmVPfiU826bEqYBKX/jGNLYvZg9nlm
4ebjJAiey/Z+7SOFl6ty00bdSUBZbs73PSyFf/oqs3J4kSDw4aWZs1ulcO93
l2kLKgnuzI0p77wtifM/1bV9PkWCDyuM3elvCaz03DdwOZYESMbed0ZoN5aI
ZZ3YdY4EC0+O5yi3imPeIwWu+AIJkjyCw7G/OF6u7TS+mEiCZJZX5K4uMdxy
W3o3XxYJEmwWG10SRbFD1oeXytdJ8NYkq3xVQQQbW/oftb1BAmPHF8KnR4Tx
Yc7NdaE3ScDVcbOyKl8YS1xUv9ZwhwSV8/5btLYL48mI9HCzhyTICeaxSVkR
xDEeBnuobSQQmRWRWZ3nxzdVqmOKvpNgI+eEy/pxHuzHP/u37gcJ9Pyacjz2
8WD1FZWQ/36SIN+DKmm6zI2bnld5s86QwCmb5n89mxu/d6ginFwmge45z3sO
vVyYI7rygOYWMpiznL6T0LwD93hM37XcRgZ76fffuk7swHRDZfkT28nw93yJ
xhzPDizBVbm7kJsMq/HrA9+p27HW9XucLCJkeJ93/bOGKCemvbg7/kqBDMvf
SSIlFVuw0r1fHt8VyfCCriqq57kFz2ftH2RSJgP9xqVXd4S24FiXu2/U1MjQ
Xnb0Z3s8B86drmjKO0wGAaXGS7N+m3Enf0U++RgZVBMJZRlubFje87bFui8Z
iDoWbT6NzLjzinbV3CkyHICwEbZUZkz50MU9EUCGFoVD38RcmHGp1c+3fSFk
mDlkvdK2yoQlsKJzeTQZyl97TPYDExYQvUe1TSWDrOMgz/aWdVTjiF4Yp5OB
Y1JoF4/fOrLL7lFAmWQwivpqOCeyjjK3Tv+Su0SGa5fMlg6HrSHOv8rB/wrJ
0PsiVrbh0Cpi6a+OvVVBhpCZ664do8voKrfuSNE9Mrjd3rVAv7KMwLxPj15F
Bie5Ip3djssounWO/cxDMqh939Xh2b2Elu+rpdo9JUOl/+UtIc8W0e/0mryN
l2SQtE5RPdY+j1JfGqzOvyLDc8GoGcGkeaS4ud9l8jVDnznp6gsW8+hEzOLu
d28Y9R8zZT/64Q8a9TlYdvsTmeFffQ/OxTn0yeTxffufZNhsv59+x2wW6VqW
EkJ+kSH/R8ncNb5ZdNsu/R99mgzhG3G6R4ZmUKQb2fTtHzLsbt80YBs0g0RC
uEds1siQ8uS/gw9MphGh5AS31XYKrBbCYo3RFGq6YVd3aicFan457wmb+onk
7mDXdG4KnDtu1G+a9RMt1/Df6uGngCOjC4kNT6Kcl81gLk4BxfToVcnkH6h/
UdjfVJkCXJMfNVR2fEdojVXgpCoF/jinCba3jKMy5pkniWoUmK0SDdANH0eh
nO2bXxykAOvTC0GjY2OIXyqw2Ago4CId7JvwchTZmXf16FtToG9PvJR24wh6
alMTTLKlgC25KJI/dgTJEEpEzttTINZfubJadwTNe4ZSnhMpEPTkNK9M1zDK
Dpf6d9STAkmC1m01w19R3/XI/TiIAmJRR5NTvIYQD1PtY+0QCuwoL3mkxDqE
bF1mDTTDKDDWKZXw48YgestHO77/NAUEdN7KXpn6jAYu2KfvOkeBGO3Dd25f
/IQ+U1Vml7IooJcVZzUx+R6JtnpH/6FT4Oyjr4TGgvfIVeLmlunLFKjgXcyL
NX+Pht6LSY3nU0DWpzzn2YMB9NVkm+3baxRYZ04qGk7qR2P7xh9W3afA+GXi
1gKPt0g2QfJoxUMKZBapcnBJvEWUUZdXN2sZ+Y5qmpt9eYMmCt+MFdVTAL+u
X9/m/gZNbm8WSG2hQJNMFCnyZB/6PV0QfqKPAuLN5/Xhai9SOjbASn7LeF/b
YU8J7150qpwn072fAm+0DELLNHrRjHviLcePFLg8nIy0816jP/+FfjQYocCv
dZMbm1h70PIDax2pOQoQC2sGDHheIk4tzR7eeQrsLBsy+1TfhSSeirizLVKg
/mMDz2lSFzJu/XZu4i8FNq3/7n5V/wLlvQ15eY+ZCrWULs5TQZ1IeyHP6TA3
FRQeqX5W5WlHFhExU4q8VOBK5eIV6WpDnuueMeL8VDBms237erYNJbEpXmMW
psKn7b8KNhZb0Sf+xh8dElSI+1Ibh348R1GaI+F2KlQw35CpqP7TjDLq27ca
HqDC5DL7lOejZlSK7hQeVKdCK0dEwqvoZtRtGNwkokUFPodVz/atzUjMkZ1j
GFNBmbqvknN/E2oMU8jxtWTEGyrn6SLVgPpWd8i7WVPhd7LHPvbmp2j8zJ96
K1sqNAtfZRp1f4p2JDwdUnOkwkNlnfT9pU/Q8VwL2ZXjVKBJfii8rFWPNh4F
1lz0owKzSa1z36U69Jn9fvI1fyrQ2ffu9cF1qN5u1qMxkAq3W+b2HJisRcEz
p3YshlLB9GB5uJpeLZrY60sln6FCxOcR7ussNajvMlVYP4MKwxeOUgQf3keV
o2XTbllUWJbXDGr2u49SDoy3naYz6jvgXuimcB8Z9ZACH+RSQbx8yy3v0mr0
lM3zpdRVKoQk3kzzuV6FbgS7RDPfp4IJwcrgH/0uOttSYCv2kAqz31+mcsje
Re5cn+QP1VLh2WJpftGjCiRSQez3r6dC+GqxAXHkDkr75qD8tYUKm5uV9U8b
3UbhNtbDjW+oIPhu+7+DdjeRfUlG3cd3VChmUmGqXi1DB36/Tl0coMJAuEX/
idIy9CvRQlvpM0NfVdaNxL83kGezWfaVUSqonv2qwXW/FJmpGBpELVCh5L2A
ZSPhGmJ69445eIkKJxTGNDcErqHaCHKj918qTCyb3JXov4qknp8/6LxOhbD0
G8t/Ha6iFfvn8tpsNHgu/q7jkWcJun0adizz0eCiRsxeFbiC3CV6u6YFaKCs
VPMF9xcigTa3+O9CNHgqNHWrwbcQnd1xhmlAlAZ3eY92zZQUIKerDXM1MjSI
9tCrrBHMR1s6tAeC1GlwNCXkzqRuDmr07sr21qTB65HNmp2/LqNgLicrLy0a
6BxYs3+ddxl9JUa8sNGhwQ/P4SXThUvo0VTdE1V9Glw+/68z7TEd0Xg0SqZt
GfEWBhNlg7OQeF2ry3d7GswIJQlPKGeht852wl8caXD7nLJYwVQmghtBWT3O
NOB+vce6k5aJhLTun7/rRYNeta16P7wzUIer8gnvIBp8TYBLFI1UxONFe3Il
hAYad7oL7z5JQcdpV7f3htHg17IY/0e9FLQYyHtfPYoGsI35XjsxGckkLK2s
n2fkXxdK3VeQiPxTVcxV4mmg8sxa+qNyInqSdaLYM5EGuyp7LxxsT0A2Vz7p
daTSgKqsXTq6FI9i7z9LybhMg4S7rpxOfhdRd93yUEsuDbwt+kRf77yIBBtU
VRfyaSCdMfa9+f4FdK/j+jtiMQ1apcLeblk/jwY/x4tLl9OgRy4wO/7aOaS9
2aqq5jENFGP6rxUrxqGLnIksE09oYKJ1jMfnWyz6j7vFTqSRBls3Kqq8CmIR
TVT9b0wLDYb8u2xbdsSiHFUhXeOXDL2W7FPOscWgEU1reuQrGrw/r5g2cD4a
KekkjVe8pkEZNyrVYY9G7YZrSdxvaXCIr6lBeGcUmnf++ubjZxosOZuv6GlF
IvAQlt3+hQYrgtXC+h0RKJliE46HaeDQ8qtMkBCBpAJaRUvHaNBcpmspeiYc
WV8sJ/v+psFNxZz498OhqDB5uK54hgb7z+9mrYoJRRMZIlv75mgQFSciISMW
imILUu5pLtGggqvuXufxENRd0sZ04i8NbGzi86aYQ5Bg2T+bglUaBL6M5qWX
BSPPOwdvvFqnwTeOI7yPjwWje1X+SxsbNPj//53/B9zKmV0=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["\"IQ \"", TraditionalForm],
FormBox["\"density \"", TraditionalForm]},
AxesOrigin->{0, 0},
BaseStyle->{FontSize -> 16},
ImagePadding->{{30, 100}, {30, 30}},
Method->{},
PlotRange->{{0, 200}, {0., 0.01994710811215381}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]},
Ticks->{True, None}]], "Output",
CellChangeTimes->{{3.629662285556918*^9, 3.629662290198184*^9}, {
3.6296632965037413`*^9, 3.629663378372424*^9}, 3.629663480167246*^9,
3.629663647641825*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"NN", "=", " ", "100"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"experience", "=",
RowBox[{"RandomVariate", "[",
RowBox[{
RowBox[{"NormalDistribution", "[",
RowBox[{"3", ",", "1"}], "]"}], ",",
RowBox[{"{", "NN", "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"error", " ", "=", " ",
RowBox[{"RandomVariate", "[",
RowBox[{
RowBox[{"NormalDistribution", "[",
RowBox[{"0", ",", "10"}], "]"}], ",",
RowBox[{"{", "NN", "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"wage", "=", " ",
RowBox[{
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"100", " ", "+", " ",
RowBox[{"25", " ", "#"}]}], "&"}], " ", ",", " ", "experience"}],
"]"}], "+", "error"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", " ", "=", " ",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{"experience", ",", "wage"}], "}"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"lm", "=",
RowBox[{"LinearModelFit", "[",
RowBox[{"data", ",", "x", ",", "x"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"g2", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"data", ",",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"lm", "[", "x", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "7"}], "}"}]}], "]"}]}], "}"}], ",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"False", ",", "True"}], "}"}]}], ",",
RowBox[{"Filling", "\[Rule]",
RowBox[{"1", "\[Rule]",
RowBox[{"{", "2", "}"}]}]}], ",",
RowBox[{"FillingStyle", "\[Rule]", "Gray"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"100", ",", "260"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<experience, years\>\"", ",", "\"\<wage, $ \>\""}], "}"}]}],
",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontSize", "\[Rule]", "16"}], "}"}]}], ",",
RowBox[{"ImagePadding", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"30", ",", "120"}], "}"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "30"}], "}"}]}], "}"}]}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.629662327438314*^9, 3.629662743029084*^9}, {
3.62966287984991*^9, 3.629662993279398*^9}, {3.629663046045416*^9,
3.6296632334961376`*^9}, {3.629663382513661*^9, 3.6296633832147007`*^9}, {
3.629663422120926*^9, 3.6296634616571875`*^9}, {3.6296636367102003`*^9,
3.6296636378292637`*^9}, {3.6296637314816203`*^9, 3.6296637839796233`*^9}, {
3.629701443666473*^9, 3.6297014493317966`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, GraphicsComplexBox[CompressedData["
1:eJzt12k4VWsbB3D2ltkuEiUnlZR5Smbt23BKAydDqGPY09p723aZKyVTiZAi
KVOGcERFGrSpHEPmHEUjQjqHUEghwuu93nrWdZ2P7+fWl+f6X8+3tZ7n/q3/
Opq3PUbg4+Mz4Ofj++/KtP3okX1KAG7X761zuk+HQ9tE/t6WLgIr1qr3+VQw
4XLuitMVCZKQVu2ypj6SA221PPUK3jBZ/kDKcRMSFQh/yIfovRMA0TsqBvxa
GAx3RIXeFvxMbkzcI0HxdAdrRVKK4uQU2d5CMmgqggZmm0rM+ohi4LWWVnXn
LAMe0tpinp0hgW0/OUD2JAu4Y1kD7saS8Gp3hKNjtifosaysr5YLg7a9a6+u
HhNIRlaFS17ygV3YlKmWOw38DAVeNhwRBWy+Off9Kiao2KsNzMqTwDGxxqJd
jA0R/gl68x/44XQZoSbdgg6l2UmSFQECUCzYWbSnkA5994UtXX2myfMuextD
tamgd1e/rmWBD6jb5ItXztDAJdfMNaNRDGB768SxYQyaMm14uSpEMDweEEXL
wODk1HVZ7xEBGN2jVu11igF/ca3ErmKCEB/1qe2gOQuaWz1p7SHiMKTkYa2d
yITCvKVrRs6LAmVtcQlhjgl/1iwVzYbiyvyAoyNGXvvgpYavRMWABJSqsHg1
59lQWzq9cHP7KLlbvs+juoMCFtbizOGQBXLCGab0ETcqWFCnBWrLieCTqHP+
7TwDBJpIZUti+KDsSXU7l0eD7RvzWjq3zpI/F5IPVnE9gPbLh9j1TCKER5U/
6CXSgbu/9YWCvwAMDjNq2B10MDSiLTsUKAhdPScMrv5Jg8QNtaNu7CUQ6hVi
lzyLgar4SmcOhQA8TQPpG3EY/NGZalSpSYJ6mWjy+xEWzEQojqgpTJAbpgIj
iZ+okGCZQpyNIcCpSiv3fz7TYSKAd/jRP5KQn1xjKWPFgTNjQRODzQvkq90i
q0Rf0uCY40x03pQYjFwKeOM2zIZYuyCJHuUZcqqOqZRzABVeuQWPBJvMkRMz
Pi7/Js2AfkWF+lSuEMw7FTi9GcdAQScoKtxHBHx83lspyzDhJcP/pi6/IAT1
WxO3ajGAZ+JX8lJdAqSkAyx8lrFhcvxBoXGbJFCNwm1k1L3AQ2lqrmenNDhm
pnMLdbwgXE4tc6ZWDPY7hq0fvcAE88133w6Pz5MPvC7e4BtIgVTXLwTqF0l4
unXIcFWBF7x+/rwoJEQU9krmTzeKLJ6P5PXKdcRlYOfqqB3uw4En53KWf2sQ
hNmCG8/k6jE4If/8UrsaAfLYzoEN4Rh8aTpccCWdCNq7Dj/qJ9AhZ6fz440X
ReC9662C9zUYNLwx5freEoX8g3E5sSJsSJjufa26TACkbZPW9bgy4a8kzo7R
sFnyebpezq+/0SHWcTB+UxofWMe7HE5rokB6fZ7FBYIE1DycMh9bvC8d20wG
VHiSAItvUlGdC0+Xz2aZHBSD4uuxgsuqWSBw93OVgY4QSF1mF5WIY5BhqdK8
x1UK1C7vv7OU6gmKwSYd7euWQDJ7QsLdjA4hwdqHGt+RYIUyxe31Nha0hpNu
Hbu6+D3dmcH7FJgwYKtgqLxZCsZyHksec/OEa5EqrJm4QfJs8cCO3xrdoU8X
K+bTEoIdqYYumysZoM+vGvg4aykc6g2Mf9fLBtsPeePGA/PkIWqIlKwoDQT3
eKrfCyCAWvaWXzUJGLQ6BBJ27JQApzXPxoeus+HtTW7kvWxx0GcnZKyUZcPu
9CANA3M+sNDJyhe8tzi/mnqFH0mQwJIP48iwPaHAjFextU8a5j/FhxADvSF3
7En/9ifLF+/FGYXgGwdgXlp3Ojd8nnxcXmtjpC4dbGqXGHTFLQX7T362Wlc8
Ib8qKoenNkUuv5JsKF5NgbRk841Oj/igqpXIqHShg4awhXKIyTg54UWP4CqW
B+TVnc1SYopAh5CI7VtbJiSZUTZNkyWhXKLRuE2IDdPam9psmgbJ6iUmGi4O
FNg1IGXzsJ4I6WW/b/hoioGdkpewpsM4WfPMq4VZAhXm7lQ82xImCaMtDzfN
K3kC6WZj69G2ObKe4VmRvcE02Lv/QkrtGwGIXiHdQqPSoSBqxHi4gwSSY7r9
RovzVz2vM8RxTAjq84+XQC8DWjtj01ZpSkJKM2Wb3OI8pr+7tr53YSnc1Vpj
7vTGE/i+P8KmqueIF/Z9z2PksLJf6h+ke/zYh+AU4QWTp7TvWRgMnCPkVj3H
vudlMCH9bcvkK/b3LA3FTwPt2ru9vueVwDk3yi3pO/g9y/9vBR/glN3Ty1eS
Q/mHZ6mqJjKDi/P43/mHb9gvhY+P+uK+bR+eGKgTxn2r0SzKim51R74d8fjq
p17IQL6V2r3ISjlHQb4tPMfu+9pSkW9hTbm/E74ykW8npOxP+NuykW+CFBvx
D3W4b08vyt/3k8d9i/E76Z+vSEe+VYfNCyXX4r51jzthw4q4b/1vzAc843Df
5I/WLlcJYyDfdOHvniAM962mm+SYu3h+f/gWoM9jRluykG/27vHNFCID+RZ4
ehrbdh33jVT/bY+fCYZ8o3ff0OiIYiHf+G9Gu7W14r6pmBA/NOjjvh2RO/37
q6W4b9ZBMXmEox7It89PTkwOLvr1wzdyRcZlKWPcN86tmBYQpCPftNqKd/aM
UJFvfbXpOhpyDOTbtY4Q2fhQBvItsy20g2mOId/WXep7MtvJQL4lhWwpO11G
R76RDvkYZqiykW9h7d9WTzMoyDcr3wunkupx3w7lkEJ7rXHfjG0iV3o14L7p
F7WV9jmykG9ddv2Pgu/hvvFW8hzu7aYh3/z1/L7EXsZ9O+7Xmj9LwX371dSW
c2EFhnzbEHpRn9PIQr45FCtnvjXgIN/8T9XnWMpwkW+DDUXrGxf/V3741vJH
KL9zJg35Zr821bLfgYN8szvh/fV+HRP5VrTFPqi1i418q1xzkNtHwX2Tjepq
LLtCR75leSiNlmkykG97HWR2xXkzkW+XGpYk3XzNRL6t/a3mgMV+BvJtruv1
P/Zfqci3+zM3au6I05FvQvUiJ4N5LORbt9dUbehGDvKtcZ/eZdl1uG+8SQEl
1Wjctw1GqVFHsznIt7jTqpNYFQP5NmC9a8bQm418i+u8aME1YCHfSoUanAMi
OMi3a1W9BpQtuG+czVpcxygM+Raf3LV9xV3cN35RKtkhA/dN6sXZO9qVdOTb
vNvqMxEdLOSbRrvml5kkFvIt/aSJVtsQDfnmmjdwRGsNG/nm/XD9WFoUF/km
uKlqdXq5F/JtfVL+Jc0YGvKtpWdIM+EGG/nmY7B6brcyFfm2QaUqLU0e9015
dWb5UxEK8m3nZ18taTfcN9O1pxhKzZ7It0HO9cKP4I58i7TTeTi5lYF8S3w8
yd1BoiDfPlxJvp0wi/t2N//2YDMb9y3CWKxboYCBfHv3UWXGzJONfCvNv2ao
04Yh377Fzhpef4D7NmCSsnlo0aN/55996Wdf+tmXfvaln33pZ1/6f/rSfwCA
TI5P
"], {{{}, {}, {},
{RGBColor[0.6, 0.24, 0.4428931686004542],
LineBox[{101, 102, 103, 110, 104, 105, 106, 211, 107,
109}]}, {}, {}, {}, {}, {}, {},
{GrayLevel[0.5], LineBox[{1, 111}], LineBox[{2, 112}],
LineBox[{3, 113}], LineBox[{4, 114}], LineBox[{5, 115}],
LineBox[{6, 116}], LineBox[{7, 117}], LineBox[{8, 118}],
LineBox[{9, 119}], LineBox[{10, 120}], LineBox[{11, 121}],
LineBox[{12, 122}], LineBox[{13, 123}], LineBox[{14, 124}],
LineBox[{15, 125}], LineBox[{16, 126}], LineBox[{17, 127}],
LineBox[{18, 128}], LineBox[{19, 129}], LineBox[{20, 130}],
LineBox[{21, 131}], LineBox[{22, 132}], LineBox[{23, 133}],
LineBox[{24, 134}], LineBox[{25, 135}], LineBox[{26, 136}],
LineBox[{27, 137}], LineBox[{28, 138}], LineBox[{29, 139}],
LineBox[{30, 140}], LineBox[{31, 141}], LineBox[{32, 142}],
LineBox[{33, 143}], LineBox[{34, 144}], LineBox[{35, 145}],
LineBox[{36, 146}], LineBox[{37, 147}], LineBox[{38, 148}],
LineBox[{39, 149}], LineBox[{40, 150}], LineBox[{41, 151}],
LineBox[{42, 152}], LineBox[{43, 153}], LineBox[{44, 154}],
LineBox[{45, 155}], LineBox[{46, 156}], LineBox[{47, 157}],
LineBox[{48, 158}], LineBox[{49, 159}], LineBox[{50, 160}],
LineBox[{51, 161}], LineBox[{52, 162}], LineBox[{53, 163}],
LineBox[{54, 164}], LineBox[{55, 165}], LineBox[{56, 166}],
LineBox[{57, 167}], LineBox[{58, 168}], LineBox[{59, 169}],
LineBox[{60, 170}], LineBox[{61, 171}], LineBox[{62, 172}],
LineBox[{63, 173}], LineBox[{64, 174}], LineBox[{65, 175}],
LineBox[{66, 176}], LineBox[{67, 177}], LineBox[{68, 178}],
LineBox[{69, 179}], LineBox[{70, 180}], LineBox[{71, 181}],
LineBox[{72, 182}], LineBox[{73, 183}], LineBox[{74, 184}],
LineBox[{75, 185}], LineBox[{76, 186}], LineBox[{77, 187}],
LineBox[{78, 188}], LineBox[{79, 189}], LineBox[{80, 190}],
LineBox[{81, 191}], LineBox[{82, 192}], LineBox[{83, 193}],
LineBox[{84, 194}], LineBox[{85, 195}], LineBox[{86, 196}],
LineBox[{87, 197}], LineBox[{88, 198}], LineBox[{89, 199}],
LineBox[{90, 200}], LineBox[{91, 201}], LineBox[{92, 202}],
LineBox[{93, 203}], LineBox[{94, 204}], LineBox[{95, 205}],
LineBox[{96, 206}], LineBox[{97, 207}], LineBox[{98, 208}],
LineBox[{99, 209}], LineBox[{100, 210}]}}, {{},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointBox[CompressedData["
1:eJwNztc6ggEAANA/OyuRGepHKDvrPXoEn2te1ip7y957nYtzf8Kl1cJKJAiC
ZdZYZ4NNtihSYpsddtljnwMOOeKYE04545wLylxyxTU33HLHPQ888sQzL7zy
xjsffPLFNz/88kcgHqGCSqqopoZa6ohSTwONNNFMjBbitNJGgnY66KSLbnpI
0ksf/aRIEzLAIENkGGaEUbLkGGOcCSaZYpoZ8swyxzwLLPIPCSswdg==
"]]}, {}, {}}}], {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["\"experience, years\"", TraditionalForm],
FormBox["\"wage, $ \"", TraditionalForm]},
AxesOrigin->{0, 100.},
BaseStyle->{FontSize -> 16},
ImagePadding->{{30, 120}, {30, 30}},
Method->{},
PlotRange->{{0, 6}, {100, 260}},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.6296629463847156`*^9, 3.6296630514787264`*^9}, {
3.6296630907119703`*^9, 3.6296631488412952`*^9}, {3.6296631805601096`*^9,
3.6296631951369433`*^9}, {3.629663227231779*^9, 3.6296632338321567`*^9},
3.6296633838347363`*^9, {3.6296634336105833`*^9, 3.6296634620792117`*^9},
3.6296636392863474`*^9, {3.6296637558040113`*^9, 3.6296637843276434`*^9}, {
3.6297014261924734`*^9, 3.6297014624755487`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"GraphicsRow", "[",
RowBox[{"{",
RowBox[{"g1", ",", "g2"}], "}"}], "]"}], ",",
RowBox[{"ImageSize", "\[Rule]", "1000"}]}], "]"}]], "Input",
CellChangeTimes->{{3.629663390390111*^9, 3.629663411162299*^9}, {
3.629663655197257*^9, 3.6296636579824166`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJw1mnc8V+/7xxFSqewVshKSkZGk+76yR/Z6v42s9yoje4Vo2ftdZqgklUKF
UoSsJPmoaFGEJGVkZeT7/v3x++ecx/Nx7nPOdV2v133d5348jqTnKRsyCxMT
Uy/j8H9nqfT160Xi/6HjfkfK7OeDUB2H/G5fWiUeXBb9hvWCUXP4vVI52jM8
c2Ii3j47GLWrBFDZaa9xy9i+zXwHQ1BnSp/xAvULZmtlYyOkhqIX2uceT1Gn
8dkH0REb4RHojg5vjEblDG5U5HRq+ByBZj+RioNvz2L9UsPc2aORKEaEY2Su
5A/2tqUq9nGdRjk5FtTp1CVcvTnr0tbmKNSV+SlggrqBv7N52MtqxaKE3Msv
slWZYESzGrGHxSJFGnZSq2SC9tXYy69rY1Hg5szTgbeZwd/veey+Q3Hon4F6
40zJJggcatxHNjmLhJ5H6v1K3QxcFk88p/LPoydZ0m9TtnEAbW0x5N+P8+i4
ZzdJMZEDMpXPfT2gfQGVMotf9D6/BUwWvhXzDF1AqtDc+SNyG8Q91P6xWz0e
mTZsthin7oTekzeqlMWSkOqG54LAzE4I7TAldiYkoRQJtx5pHS5gfarezbGY
hII960PsWrkgxfX3z7x3yUh/3L+15i03lBcVjlXeSkVa8eJCPUI8MD/iLn5I
Og0pynV7j7vwQNrPMPGiojTEe3Ivr+AYDxDth/cJFqSjkV+DHuELvKBpk+rd
/i4D9acl12Qc4gMd1epYV5FM1KV8aMutaD6Y2aUQtOGWie4H0Ks+sPFD3uWb
7kG/M1HcgumGtoAAfHuzm5IklI0k1usK1zWFQET9euyuG5cQXxF5hv+0EMjk
bA06tnYJcWBefaVnQnCmqiWg2+4ymo71+3ncSBi4Pyrf796SgxpZ92g3OYpA
7ozUHcfzuej+jb7U9wUi8IdwdD1xPBeVGcYOz3wRAYcTkyZqpnkoLeFTgiRt
F/iqvedmEshHrpxZA2fDRcHrw9Htu5oKkNVdvK/gqSgYh0acvKJUiPQtfsU8
YBKD6NV68edFhUgxw1h2NEEMJFW/SXOdv4LWeDeCDfLEwUepScbJqxi92q65
hdVVAsI+7dizu+Eq6jPjye2JkgBIqr1q8u8qep/4WzavUALCtyWvOcI1NMp2
U1/pswT8MGsQVOy4htbWBWMJzpKALjwOZP96HSn8/rtYQZSCqVV1gtHRMqSi
2H8hLEIKHB+ZsuzJKkOaJ+/z6eZJwabLTpwio2VId/zkgYH3UrD08fM5QvJN
RBz65MtMkAbNT+2HU7+Xo4SehlF7Bxn4IqbSoPjxDkrjzA+SCJUB9qPjZ/VQ
BaKbhrL8vCQDH1MuDFVer0DF7UoSse9kYHDwdVJ+4F1U21jsfNtuDzytYZo/
IFmJxu7F9f2zkYUs9ujZes9qNDnl6vEiUBaiFRc6zpZUoxkF7ZnsLFmo6c4b
EvlSjdbK5rbL98nC+KtY6fbj9xFfsZeJrfVe+OJtJmJLe4B00w2ablrKQZlD
v0J1WQ2KNX14q89PDhRT3m3Xm61BjWzS2eupcpBfzm7QqVOLtKOYKLbdciDk
N+zyqL8WqZ14sm3DWB5U5z2enRV4hGT0VB0ddBXAcoT/T3hnPfL8VwxxHgqw
SSh7a5X0E1TyeIdCRawCkMQuC2yPfYJEVabWmJ8pQM7BH38MdZ4ifrGb1+4e
3geOX/11xJ43IPYl0d+sGoow295zsvNiE9K/nzygbKcIGzsW4/0am9BZ35Um
pyBFiCl6UN+22IT+fRvIrqpWhD/Jl66ln2hGS71Zh1yU9sPFctrFbscWNHGb
48KDvUqgcyv8YD+hFclSwvyGDJVgHgYDMgtbEUly3HELRQl6bjKHSg63oq85
zxXcSpVAN0z92gufNvThfEzvVkll+De57h2b1o7IyivbVberwIGy09qv1jvR
sU/xN4TEVUD/1h5LTscXSD2e/wiTsgpMvEpqCKt+gVi/qPi8tlKBsaOFtJET
XehaGrXLl64CZprJdP8fL9GXX28v3t6lCtNaRYbDsq9Re56neJaiKhxvmtGo
o79G9wxmaiKOqIL4n0Ota8y9KObKtjFjN1VIVeGIOBnUi0TNdfW+X1OFvxfO
Ug+4/YeIFZUb0goHwH52r2WcyxsEhCM52w4fAANBfHe0+A2SY32p9MfsANzg
LveQGX2Dlp3HXVt8D0CHC5OB3qm36PI2safu1QcgOcXzP5OMd+jNyaTwK1pq
cE6p0fvHxgCqFxDiumCiBk9zzOnONu/RtZYbN32c1GBtYdhp4MZ7FCjS3H84
Sg26XzHJL1t+QFxdS+ofn6kBersj4GD1R2QuT54VMFIH8Us7yWm3B9FKcsiT
QQd1SIzi0XPnGELlvy9cKKWog1J6zaQRdQixPiwTPnBRHYrmdkWS5L6gejRx
1LxNHbCTQy2vy1cka+eddU5PAzac0thNOUbQ29rTLqa2DLYJdi6AERQnnCLL
7aUBVTfb+DIjRtDnoYr6orMacMywuNj/1wjKPvF75HGzBpSl/fJVHfyGmM4E
qM1gTfjZ3dBtMzSG7g3HrddaaoKF/9yrFslx5Kyf1RHtpgkq3lfezZPHUe2W
B87bzmiCjOLSv7KZceRDnz8n26gJmZVLc1E7J9CHW2FvXXQOwiW6wIEXwZPo
ImdCkfSxgyA12XXKrm0SqZ/KpU06HwQjcX6OVoGfKEP98VrY6YMwFJiaQXz6
Exk+W5HJrj8InB9a9pbw/EL330aHvNDSAp7Hti2Nv6ZR+QWS54iJFnT/Lmf7
pjCDijTNLFedtODpIYd9591mUFKukPz+aC0YPF708kbXDPJyefA5o1kLbo6E
sOaUzyK+0Qk9gukhiNMVy2s9/wdtvfRaJcD5EAyZkx+GPP+DmAxrxZJ8DoEc
72zyMMs8mrp5bulJ2iEIuu3mMntuHrV5i9/Z/eYQLMp7sSqkL6DQP7Y83521
wbBKOezNyyXkU6q9seGjDQ9+5/LKCS4jT3vJKaEYbZi3a7Qnei0ji7rfbaYl
2nAoo33J6d8y2ns6MeLeqDZYndEXEMUr6D3Ls68hvofhmOnrvvu/1lDPgxuv
0mIOg6DKa9MZo3XUSkqpv5l+GOY+qeapXl9H1e1E+ofqwxD2Jsq8y+UfSkqa
NzqyeBiQZFdg8ecNdJhHoZL1jA58s94zej2BGfcwO714la4D54LjqYkNzNh9
NvHb5RIduIX6PjL/Ycbne38IyrfogOtUqVW1GwvuSbsVa852BJLzf3ipwSbs
vk3e5nLyEbBYK57g382G51YIPm6FR2CF/Jc86MqGz08mXJS7ewRmptn0rK6w
4VsvJurre46AEk/xHSTOjufiy6W/cCPYlOT3zUduMz7PKrewNxcBpe3k+3S3
LVhg3nHnbDmCycpc5w+3tuDyb/Hy9Y8RCJpz8U/Ob8GvWr67HvuEIEBsvZiW
uhULxN1s9xfHwLVfWHxn5zZ8a10293EphlCtXRW15B2Yupp15QYBgK2a81ew
HA+mW0w9j3AH+Laxs/ACgQc3XTWYNKcBcLEtyW9N5MFCxsuai2EAu4VaGwN/
8uBOumuvYQ7A1FDsgcEaXiyvJLdp4h1Aen3T3mUPfuwQFyf/dBAg8UGVYmMe
Pz779qNlxhiAW+v2Yxx9/PhjZGqh1gIAnIzbu19fACd1zGkk8h0FBenq/gEl
QfzTvYGmYHsUOMyPk+6IC2OhhwLp/5yOgv67gI2DbsJYf7N/TZ/nUUjIMW11
KhHGhXelWE4HHoXECKssqowIPrYSX/Ay8yh0X/Lb3aS2C9/Ntunx6WXcf00j
9ay/GD7V/l2t0lwXCrWqA+5rSOImqPBWdNCF6Zgm90MkScz1xP/6reO6QFvZ
8FPNlsRVlX95Sk/pQlkirSR8ThLP5W6by83UBYsrBVXRtVI41Fu56uw7XeCO
exmgbS+D28f+fN8Y1AXzBRUOw2QZLOj+aHf0uC6st7lZ9TXL4Ed2R9PDlnSh
iXyKJ0BlD/57xNbPR1gP2g6/jBnllcVRXGGKDq56cCNZiZY5vxd3Jx0mvSHr
wYvq3//JqslhMTamQis/PSCceSpmESiHG/8mbDM7owdN+XwjDnNymOlb/iS+
qgfkUMl9AX/l8bmaxnL5MT04n2LV3SOjiJOc2Pes++jDLtbP/K5RKhipcC7+
CNaHb50Jw3LXVfAsG09Hf5Q+NF7f7WfQpYIJ1WInqlL0QSf69lqgsCrew6Fx
16tCH2RrpcMrn6jiphovja6f+pATJB6iyKWGg5NPsNf90YfykyYVRjpqeK/H
qYHrq/pwVUfy2VOaGk7jPB0Rvc0Abr4e7q9tUcPOXlkNKvsMwI62K301Uh0v
cjUb5Jw0ADHZ0kDLdQ18e7xd4HygAVi1saxaKWti16fd3/0jDWDmdqxirYcm
bqW+TzRNMoCogQ6Bex2aOLNx+tX6LQNQ3+y4iZJ7ECv6iDuQfhgA6ccl9wTz
Q9ir4zRFlWYI3xuZNptvO4JJOrIWi6cMwbWqPKbL5AimVPdqPAkzhBRFoctP
E45gWsEeNoN4Q+hqNj3OzIGw36nX1wllhnCpQjhVghPjSEHp4TOjhpCX01lY
fglwFrXLucfdCMTfursdGdPF9M/Betk0I6gofbEazKmHL1nv3kfwN4K5jmXy
nJoezj0cvDJ8xggitez3Np3Tw0U7xfMWiozAofXK5vuy+vh2XUC/6KARuEnI
hRpEGuDmzcLW3kRjyGjk+jfpZIzHryuZfvAwhiz+5Jet6caYE/T1jE4aw5m9
C/c2Wo0xIfyUhvRpY6jrvvVfvooJnp5oE/5UaAxP8GeLEE5TLNYVOGL61Rhq
YNTnwIAZjkjpDlKgmgBJRtn58lNLXCQ34pN7ygSstc6IXflniVtbl8js4Saw
a3JQLlnCCnOtSxFGEkwg9tP0nmovK3zTN0In/7YJjKsHijyassLvLGTZtv42
Adr6yPTMFhusyh17+UewKWinZB7ZGmSH6zkG5DqiTCHnUZ4hW54d1mVSelJ6
3hQGzziyaj+zw3bTn7640U1Ba8ouxZrTHoe+Oijf/8AU6D6+tviWPX6aOP2k
Zc4UrM4afjf57YCNWdyGC/zNIMFfvvZJGRH/97cmKCLcDMZusN5xf0vETrOc
7I6xZiD0hqPZkMUJe3+tV+DJMANR3tDDA8edcFqjQHBCpRk00O36du5yxm8j
e9hDfpsBe/H3BJ4SF+z+54iihc8xKAqX2zI76Ia38zD1vg0+BibTffGunO64
XqUlyDn6GJRWxLH9knfHfH6GT2hpx8DpycW1ZLI77pywMD1XdQzGivbfejXk
jlWG3GiP5o+B4MUzAjEfPDDTi7hSqWhzAK3fn6JmvPDd73rGty6Yw1e9hAeB
vCTsxM4+pZxmDgN1V/fkaJLwQ70ktSPF5tB408PGJ5qEaY1ZLY7N5vCJJZvH
bDsZ9z64/jWFzQKa1BrK/mhQ8NWiNtGlVAvYHijuUH2HhgtdFAfsL1tAImdn
48wbGs4Vyc58WGQB+xORpfsaDadddmcPrLQAss/dI73mJ3Bk2ur0VK8FkP4r
LFyYO4FtYlSfj/BagmJn2heqoTdmPX7lRE+eJbR38llTefzwgzTtT302VmAs
4urdLxGIPQt2sNU7WMFOLtmBU4cCMU/5iNJVJytId/CO3G0TiP2bk86e8rSC
V7MrlOZzgVhx/qM8Z6AV3Hu8p3vnRCAuJZ4ON8i0gsfS6YPvHgZhusxT/kev
rcBK0nbT0vEQHFx/xOrKMWvAod8ywubDcY1TB8sHK2uIaPTftoM/Ai+uWNXw
2VvDaTURlgaNCBxxmCSS4moNQt8O7CWFReCYp0mjkX7WkLH2OPfdagSObxwI
J2RYwx0DR2/NLadxfkvAVd631rDVLny/t0Y0ftZ1Yy7R2QYadsc8Pvo9Fp8w
OtRwgmALlwxfnNRIvYALy1VrvE/awVtKdQW8S8KZfxri/MPsIS00tVvqTTr2
68vwcDltD28ORzk2j6bjY9VeR43P2EP/qboV+8V0zH5qC7NEvD30vOpLq+LM
wFGTdrGvL9uD6EzhdLRyBqYM/4xRqrUH6XPPBviDM7DOa+GoqXl7cOdZ8/y8
nIGF7005v1+2h0jfuN1/mDLxYsqzw61r9jDw7YzOpi2ZuNqUvFrA6gA1zOVe
O4UzsWx7VaQZnwMQZ/RW3mllYu4Go4jbag5w7Nm9Va6wTDx+OySUFugAjn/S
g8d+ZWIHsX9D5aEOwKy4lHBrIRO3pV80+hHpAF1U+rLXeiYuDc4ROnnOAZSi
5CqecGZhT/S43pvuAKrn5urnFbLw0H9r//xqHeDXtKxzLDkLv1s+Fx+y4gDy
b9zlc/uysL4350zNPwdoHPaS2vYhCz8cpBMWWRxBo/PhncAvWTir5YZ82DZH
CPet0949lYWtUjpehos6woG9HF+mWLNx9+5tXFHIEfoTKhUt1bNxq2FW7tmz
jtBxt6rrU2I2HqM8eRV50RGSmNkehKRlY/b4UZagJEfQXTJzYs3OxsYdmr5e
WY5wz8W0daOA8TyjT0f1rzlCS2WEhN/dbPzGWOYnW4sj1F1R2SHVk43naeYS
/9ocYdEyQIa1LxvzJYbaL75whNo7HNEf32Vjhxedz8b/c4Qw/8H3XoPZ+KOJ
L71j2BHYSDIREz+z8Yhp7ZFEZgJYSrBmPWCn403eXwLj2AiwTehCWf8WOpZJ
5iiP2EIAN8+kS7846Zjy0onnJDcBnNZkphZ56HjSbGPcVJIAnazJX0LF6Xib
j5yo3h4CpFle2KclSceKKdbWh+UJ8NLWXPaXNB37dV9/sk+VcX2Kn++APB3P
HTPO4DxKAB/H/cZ71eiY1zegjdWAAGcLC+IuaNCxemr+ypoxAYLftusNHKQz
+vEU6ZcVATRyNqzsdeh4xTzzUI87AXq2PRV5ok/Hu/zq/dpJBDgdcGBPjSEd
66R9u95II8BiulDuNWM6junR2FHpTwBmgRfljsfomNny40h6LAGOpy3wK9jS
cWejvXTweQL827dbuc6OjjOU/vMiJBCgS72eT8uBjiV2dI5KZBDgyWqwNj+R
jiei9faw0QlQs+IVEuBEx1W/Gsk/cghwcNEzsNmZjuFVzXh1MQFi5aVu6Ryn
Y44jqnsvX2fU28FziOpGx70VFdTImwRwDLvffdGdjt1Trk/oVhKgICy0u9iT
juXWxOX3PiBA7YddH/O86HjGO//EtjoC6B9Vz4sn0XGsWebkm0YCJEsJ7EEU
OjZ+wrnvUQsBZMnPf7NT6ZhrX4J3YTsjP+M7Xs8Z/D5/U0VsFwGsU8POBtHo
uGTrmSlSDwF+2k2YCJ6gY1rkiqJJHwHqpN8+usdglckQ3/39BHAe29tz6CQd
LxNn73J/JMDH6fGERwxueuHze2GQAJfZ900oeNNxwqEJpY/DBOBwlfmZwWCr
W16nGscIoJgnnDnJYCHhL5XXfhCg+R31w0EfOv6a4DRz8RcB9pWefR7O4PLl
dyreswSQ3DFvcZfB/jTrAMsFAvDmuJx+x2Ct993Van8JYHgkyHiWwUzGxnOC
6wSoj2SrZfJl6Ff3/MAaExEeGyw938TgjL046CsrEdS59QJXGOMJOfUPWjmI
8Kr7b9MogyU2a86XcxLh7qhuVQuDJ0Kr1VO5iMB81IWx5jP0HFcMCeAjgpFB
fgCRweEO5TX2QkQwf03V52EwtEsvHhIlwqSG4eNGRn4cmsWa4hJECDd61Xuc
wb03RMJYZIjAaXwneY5Rr1z+y3Xje4ngNl06GcFg9wvcy137iHCGcun3PKPe
cgspWpXKRNA28Mv1YvAMiSMiW40Ih9MP/mhj6BWrv/HX+TARZKP2nScz9DR+
GKkNmAheMv291xj6c8ksRsroEWFZO+DFGzJD302/VqdMibD7oV8rF8MvtCCa
zn8WRCB/39QlyvCTyrdvUTU2RGiVmI4TZfitqeXjerQTEZZOSXEtMfyZcMAB
eR4nAm+85eR/DP9aXfsvxtCTCBwFhTElrgz94jo3dpwkwpYfdkNCDL8zHa1l
LokgwqlK46eh9nTspP+96300EQqJcpOvGPProZEQnfsskdEPPjQI2DDisYiU
PZdEhE57P3K0BR3/54zMKAVESB1C0sWM+avodoqvuJgIQRL3ps4x5vdFz5LB
geuMekzFRDnp0rH2CRZ/kwpGvnc7mQeP0PG10Ha6YgMRTofs2qelTsdrEUuu
5GYiUKK/3bujSscO0XJ7i9qI8MtJWJJbmY63nk96vLOHCCz72L9XM/pRUKbF
0NwQEWzO9OSbMfqZfkX/3sdMTnDAK5ZrjJWOiyo3z86yMtiv3TqSmTEf7mvV
K2xxAuvfgd+Z/2Xjisf5xwq5ncB43H3/xGI25u84HnBGygls31sucU9k4/Hh
8XoDfSdQMT17ergjG8OY4PkYYydgcy28W/w8G+dPGJvXHXMCxcKttVbPsrHF
9O0vcvZO4CPH4Zdcm43r1vxYOSlOkHtII5pUmo0TBJfM++KdQHKmJO5udDam
d3Z+a0l2gqsHmM7Oh2fj4oj8iAfpTjApdTBbJTgb1346coOe4wSt3flbE04y
1qPi82sON53g+pK6bo1DNtaV47nzqd0JuG/11HLtz8ZrWvs5xticgfe6jtEO
xvrIMfnvyrstzlD/6h1hS3cW5i3oVWvf7gwS12wrV9qysMJ6kNtNfmfYLltu
3/Q4CxOb62tP7HGGq4NJNe9LsnCtiTH5tz5jfAK/m5FvFvZ38mpZOucM2gVD
f703MvGO4smvOgnOsBy3cv7OUiau+BawEZfiDDesB62HpzPxd59YHc5LzrD0
wW5a+WsmPn7mSq1EmTPQ7O7PODVl4mOlA7dNOp1BldyxuBCTieV+m2UXcLrA
cS6R4eqFDDwcp07Cl1zgwKmF+aG8dMyXnfcx8aorbMpNbnLJT8JlXAoRHQXH
QXjsxte37Rdwc+Bug7133OC/kxob6EUsLpIoET1i5w78nfvFrxlH4B1Jqp37
HdyhaaN5qkghAp/50xIkTnCHxVMBBlWcEdi9faxrw9kd+OKEnnP9F46lfPZF
tHi5Q5/Sftkup3BcVlf7zijIHWYyrxXsDQzD9yxepdlkuQPPkmrpy6oQLP7o
uLYe3R0K5x4e87kUgtMlZ8bULrsDkv+cIRUZgv3neY7w57vD2p9O5l69EHwg
n/Bz4Ko76O9b4lV+H4xrx74ZuVa7A5Ok61tmtmDcELXCROt1B0nzkks7TwXi
xcrxmbN97hCtU7PT1i6Q0Q/6vl556w6mPmmkKsb3cqnJnaY3792BY+lx0SPW
QJwk4BKLh93BdlnTdKMgADtUNWwIzDHiEW0JI732x9PfYv+18XqA+9XcF4tZ
flhO0Pf3V34PEA/X6Z/y8sOepsShVUEP6FVm6ufX8MP9VaqNqqIewPbbJZrp
vS9+Gj0SfUXGA24z26xrSvgy/K2/HqzhARPv6zRF672xpNnmNWlHD/h2fJxi
w3sCq7/T6xMhekDIUfN03V80bOgWW87t7AFDLtsPuHbQ8Mmgv3Ybxz3ATKii
iDuKhh8W/Lz7keIBLIQP3CHfqdhw6rVbZqgHrGS/vM3fTsEnU3Of/7vkAX6b
EpKUrpFwlOC7vIUcD9h3YneZURwJp13l9p/KY3BwVmmCOwk/qEkS/XjFA/6Y
2UzF7SbhtcGokJobHsDe77rTstgLpyt57PWp8YDSD4XBqMwTP3wtn/zhrQfw
Dfv1Nve64wzp5hsr/R5w6yEz9dh9d+wdRmja9cEDSF7XpFjo7lhqd/yC66AH
pJSxnPnt6I7T/UbdRsY8oEK3+V/qczd8cnux+s9FD+B8XVBbteKKJcz4htaE
PGHi749GljInvFZ0Z1lslydcPyh8yTHICQ/M6fJiMU/wccur/QuM/Wd+gHGc
pCe4HJiulhkk4tUfPffZFDyhzIDosV2YiPsTEuN3HPaEpNelwhNFjjil/Z+K
hKsntOWNXXrw1Q5DwLiqmJsn5Ntu7P7y2A7P7+o5IOLhCanxTkMG2XbYJeCK
Oh/ZE1ju+TC3Gtrh/aI6Why+nlD8al0mqsoW9wRE4JkoT8i1TecrS7PBXGLz
5k2FnmDXJrlVPdgKt3Z8smgo8oTNQf9ZWNpZ4fDA55b1JZ5wyTxqT5G6Ff7a
kWX9sJQRz5lYlTs/LXF1oKp9eYUneHLd4TBdsMA2nX4uGU89gZRrlSC9yxxn
B/046f7ZE4wj5mM475lgEcPIANshT5Cuq13QP22CrwltCzf86gkBioGhfcYm
+H6D4gXFUU94eJfzx+SoMe7d7F+8/NMTosYtxtkkjfGOwsU3GauesE9f9kZ8
uSFOaN10pFnEC3y9+U+PzOphrhy63kNRL+DwxeKznXo458Qe05viXtAnMDFk
VKKHy3YYOaZKeQFfgdT+bks93EZICiAqeMGDWEudPfd1McsvrrLZQ15wVn6C
p/XcURzFL75TiugFIXpWgQerEH5VvcUJO3vBoR1coeQTCItbLJS6uHqB4OsF
oqQ0ws8udmvneHjBVKScOs49glmWIymcJ73g6R69uJUEHRz/caBhMdILlHrp
XyvOaeP3oc85+KK9oNaeT9DKQBvL8Vbaqp7xgpcueS5Bm7Vxl9nFH97nvGBV
ofOZZuohzNmgzj+c7AUWMmPteUVaOKs40+dlISPflME+kfea+Nvh6LqJIi8Q
7RIbd7mqidXf01jYr3rBpZYhMR5vTfyOC3LhhhdkpfN/7dvQwEJnfz+vuesF
LyqeyeYqaeAiktmukkYvoB2MDEkoUcO35Nm6gr96AVX9ZvZYrwruEz266jvi
BVo7opdGbqngtZ3RitRRL9hdk5mhck4FWyzOpxEnvODyJ1Htek0VPN8yaotm
vGCUhX9qRlcZg0vr4GYmEvh2fsYOW/fjk5ZMO5lZSHDR8jPLhzZFnK2rAyub
SKC+opD4M04Rj8s9vDa1mQQcauGjT1b34ZSF69T/dpJg3bQOfi8o4Pdp52bz
d5PgyPZo5eZN8pjl7DMpuiQJjlnLeL/skMP7QlZtU6VJsBbjzOeQIodjnINq
z+wlwWcd6c0/BOSwjJzXaZIyCVyimkWmVPfiU826bEqYBKX/jGNLYvZg9nlm
4ebjJAiey/Z+7SOFl6ty00bdSUBZbs73PSyFf/oqs3J4kSDw4aWZs1ulcO93
l2kLKgnuzI0p77wtifM/1bV9PkWCDyuM3elvCaz03DdwOZYESMbed0ZoN5aI
ZZ3YdY4EC0+O5yi3imPeIwWu+AIJkjyCw7G/OF6u7TS+mEiCZJZX5K4uMdxy
W3o3XxYJEmwWG10SRbFD1oeXytdJ8NYkq3xVQQQbW/oftb1BAmPHF8KnR4Tx
Yc7NdaE3ScDVcbOyKl8YS1xUv9ZwhwSV8/5btLYL48mI9HCzhyTICeaxSVkR
xDEeBnuobSQQmRWRWZ3nxzdVqmOKvpNgI+eEy/pxHuzHP/u37gcJ9Pyacjz2
8WD1FZWQ/36SIN+DKmm6zI2bnld5s86QwCmb5n89mxu/d6ginFwmge45z3sO
vVyYI7rygOYWMpiznL6T0LwD93hM37XcRgZ76fffuk7swHRDZfkT28nw93yJ
xhzPDizBVbm7kJsMq/HrA9+p27HW9XucLCJkeJ93/bOGKCemvbg7/kqBDMvf
SSIlFVuw0r1fHt8VyfCCriqq57kFz2ftH2RSJgP9xqVXd4S24FiXu2/U1MjQ
Xnb0Z3s8B86drmjKO0wGAaXGS7N+m3Enf0U++RgZVBMJZRlubFje87bFui8Z
iDoWbT6NzLjzinbV3CkyHICwEbZUZkz50MU9EUCGFoVD38RcmHGp1c+3fSFk
mDlkvdK2yoQlsKJzeTQZyl97TPYDExYQvUe1TSWDrOMgz/aWdVTjiF4Yp5OB
Y1JoF4/fOrLL7lFAmWQwivpqOCeyjjK3Tv+Su0SGa5fMlg6HrSHOv8rB/wrJ
0PsiVrbh0Cpi6a+OvVVBhpCZ664do8voKrfuSNE9Mrjd3rVAv7KMwLxPj15F
Bie5Ip3djssounWO/cxDMqh939Xh2b2Elu+rpdo9JUOl/+UtIc8W0e/0mryN
l2SQtE5RPdY+j1JfGqzOvyLDc8GoGcGkeaS4ud9l8jVDnznp6gsW8+hEzOLu
d28Y9R8zZT/64Q8a9TlYdvsTmeFffQ/OxTn0yeTxffufZNhsv59+x2wW6VqW
EkJ+kSH/R8ncNb5ZdNsu/R99mgzhG3G6R4ZmUKQb2fTtHzLsbt80YBs0g0RC
uEds1siQ8uS/gw9MphGh5AS31XYKrBbCYo3RFGq6YVd3aicFan457wmb+onk
7mDXdG4KnDtu1G+a9RMt1/Df6uGngCOjC4kNT6Kcl81gLk4BxfToVcnkH6h/
UdjfVJkCXJMfNVR2fEdojVXgpCoF/jinCba3jKMy5pkniWoUmK0SDdANH0eh
nO2bXxykAOvTC0GjY2OIXyqw2Ago4CId7JvwchTZmXf16FtToG9PvJR24wh6
alMTTLKlgC25KJI/dgTJEEpEzttTINZfubJadwTNe4ZSnhMpEPTkNK9M1zDK
Dpf6d9STAkmC1m01w19R3/XI/TiIAmJRR5NTvIYQD1PtY+0QCuwoL3mkxDqE
bF1mDTTDKDDWKZXw48YgestHO77/NAUEdN7KXpn6jAYu2KfvOkeBGO3Dd25f
/IQ+U1Vml7IooJcVZzUx+R6JtnpH/6FT4Oyjr4TGgvfIVeLmlunLFKjgXcyL
NX+Pht6LSY3nU0DWpzzn2YMB9NVkm+3baxRYZ04qGk7qR2P7xh9W3afA+GXi
1gKPt0g2QfJoxUMKZBapcnBJvEWUUZdXN2sZ+Y5qmpt9eYMmCt+MFdVTAL+u
X9/m/gZNbm8WSG2hQJNMFCnyZB/6PV0QfqKPAuLN5/Xhai9SOjbASn7LeF/b
YU8J7150qpwn072fAm+0DELLNHrRjHviLcePFLg8nIy0816jP/+FfjQYocCv
dZMbm1h70PIDax2pOQoQC2sGDHheIk4tzR7eeQrsLBsy+1TfhSSeirizLVKg
/mMDz2lSFzJu/XZu4i8FNq3/7n5V/wLlvQ15eY+ZCrWULs5TQZ1IeyHP6TA3
FRQeqX5W5WlHFhExU4q8VOBK5eIV6WpDnuueMeL8VDBms237erYNJbEpXmMW
psKn7b8KNhZb0Sf+xh8dElSI+1Ibh348R1GaI+F2KlQw35CpqP7TjDLq27ca
HqDC5DL7lOejZlSK7hQeVKdCK0dEwqvoZtRtGNwkokUFPodVz/atzUjMkZ1j
GFNBmbqvknN/E2oMU8jxtWTEGyrn6SLVgPpWd8i7WVPhd7LHPvbmp2j8zJ96
K1sqNAtfZRp1f4p2JDwdUnOkwkNlnfT9pU/Q8VwL2ZXjVKBJfii8rFWPNh4F
1lz0owKzSa1z36U69Jn9fvI1fyrQ2ffu9cF1qN5u1qMxkAq3W+b2HJisRcEz
p3YshlLB9GB5uJpeLZrY60sln6FCxOcR7ussNajvMlVYP4MKwxeOUgQf3keV
o2XTbllUWJbXDGr2u49SDoy3naYz6jvgXuimcB8Z9ZACH+RSQbx8yy3v0mr0
lM3zpdRVKoQk3kzzuV6FbgS7RDPfp4IJwcrgH/0uOttSYCv2kAqz31+mcsje
Re5cn+QP1VLh2WJpftGjCiRSQez3r6dC+GqxAXHkDkr75qD8tYUKm5uV9U8b
3UbhNtbDjW+oIPhu+7+DdjeRfUlG3cd3VChmUmGqXi1DB36/Tl0coMJAuEX/
idIy9CvRQlvpM0NfVdaNxL83kGezWfaVUSqonv2qwXW/FJmpGBpELVCh5L2A
ZSPhGmJ69445eIkKJxTGNDcErqHaCHKj918qTCyb3JXov4qknp8/6LxOhbD0
G8t/Ha6iFfvn8tpsNHgu/q7jkWcJun0adizz0eCiRsxeFbiC3CV6u6YFaKCs
VPMF9xcigTa3+O9CNHgqNHWrwbcQnd1xhmlAlAZ3eY92zZQUIKerDXM1MjSI
9tCrrBHMR1s6tAeC1GlwNCXkzqRuDmr07sr21qTB65HNmp2/LqNgLicrLy0a
6BxYs3+ddxl9JUa8sNGhwQ/P4SXThUvo0VTdE1V9Glw+/68z7TEd0Xg0SqZt
GfEWBhNlg7OQeF2ry3d7GswIJQlPKGeht852wl8caXD7nLJYwVQmghtBWT3O
NOB+vce6k5aJhLTun7/rRYNeta16P7wzUIer8gnvIBp8TYBLFI1UxONFe3Il
hAYad7oL7z5JQcdpV7f3htHg17IY/0e9FLQYyHtfPYoGsI35XjsxGckkLK2s
n2fkXxdK3VeQiPxTVcxV4mmg8sxa+qNyInqSdaLYM5EGuyp7LxxsT0A2Vz7p
daTSgKqsXTq6FI9i7z9LybhMg4S7rpxOfhdRd93yUEsuDbwt+kRf77yIBBtU
VRfyaSCdMfa9+f4FdK/j+jtiMQ1apcLeblk/jwY/x4tLl9OgRy4wO/7aOaS9
2aqq5jENFGP6rxUrxqGLnIksE09oYKJ1jMfnWyz6j7vFTqSRBls3Kqq8CmIR
TVT9b0wLDYb8u2xbdsSiHFUhXeOXDL2W7FPOscWgEU1reuQrGrw/r5g2cD4a
KekkjVe8pkEZNyrVYY9G7YZrSdxvaXCIr6lBeGcUmnf++ubjZxosOZuv6GlF
IvAQlt3+hQYrgtXC+h0RKJliE46HaeDQ8qtMkBCBpAJaRUvHaNBcpmspeiYc
WV8sJ/v+psFNxZz498OhqDB5uK54hgb7z+9mrYoJRRMZIlv75mgQFSciISMW
imILUu5pLtGggqvuXufxENRd0sZ04i8NbGzi86aYQ5Bg2T+bglUaBL6M5qWX
BSPPOwdvvFqnwTeOI7yPjwWje1X+SxsbNPj//53/B9zKmV0=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["\"IQ \"", TraditionalForm],
FormBox["\"density \"", TraditionalForm]},
AxesOrigin->{0, 0},
BaseStyle->{FontSize -> 16},
ImagePadding->{{30, 100}, {30, 30}},
Method->{},
PlotRange->{{0, 200}, {0., 0.01994710811215381}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]},
Ticks->{True, None}], {192., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}], InsetBox[
GraphicsBox[{{}, GraphicsComplexBox[CompressedData["
1:eJzt12k4VWsbB3D2ltkuEiUnlZR5Smbt23BKAydDqGPY09p723aZKyVTiZAi
KVOGcERFGrSpHEPmHEUjQjqHUEghwuu93nrWdZ2P7+fWl+f6X8+3tZ7n/q3/
Opq3PUbg4+Mz4Ofj++/KtP3okX1KAG7X761zuk+HQ9tE/t6WLgIr1qr3+VQw
4XLuitMVCZKQVu2ypj6SA221PPUK3jBZ/kDKcRMSFQh/yIfovRMA0TsqBvxa
GAx3RIXeFvxMbkzcI0HxdAdrRVKK4uQU2d5CMmgqggZmm0rM+ohi4LWWVnXn
LAMe0tpinp0hgW0/OUD2JAu4Y1kD7saS8Gp3hKNjtifosaysr5YLg7a9a6+u
HhNIRlaFS17ygV3YlKmWOw38DAVeNhwRBWy+Off9Kiao2KsNzMqTwDGxxqJd
jA0R/gl68x/44XQZoSbdgg6l2UmSFQECUCzYWbSnkA5994UtXX2myfMuextD
tamgd1e/rmWBD6jb5ItXztDAJdfMNaNRDGB768SxYQyaMm14uSpEMDweEEXL
wODk1HVZ7xEBGN2jVu11igF/ca3ErmKCEB/1qe2gOQuaWz1p7SHiMKTkYa2d
yITCvKVrRs6LAmVtcQlhjgl/1iwVzYbiyvyAoyNGXvvgpYavRMWABJSqsHg1
59lQWzq9cHP7KLlbvs+juoMCFtbizOGQBXLCGab0ETcqWFCnBWrLieCTqHP+
7TwDBJpIZUti+KDsSXU7l0eD7RvzWjq3zpI/F5IPVnE9gPbLh9j1TCKER5U/
6CXSgbu/9YWCvwAMDjNq2B10MDSiLTsUKAhdPScMrv5Jg8QNtaNu7CUQ6hVi
lzyLgar4SmcOhQA8TQPpG3EY/NGZalSpSYJ6mWjy+xEWzEQojqgpTJAbpgIj
iZ+okGCZQpyNIcCpSiv3fz7TYSKAd/jRP5KQn1xjKWPFgTNjQRODzQvkq90i
q0Rf0uCY40x03pQYjFwKeOM2zIZYuyCJHuUZcqqOqZRzABVeuQWPBJvMkRMz
Pi7/Js2AfkWF+lSuEMw7FTi9GcdAQScoKtxHBHx83lspyzDhJcP/pi6/IAT1
WxO3ajGAZ+JX8lJdAqSkAyx8lrFhcvxBoXGbJFCNwm1k1L3AQ2lqrmenNDhm
pnMLdbwgXE4tc6ZWDPY7hq0fvcAE88133w6Pz5MPvC7e4BtIgVTXLwTqF0l4
unXIcFWBF7x+/rwoJEQU9krmTzeKLJ6P5PXKdcRlYOfqqB3uw4En53KWf2sQ
hNmCG8/k6jE4If/8UrsaAfLYzoEN4Rh8aTpccCWdCNq7Dj/qJ9AhZ6fz440X
ReC9662C9zUYNLwx5freEoX8g3E5sSJsSJjufa26TACkbZPW9bgy4a8kzo7R
sFnyebpezq+/0SHWcTB+UxofWMe7HE5rokB6fZ7FBYIE1DycMh9bvC8d20wG
VHiSAItvUlGdC0+Xz2aZHBSD4uuxgsuqWSBw93OVgY4QSF1mF5WIY5BhqdK8
x1UK1C7vv7OU6gmKwSYd7euWQDJ7QsLdjA4hwdqHGt+RYIUyxe31Nha0hpNu
Hbu6+D3dmcH7FJgwYKtgqLxZCsZyHksec/OEa5EqrJm4QfJs8cCO3xrdoU8X
K+bTEoIdqYYumysZoM+vGvg4aykc6g2Mf9fLBtsPeePGA/PkIWqIlKwoDQT3
eKrfCyCAWvaWXzUJGLQ6BBJ27JQApzXPxoeus+HtTW7kvWxx0GcnZKyUZcPu
9CANA3M+sNDJyhe8tzi/mnqFH0mQwJIP48iwPaHAjFextU8a5j/FhxADvSF3
7En/9ifLF+/FGYXgGwdgXlp3Ojd8nnxcXmtjpC4dbGqXGHTFLQX7T362Wlc8
Ib8qKoenNkUuv5JsKF5NgbRk841Oj/igqpXIqHShg4awhXKIyTg54UWP4CqW
B+TVnc1SYopAh5CI7VtbJiSZUTZNkyWhXKLRuE2IDdPam9psmgbJ6iUmGi4O
FNg1IGXzsJ4I6WW/b/hoioGdkpewpsM4WfPMq4VZAhXm7lQ82xImCaMtDzfN
K3kC6WZj69G2ObKe4VmRvcE02Lv/QkrtGwGIXiHdQqPSoSBqxHi4gwSSY7r9
RovzVz2vM8RxTAjq84+XQC8DWjtj01ZpSkJKM2Wb3OI8pr+7tr53YSnc1Vpj
7vTGE/i+P8KmqueIF/Z9z2PksLJf6h+ke/zYh+AU4QWTp7TvWRgMnCPkVj3H
vudlMCH9bcvkK/b3LA3FTwPt2ru9vueVwDk3yi3pO/g9y/9vBR/glN3Ty1eS
Q/mHZ6mqJjKDi/P43/mHb9gvhY+P+uK+bR+eGKgTxn2r0SzKim51R74d8fjq
p17IQL6V2r3ISjlHQb4tPMfu+9pSkW9hTbm/E74ykW8npOxP+NuykW+CFBvx
D3W4b08vyt/3k8d9i/E76Z+vSEe+VYfNCyXX4r51jzthw4q4b/1vzAc843Df
5I/WLlcJYyDfdOHvniAM962mm+SYu3h+f/gWoM9jRluykG/27vHNFCID+RZ4
ehrbdh33jVT/bY+fCYZ8o3ff0OiIYiHf+G9Gu7W14r6pmBA/NOjjvh2RO/37
q6W4b9ZBMXmEox7It89PTkwOLvr1wzdyRcZlKWPcN86tmBYQpCPftNqKd/aM
UJFvfbXpOhpyDOTbtY4Q2fhQBvItsy20g2mOId/WXep7MtvJQL4lhWwpO11G
R76RDvkYZqiykW9h7d9WTzMoyDcr3wunkupx3w7lkEJ7rXHfjG0iV3o14L7p
F7WV9jmykG9ddv2Pgu/hvvFW8hzu7aYh3/z1/L7EXsZ9O+7Xmj9LwX371dSW
c2EFhnzbEHpRn9PIQr45FCtnvjXgIN/8T9XnWMpwkW+DDUXrGxf/V3741vJH
KL9zJg35Zr821bLfgYN8szvh/fV+HRP5VrTFPqi1i418q1xzkNtHwX2Tjepq
LLtCR75leSiNlmkykG97HWR2xXkzkW+XGpYk3XzNRL6t/a3mgMV+BvJtruv1
P/Zfqci3+zM3au6I05FvQvUiJ4N5LORbt9dUbehGDvKtcZ/eZdl1uG+8SQEl
1Wjctw1GqVFHsznIt7jTqpNYFQP5NmC9a8bQm418i+u8aME1YCHfSoUanAMi
OMi3a1W9BpQtuG+czVpcxygM+Raf3LV9xV3cN35RKtkhA/dN6sXZO9qVdOTb
vNvqMxEdLOSbRrvml5kkFvIt/aSJVtsQDfnmmjdwRGsNG/nm/XD9WFoUF/km
uKlqdXq5F/JtfVL+Jc0YGvKtpWdIM+EGG/nmY7B6brcyFfm2QaUqLU0e9015
dWb5UxEK8m3nZ18taTfcN9O1pxhKzZ7It0HO9cKP4I58i7TTeTi5lYF8S3w8
yd1BoiDfPlxJvp0wi/t2N//2YDMb9y3CWKxboYCBfHv3UWXGzJONfCvNv2ao
04Yh377Fzhpef4D7NmCSsnlo0aN/55996Wdf+tmXfvaln33pZ1/6f/rSfwCA
TI5P
"], {{{}, {}, {},
{RGBColor[0.6, 0.24, 0.4428931686004542],
LineBox[{101, 102, 103, 110, 104, 105, 106, 211, 107,
109}]}, {}, {}, {}, {}, {}, {},
{GrayLevel[0.5], LineBox[{1, 111}], LineBox[{2, 112}],
LineBox[{3, 113}], LineBox[{4, 114}], LineBox[{5, 115}],
LineBox[{6, 116}], LineBox[{7, 117}], LineBox[{8, 118}],
LineBox[{9, 119}], LineBox[{10, 120}], LineBox[{11, 121}],
LineBox[{12, 122}], LineBox[{13, 123}], LineBox[{14, 124}],
LineBox[{15, 125}], LineBox[{16, 126}], LineBox[{17, 127}],
LineBox[{18, 128}], LineBox[{19, 129}], LineBox[{20, 130}],
LineBox[{21, 131}], LineBox[{22, 132}], LineBox[{23, 133}],
LineBox[{24, 134}], LineBox[{25, 135}], LineBox[{26, 136}],
LineBox[{27, 137}], LineBox[{28, 138}], LineBox[{29, 139}],
LineBox[{30, 140}], LineBox[{31, 141}], LineBox[{32, 142}],
LineBox[{33, 143}], LineBox[{34, 144}], LineBox[{35, 145}],
LineBox[{36, 146}], LineBox[{37, 147}], LineBox[{38, 148}],
LineBox[{39, 149}], LineBox[{40, 150}], LineBox[{41, 151}],
LineBox[{42, 152}], LineBox[{43, 153}], LineBox[{44, 154}],
LineBox[{45, 155}], LineBox[{46, 156}], LineBox[{47, 157}],
LineBox[{48, 158}], LineBox[{49, 159}], LineBox[{50, 160}],
LineBox[{51, 161}], LineBox[{52, 162}], LineBox[{53, 163}],
LineBox[{54, 164}], LineBox[{55, 165}], LineBox[{56, 166}],
LineBox[{57, 167}], LineBox[{58, 168}], LineBox[{59, 169}],
LineBox[{60, 170}], LineBox[{61, 171}], LineBox[{62, 172}],
LineBox[{63, 173}], LineBox[{64, 174}], LineBox[{65, 175}],
LineBox[{66, 176}], LineBox[{67, 177}], LineBox[{68, 178}],
LineBox[{69, 179}], LineBox[{70, 180}], LineBox[{71, 181}],
LineBox[{72, 182}], LineBox[{73, 183}], LineBox[{74, 184}],
LineBox[{75, 185}], LineBox[{76, 186}], LineBox[{77, 187}],
LineBox[{78, 188}], LineBox[{79, 189}], LineBox[{80, 190}],
LineBox[{81, 191}], LineBox[{82, 192}], LineBox[{83, 193}],
LineBox[{84, 194}], LineBox[{85, 195}], LineBox[{86, 196}],
LineBox[{87, 197}], LineBox[{88, 198}], LineBox[{89, 199}],
LineBox[{90, 200}], LineBox[{91, 201}], LineBox[{92, 202}],
LineBox[{93, 203}], LineBox[{94, 204}], LineBox[{95, 205}],
LineBox[{96, 206}], LineBox[{97, 207}], LineBox[{98, 208}],
LineBox[{99, 209}], LineBox[{100, 210}]}}, {{},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointBox[CompressedData["
1:eJwNztc6ggEAANA/OyuRGepHKDvrPXoEn2te1ip7y957nYtzf8Kl1cJKJAiC
ZdZYZ4NNtihSYpsddtljnwMOOeKYE04545wLylxyxTU33HLHPQ888sQzL7zy
xjsffPLFNz/88kcgHqGCSqqopoZa6ohSTwONNNFMjBbitNJGgnY66KSLbnpI
0ksf/aRIEzLAIENkGGaEUbLkGGOcCSaZYpoZ8swyxzwLLPIPCSswdg==
"]]}, {}, {}}}], {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["\"experience, years\"", TraditionalForm],
FormBox["\"wage, $ \"", TraditionalForm]},
AxesOrigin->{0, 100.},
BaseStyle->{FontSize -> 16},
ImagePadding->{{30, 120}, {30, 30}},
Method->{},
PlotRange->{{0, 6}, {100, 260}},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}], {576., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}]}, {}},
ContentSelectable->True,
ImageSize->1000,
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{{3.6296633980285482`*^9, 3.629663482889402*^9}, {
3.6296636516960573`*^9, 3.6296636582944345`*^9}, {3.629663771278897*^9,
3.6296637886678915`*^9}, 3.6297014723711147`*^9}]
}, Open ]]
},
WindowSize->{1366, 706},
WindowMargins->{{-8, Automatic}, {-8, Automatic}},
FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 1091, 28, 52, "Input"],
Cell[1673, 52, 15780, 268, 217, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[17490, 325, 2959, 82, 172, "Input"],
Cell[20452, 409, 7278, 122, 205, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[27767, 536, 330, 8, 31, "Input"],
Cell[28100, 546, 23216, 390, 343, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)