-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpasses.go
916 lines (806 loc) · 24.4 KB
/
passes.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
package graphite
import (
"errors"
"fmt"
"sort"
)
type passtype uint8
const (
ptUNKNOWN passtype = iota
ptLINEBREAK
ptSUBSTITUTE
ptPOSITIONING
ptJUSTIFICATION
)
// compute the columns from the ranges
func (pass *silfPass) computeColumns() ([]uint16, error) {
if len(pass.ranges) == 0 {
return nil, nil
}
numGlyphs := pass.ranges[len(pass.ranges)-1].LastId + 1
cols := make([]uint16, numGlyphs)
for i := range cols {
cols[i] = 0xFFFF
}
for _, range_ := range pass.ranges {
ci := range_.FirstId
ciEnd := range_.LastId + 1
col := range_.ColId
if ci >= ciEnd || ciEnd > numGlyphs || col >= pass.NumColumns {
return nil, fmt.Errorf("invalid pass range: %v", range_)
}
// A glyph must only belong to one column at a time
for ci != ciEnd && cols[ci] == 0xffff {
cols[ci] = col
ci++
}
if ci != ciEnd {
// we exit early, meaning a column was already attributed to a glyph
return nil, errors.New("invalid pass range")
}
}
return cols, nil
}
// load the code for the rules
func (pass *silfPass) computeRuleTable(context codeContext) ([]rule, error) {
var err error
out := make([]rule, pass.NumRules)
for i := range pass.ruleSortKeys {
r := rule{
sortKey: pass.ruleSortKeys[i],
preContext: pass.rulePreContext[i],
}
if r.preContext > pass.maxRulePreContext || r.preContext < pass.minRulePreContext {
return nil, fmt.Errorf("invalid rule preContext %d for [%d ... %d]", r.preContext, pass.minRulePreContext, pass.maxRulePreContext)
}
r.action, err = newCode(false, pass.actions[i], r.preContext, r.sortKey, context, false)
if err != nil {
return nil, fmt.Errorf("invalid rule action code: %s", err)
}
r.constraint, err = newCode(true, pass.ruleConstraints[i], r.preContext, r.sortKey, context, false)
if err != nil {
return nil, fmt.Errorf("invalid rule constraint code: %s", err)
}
out[i] = r
}
return out, nil
}
// performs the equivalent of --a in C
func decrease(a *uint8) uint8 {
*a -= 1
return *a
}
// encode the actions to apply to the input string
// it is directly obtained from the font file
type pass struct {
// assign column to a subset of the glyph indices (GID . column; column < NumColumns)
constraint *code // optional
columns []uint16
// all the possible rules of the pass
// their are activated conditionnaly on the input
ruleTable []rule
successStates [][]uint16 // (state index - numSuccess) . rule numbers (index into `rules`)
startStates []uint16
transitions [][]uint16 // each sub array has length NumColums
collisionThreshold float32
isReverseDirection bool
collisionLoops uint8
kerningColls uint8
numStates uint16
maxPreContext, minPreContext uint16
maxRuleLoop uint8
}
// sanitizes and interprets one pass subtable
func newPass(tablePass *silfPass, context codeContext) (out pass, err error) {
out.isReverseDirection = (tablePass.Flags>>5)&0x1 != 0
out.collisionLoops = tablePass.Flags & 0x7
out.kerningColls = (tablePass.Flags >> 3) & 0x3
out.collisionThreshold = float32(tablePass.collisionThreshold)
if out.collisionThreshold == 0 {
out.collisionThreshold = 10 // default value
}
out.maxPreContext, out.minPreContext = uint16(tablePass.maxRulePreContext), uint16(tablePass.minRulePreContext)
out.startStates = tablePass.startStates
out.numStates = tablePass.NumRows
out.transitions = tablePass.stateTransitions
out.maxRuleLoop = tablePass.MaxRuleLoop
out.successStates = tablePass.ruleMap
if err = tablePass.sanitize(); err != nil {
return out, fmt.Errorf("invalid silf pass subtable: %s", err)
}
out.columns, err = tablePass.computeColumns()
if err != nil {
return out, fmt.Errorf("invalid silf pass columns: %s", err)
}
out.ruleTable, err = tablePass.computeRuleTable(context)
if err != nil {
return out, fmt.Errorf("invalid silf pass rules: %s", err)
}
// sort the rules entries
for _, l := range out.successStates {
sort.Slice(l, func(i, j int) bool { return compareRuleIndex(out.ruleTable, l[i], l[j]) })
}
if len(tablePass.passConstraint) != 0 {
context.Pt = ptUNKNOWN
// if numRules == 0, which happens for instance in the Awami font
// the "natural" value for tablePass.rulePreContext[0], tablePass.ruleSortKeys[0]
// if the next field in the font file, that is tablePass.collisionThreshold
preContext, ruleLength := tablePass.collisionThreshold, uint16(tablePass.collisionThreshold)
if tablePass.NumRules != 0 {
preContext, ruleLength = tablePass.rulePreContext[0], tablePass.ruleSortKeys[0]
}
constraint, err := newCode(true, tablePass.passConstraint, preContext, ruleLength, context, false)
if err != nil {
return out, fmt.Errorf("invalid silf pass constraint: %s", err)
}
out.constraint = &constraint
}
return out, nil
}
func (pass *pass) testPassConstraint(m *machine) (bool, error) {
if pass.constraint == nil {
return true, nil
}
m.map_.reset(m.map_.segment.First, 0)
m.map_.pushSlot(m.map_.segment.First)
ret, _, err := m.run(pass.constraint, 1)
if debugMode >= 2 {
tr.setCurrentPassConstraint(ret != 0 && err == nil)
}
return ret != 0 && err == nil, err
}
func (pa *pass) findAndDoRule(slot *Slot, m *machine, fsm *finiteStateMachine) (*Slot, error) {
if rules := pa.runFSM(fsm, slot); len(rules) != 0 {
// Search for the first rule which passes the constraint
var (
i int
r uint16
)
for ; i < len(rules); i++ {
r = rules[i]
ok, err := pa.testConstraint(&fsm.ruleTable[r], m)
if err != nil {
return slot, fmt.Errorf("finding rule: %s", err)
}
if ok {
break
}
}
if debugMode >= 2 {
tr.startDumpRule(fsm, i)
}
if i < len(rules) {
r := rules[i]
rule := &fsm.ruleTable[r]
var (
adv int32
err error
)
adv, slot, err = pa.doAction(&rule.action, m)
if debugMode >= 2 {
tr.dumpRuleOutput(fsm, r, slot)
}
if err != nil {
return slot, fmt.Errorf("applying rule: %s", err)
}
if rule.action.delete {
slot = fsm.slots.collectGarbage(slot)
}
slot = pa.adjustSlot(adv, slot, &fsm.slots)
if debugMode >= 2 {
tr.dumpRuleCursor(slot)
}
return slot, nil
}
if debugMode >= 2 {
tr.dumpRuleCursor(slot.Next)
}
}
slot = slot.Next
return slot, nil
}
// select the rules IDs to apply (may be empty)
func (pass *pass) runFSM(fsm *finiteStateMachine, slot *Slot) []uint16 {
slot = fsm.reset(slot, pass.maxPreContext, pass.ruleTable)
if fsm.slots.preContext < uint16(pass.minPreContext) {
return nil
}
state := pass.startStates[pass.maxPreContext-fsm.slots.preContext]
var freeSlots uint8 = maxSlots
successStart := pass.numStates - uint16(len(pass.successStates)) // order checked in silfPassHeader.sanitize
for do := true; do; do = state != 0 && slot != nil {
fsm.slots.pushSlot(slot)
if int(slot.glyphID) >= len(pass.columns) || pass.columns[slot.glyphID] == 0xffff ||
decrease(&freeSlots) == 0 || int(state) >= len(pass.transitions) {
if freeSlots == 0 {
return nil
}
return fsm.rules
}
transitions := pass.transitions[state]
state = transitions[pass.columns[slot.glyphID]]
if state >= successStart {
fsm.accumulateRules(pass.successStates[state-successStart])
}
slot = slot.Next
}
fsm.slots.pushSlot(slot)
return fsm.rules
}
func (pass *pass) testConstraint(r *rule, m *machine) (bool, error) {
currContext := m.map_.preContext
rulePreContext := uint16(r.preContext)
if currContext < rulePreContext || int(r.sortKey+currContext-rulePreContext) > m.map_.size {
return false, nil
}
map_ := int(1 + currContext - rulePreContext)
if m.map_.slots[map_+int(r.sortKey)-1] == nil {
return false, nil
}
if len(r.constraint.instrs) == 0 {
return true, nil
}
for n := r.sortKey; n != 0 && map_ != 0; n, map_ = n-1, map_+1 {
if m.map_.slots[map_] == nil {
continue
}
var (
ret int32
err error
)
ret, map_, err = m.run(&r.constraint, map_)
if err != nil {
return false, err
}
if ret == 0 {
return false, nil
}
}
return true, nil
}
func (pass *pass) doAction(code *code, m *machine) (int32, *Slot, error) {
if len(code.instrs) == 0 {
return 0, nil, nil
}
smap := m.map_
smap.highpassed = false
ret, map_, err := m.run(code, int(smap.preContext)+1)
if err != nil {
smap.highwater = nil
return 0, nil, err
}
return ret, m.map_.slots[map_], nil
}
func (pass *pass) adjustSlot(delta int32, slot *Slot, smap *slotMap) *Slot {
if slot == nil {
if smap.highpassed || slot == smap.highwater {
slot = smap.segment.last
delta++
if smap.highwater == nil || smap.highwater == slot {
smap.highpassed = false
}
} else {
slot = smap.segment.First
delta--
}
}
if delta < 0 {
for delta += 1; delta <= 0 && slot != nil; delta++ {
slot = slot.prev
if smap.highpassed && smap.highwater == slot {
smap.highpassed = false
}
}
} else if delta > 0 {
for delta--; delta >= 0 && slot != nil; delta-- {
if slot == smap.highwater && slot != nil {
smap.highpassed = true
}
slot = slot.Next
}
}
return slot
}
// Can slot s be kerned, or is it attached to something that can be kerned?
func inKernCluster(seg *Segment, s *Slot) bool {
c := seg.getCollisionInfo(s)
if c.flags&collKERN != 0 /** && c.flags & collFIX **/ {
return true
}
for s.parent != nil {
s = s.parent
c = seg.getCollisionInfo(s)
if c.flags&collKERN != 0 /** && c.flags & collFIX **/ {
return true
}
}
return false
}
// Fix collisions for the given slot.
// Return true if everything was fixed, false if there are still collisions remaining.
// isRev means be we are processing backwards.
func (pass *pass) resolveCollisions(seg *Segment, slotFix, start *Slot,
coll *shiftCollider, isRev, isRTL bool, moved, hasCol *bool,
) (fixed bool) {
var nbor *Slot // neighboring slot
cFix := seg.getCollisionInfo(slotFix)
if !coll.initSlot(seg, slotFix, cFix.limit, float32(cFix.margin), float32(cFix.marginWt),
cFix.shift, cFix.offset, isRTL) {
return false
}
collides := false
// When we're processing forward, ignore kernable glyphs that preceed the target glyph.
// When processing backward, don't ignore these until we pass slotFix.
ignoreForKern := !isRev
base := slotFix.findRoot()
// Look for collisions with the neighboring glyphs.
for nbor = start; nbor != nil; {
cNbor := seg.getCollisionInfo(nbor)
sameCluster := nbor.isChildOf(base)
if nbor != slotFix && // don't process if this is the slot of interest
!(cNbor.ignore()) && // don't process if ignoring
(nbor == base || sameCluster || // process if in the same cluster as slotFix
!inKernCluster(seg, nbor)) && // or this cluster is not to be kerned || (isRTL ^ ignoreForKern)) // or it comes before(ltr) or after(isRTL)
(!isRev || // if processing forwards then good to merge otherwise only:
!(cNbor.flags&collFIX != 0) || // merge in immovable stuff
((cNbor.flags&collKERN != 0) && !sameCluster) || // ignore other kernable clusters
(cNbor.flags&collISCOL != 0)) && // test against other collided glyphs
!coll.mergeSlot(seg, nbor, cNbor, cNbor.shift, !ignoreForKern, sameCluster, false, &collides) {
return false
} else if nbor == slotFix {
// Switching sides of this glyph - if we were ignoring kernable stuff before, don't anymore.
ignoreForKern = !ignoreForKern
}
collConst := collEND
if isRev {
collConst = collSTART
}
if nbor != start && (cNbor.flags&collConst != 0) {
break
}
if isRev {
nbor = nbor.prev
} else {
nbor = nbor.Next
}
}
isCol := false
if collides || cFix.shift.X != 0. || cFix.shift.Y != 0. {
var shift Position
shift, isCol = coll.resolve(seg)
// isCol has been set to true if a collision remains.
if abs(shift.X) < 1e38 && abs(shift.Y) < 1e38 {
if sqr(shift.X-cFix.shift.X)+sqr(shift.Y-cFix.shift.Y) >= sqr(pass.collisionThreshold) {
*moved = true
}
cFix.shift = shift
if slotFix.child != nil {
var bbox rect
here := slotFix.Position.add(shift)
clusterMin := here.X
slotFix.child.finalise(seg, nil, here, &bbox, 0, &clusterMin, isRTL, false, 0)
}
}
} // else, This glyph is not colliding with anything.
// Set the is-collision flag bit.
if isCol {
cFix.flags = cFix.flags | collISCOL | collKNOWN
} else {
cFix.flags = (cFix.flags & ^collISCOL) | collKNOWN
}
*hasCol = *hasCol || isCol
return true
}
func (pass *pass) collisionShift(seg *Segment, isRTL bool) bool {
var shiftcoll shiftCollider
// bool isfirst = true;
hasCollisions := false
start := seg.First // turn on collision fixing for the first slot
var end *Slot
moved := false
if debugMode >= 2 {
tr.startDumpCollisions(pass.collisionLoops)
}
for start != nil {
if debugMode >= 2 {
tr.startDumpCollisionPhase("1", -1)
}
hasCollisions = false
end = nil
// phase 1 : position shiftable glyphs, ignoring kernable glyphs
for s := start; s != nil; s = s.Next {
c := seg.getCollisionInfo(s)
if start != nil && (c.flags&(collFIX|collKERN)) == collFIX && !pass.resolveCollisions(seg, s, start, &shiftcoll, false, isRTL, &moved, &hasCollisions) {
return false
}
if s != start && (c.flags&collEND) != 0 {
end = s.Next
break
}
}
// #if !defined GRAPHITE2_NTRACING
// if (dbgout)
// *dbgout << json::close << json::close; // phase-1
// #endif
// phase 2 : loop until happy.
for i := 0; i < int(pass.collisionLoops)-1; i++ {
if hasCollisions || moved {
if debugMode >= 2 {
tr.startDumpCollisionPhase("2a", i)
}
// phase 2a : if any shiftable glyphs are in collision, iterate backwards,
// fixing them and ignoring other non-collided glyphs. Note that this handles ONLY
// glyphs that are actually in collision from phases 1 or 2b, and working backwards
// has the intended effect of breaking logjams.
if hasCollisions {
hasCollisions = false
// #if 0
// moved = true;
// for (Slot *s = start; s != end; s = s.Next)
// {
// SlotCollision * c = seg.collisionInfo(s);
// c.setShift(Position(0, 0));
// }
// #endif
lend := seg.last
if end != nil {
lend = end.prev
}
lstart := start.prev
for s := lend; s != lstart; s = s.prev {
c := seg.getCollisionInfo(s)
if start != nil && (c.flags&(collFIX|collKERN|collISCOL)) == (collFIX|collISCOL) { // ONLY if this glyph is still colliding
if !pass.resolveCollisions(seg, s, lend, &shiftcoll, true, isRTL, &moved, &hasCollisions) {
return false
}
c.flags = c.flags | collTEMPLOCK
}
}
}
if debugMode >= 2 {
tr.startDumpCollisionPhase("2b", i)
}
// phase 2b : redo basic diacritic positioning pass for ALL glyphs. Each successive loop adjusts
// glyphs from their current adjusted position, which has the effect of gradually minimizing the
// resulting adjustment; ie, the final result will be gradually closer to the original location.
// Also it allows more flexibility in the final adjustment, since it is moving along the
// possible 8 vectors from successively different starting locations.
if moved {
moved = false
for s := start; s != end; s = s.Next {
c := seg.getCollisionInfo(s)
if start != nil && (c.flags&(collFIX|collTEMPLOCK|collKERN)) == collFIX &&
!pass.resolveCollisions(seg, s, start, &shiftcoll, false, isRTL, &moved, &hasCollisions) {
return false
} else if c.flags&collTEMPLOCK != 0 {
c.flags = c.flags & ^collTEMPLOCK
}
}
}
// if (!hasCollisions) // no, don't leave yet because phase 2b will continue to improve things
// break;
// #if !defined GRAPHITE2_NTRACING
// if (dbgout)
// *dbgout << json::close << json::close; // phase 2
// #endif
}
}
if end == nil {
break
}
start = nil
for s := end.prev; s != nil; s = s.Next {
if seg.getCollisionInfo(s).flags&collSTART != 0 {
start = s
break
}
}
}
return true
}
func (pass *pass) collisionKern(seg *Segment, isRTL bool) bool {
start := seg.First
var (
ymin float32 = 1e38
ymax float32 = -1e38
)
// phase 3 : handle kerning of clusters
if debugMode >= 2 {
tr.startDumpCollisionPhase("3", -1)
}
for s := seg.First; s != nil; s = s.Next {
if int(s.glyphID) >= len(seg.face.glyphs) {
return false
}
c := seg.getCollisionInfo(s)
bbox := seg.face.getGlyph(s.glyphID).bbox
y := s.Position.Y + c.shift.Y
if c.flags&collISSPACE == 0 {
ymax = max(y+bbox.tr.Y, ymax)
ymin = min(y+bbox.bl.Y, ymin)
}
if start != nil && (c.flags&(collKERN|collFIX)) == (collKERN|collFIX) {
pass.resolveKern(seg, s, start, isRTL, &ymin, &ymax)
}
if c.flags&collEND != 0 {
start = nil
}
if c.flags&collSTART != 0 {
start = s
}
}
return true
}
const (
kernNone = iota
kernCrossSpace
kernInWord
// Kernreserved
)
func (pass *pass) resolveKern(seg *Segment, slotFix, start *Slot, isRTL bool, ymin, ymax *float32) float32 {
var currSpace float32
collides := false
spaceCount := 0
base := slotFix.findRoot()
cFix := seg.getCollisionInfo(base)
// const GlyphCache &gc = seg.getFace().glyphs();
bbb := seg.face.getGlyph(slotFix.glyphID).bbox
by := slotFix.Position.Y + cFix.shift.Y
if base != slotFix {
cFix.flags = cFix.flags | collKERN | collFIX
return 0
}
seenEnd := (cFix.flags & collEND) != 0
isInit := false
coll := newKernCollider()
*ymax = max(by+bbb.tr.Y, *ymax)
*ymin = min(by+bbb.bl.Y, *ymin)
for nbor := slotFix.Next; nbor != nil; nbor = nbor.Next {
if int(nbor.glyphID) >= len(seg.face.glyphs) {
return 0.
}
bb := seg.face.getGlyph(nbor.glyphID).bbox
cNbor := seg.getCollisionInfo(nbor)
nby := nbor.Position.Y + cNbor.shift.Y
if nbor.isChildOf(base) {
*ymax = max(nby+bb.tr.Y, *ymax)
*ymin = min(nby+bb.bl.Y, *ymin)
continue
}
if (bb.bl.Y == 0. && bb.tr.Y == 0.) || (cNbor.flags&collISSPACE) != 0 {
if pass.kerningColls == kernInWord {
break
}
// Add space for a space glyph.
currSpace += nbor.Advance.X
spaceCount++
} else {
spaceCount = 0
if nbor != slotFix && !cNbor.ignore() {
seenEnd = true
if !isInit {
if !coll.initSlot(seg, slotFix, cFix.limit, float32(cFix.margin),
cFix.shift, cFix.offset, isRTL, *ymin, *ymax) {
return 0.
}
isInit = true
}
maybeCollide := coll.mergeSlot(seg, nbor, cNbor.shift, currSpace, isRTL)
collides = collides || maybeCollide
}
}
if cNbor.flags&collEND != 0 {
if seenEnd && spaceCount < 2 {
break
} else {
seenEnd = true
}
}
}
if collides {
mv := coll.resolve(isRTL)
coll.shift(mv, isRTL)
delta := slotFix.Advance.add(mv).sub(cFix.shift)
slotFix.Advance = delta
cFix.shift = mv
return mv.X
}
return 0.
}
func (pass *pass) collisionFinish(seg *Segment) {
for s := seg.First; s != nil; s = s.Next {
c := seg.getCollisionInfo(s)
if c.shift.X != 0 || c.shift.Y != 0 {
newOffset := c.shift
var nullPosition Position
c.offset = newOffset.add(c.offset)
c.shift = nullPosition
}
}
// seg.positionSlots();
// #if !defined GRAPHITE2_NTRACING
// if (dbgout)
// *dbgout << json::close;
// #endif
}
func (pass *pass) runGraphite(m *machine, fsm *finiteStateMachine, reverse bool) (bool, error) {
s := m.map_.segment.First
if s == nil {
return true, nil
}
if ok, err := pass.testPassConstraint(m); !ok {
return true, err
}
if reverse {
m.map_.segment.reverseSlots()
s = m.map_.segment.First
}
if len(pass.ruleTable) != 0 {
currHigh := s.Next
m.map_.highwater = currHigh
lc := pass.maxRuleLoop
var err error
for do := true; do; do = s != nil {
s, err = pass.findAndDoRule(s, m, fsm)
if err != nil {
return false, err
}
if s != nil && (s == m.map_.highwater || m.map_.highpassed || decrease(&lc) == 0) {
if lc == 0 {
s = m.map_.highwater
}
lc = pass.maxRuleLoop
if s != nil {
m.map_.highwater = s.Next
}
}
}
}
collisions := pass.collisionLoops != 0 || pass.kerningColls != 0
if !collisions || !m.map_.segment.hasCollisionInfo() {
return true, nil
}
if pass.collisionLoops != 0 {
if (m.map_.segment.flags & initCollisions) == 0 {
m.map_.segment.positionSlots(nil, nil, nil, m.map_.isRTL, true)
}
if !pass.collisionShift(m.map_.segment, m.map_.isRTL) {
return false, nil
}
}
if (pass.kerningColls != 0) && !pass.collisionKern(m.map_.segment, m.map_.isRTL) {
return false, nil
}
if collisions {
pass.collisionFinish(m.map_.segment)
}
return true, nil
}
// higher level version of a silf subtable
type passes struct {
passes []pass
pseudoMaps []pseudoMap
justificationLevels []justificationLevel
classMap classMap
userAttibutes uint8 // Number of user-defined slot attributes
attrPseudo byte // Glyph attribute number that is used for actual glyph ID for a pseudo glyph
attrBreakWeight byte // Glyph attribute number of breakweight attribute
attrDirectionality byte // Glyph attribute number for directionality attribute
attrMirroring byte // Glyph attribute number for mirror.glyph (mirror.isEncoded comes directly after)
attrSkipPasses byte // Glyph attribute of bitmap indicating key glyphs for pass optimization
attrCollision byte // Glyph attribute number for collision.flags attribute (several more collision attrs come after it...)
indexBidiPass byte // (0xFF) means no bidi pass
indexPosPass byte // index of the first positionning pass
hasCollision bool
isRTL bool
}
// interprets and sanitizes the subtable
func newPasses(silf *silfSubtable, numAttributes, numFeatures uint16) (out passes, err error) {
out.passes = make([]pass, len(silf.passes))
context := codeContext{
NumAttributes: numAttributes,
NumFeatures: numFeatures,
NumClasses: silf.classMap.numClasses(),
NumUserAttributes: silf.NumUserDefn,
}
for i := range silf.passes {
pass := &silf.passes[i]
// resolve the pass type
context.Pt = ptUNKNOWN
switch {
case i >= int(silf.IJust):
context.Pt = ptJUSTIFICATION
case i >= int(silf.IPos):
context.Pt = ptPOSITIONING
case i >= int(silf.ISubst):
context.Pt = ptSUBSTITUTE
default:
context.Pt = ptLINEBREAK
}
out.passes[i], err = newPass(pass, context)
if err != nil {
return out, fmt.Errorf("invalid silf pass %d: %s", i, err)
}
}
out.pseudoMaps = silf.pseudoMap
out.justificationLevels = silf.justificationLevels
out.classMap = silf.classMap
out.userAttibutes = silf.NumUserDefn
out.attrPseudo = silf.AttrPseudo
out.attrBreakWeight = silf.AttrBreakWeight
out.attrDirectionality = silf.AttrDirectionality
out.attrMirroring = silf.AttrMirroring
out.attrSkipPasses = silf.AttrSkipPasses
out.attrCollision = silf.AttrCollisions
out.indexBidiPass = silf.IBidi
out.indexPosPass = silf.IPos
out.hasCollision = silf.Flags&0x20 != 0
// see the reference implementation for this switch
out.isRTL = (silf.Direction-1)&1 != 0
return out, nil
}
func (s *passes) findPdseudoGlyph(r rune) GID {
if s == nil {
return 0
}
for _, rec := range s.pseudoMaps {
if rec.Unicode == r {
return GID(rec.NPseudo)
}
}
return 0
}
func (s *passes) runGraphite(seg *Segment, firstPass, lastPass uint8, doBidi bool) bool {
maxSize := len(seg.charinfo) * maxSegGrowthFactor
fsm := &finiteStateMachine{slots: newSlotMap(seg, s.isRTL, maxSize)}
m := newMachine(&fsm.slots) // sharing slots
lbidi := s.indexBidiPass
if lastPass == 0 {
if firstPass == lastPass && lbidi == 0xFF {
return true
}
lastPass = uint8(len(s.passes))
}
if (firstPass < lbidi || (doBidi && firstPass == lbidi)) && (lastPass >= lbidi || (doBidi && lastPass+1 == lbidi)) {
lastPass++
} else {
lbidi = 0xFF
}
for i := firstPass; i < lastPass; i++ {
if debugMode >= 1 {
fmt.Printf("Pass %d, segment direction %v", i, seg.currdir())
}
// bidi and mirroring
if i == lbidi {
if seg.currdir() != s.isRTL {
seg.reverseSlots()
}
if mirror := s.attrMirroring; mirror != 0 && (seg.dir&3) == 3 {
seg.doMirror(mirror)
}
i--
lbidi = lastPass
lastPass--
continue
}
if debugMode >= 2 {
seg.positionSlots(nil, nil, nil, seg.currdir(), true)
tr.appendPass(s, seg, i)
}
// test whether to reorder, prepare for positioning
reverse := (lbidi == 0xFF) && (seg.currdir() != (s.isRTL != s.passes[i].isReverseDirection))
var err error
if i >= 32 || (seg.passBits&(1<<i)) == 0 || s.passes[i].collisionLoops != 0 {
var ok bool
ok, err = s.passes[i].runGraphite(m, fsm, reverse)
if !ok {
return false
}
}
// only subsitution passes can change segment length, cached subsegments are short for their text
if err != nil || (len(seg.charinfo) != 0 && len(seg.charinfo) > maxSize) {
return false
}
}
return true
}