Skip to content

Latest commit

 

History

History
77 lines (55 loc) · 2.02 KB

index.md

File metadata and controls

77 lines (55 loc) · 2.02 KB

15. 3Sum

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

Example 1:

Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.

Example 2:

Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0.

Example 3:

Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.

Constraints

3 <= nums.length <= 3000 -10^5 <= nums[i] <= 10^5

Solution

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        nums.sort()
        result = []

        for i in range(len(nums) - 2):
            # Skip duplicate elements
            if i > 0 and nums[i] == nums[i - 1]:
                continue

            left, right = i + 1, len(nums) - 1
            while left < right:
                total = nums[i] + nums[left] + nums[right]
                if total == 0:
                    result.append([nums[i], nums[left], nums[right]])
                    left += 1
                    right -= 1

                    # Skip duplicate elements
                    while left < right and nums[left] == nums[left - 1]:
                        left += 1
                    while left < right and nums[right] == nums[right + 1]:
                        right -= 1
                elif total < 0:
                    left += 1
                else:
                    right -= 1

        return result

Thoughts

Same as two sum problem , just have the fix the i positions and take care of repeated elements by skipping over them.

Time complexity is O(n^2) Space complexity is O(1)