Skip to content

Latest commit

 

History

History
52 lines (34 loc) · 1.5 KB

readme.md

File metadata and controls

52 lines (34 loc) · 1.5 KB

Given an integer array nums, find a  subarray that has the largest product, and return the product.

The test cases are generated so that the answer will fit in a 32-bit integer.

Example 1:

Input: nums = [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6.

Example 2:

Input: nums = [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

Constraints:

  • 1 <= nums.length <= 2 * 104
  • -10 <= nums[i] <= 10
  • The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.

Solution

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        if not nums:
            return 0

        max_so_far = min_so_far = global_max = nums[0]

        for i in range(1, len(nums)):
            temp = max_so_far
            max_so_far = max(nums[i], max_so_far * nums[i], min_so_far * nums[i])
            min_so_far = min(nums[i], temp * nums[i], min_so_far * nums[i])
            global_max = max(global_max, max_so_far)

        return global_max

Thoughts

Time Complexity

O(n): We traverse the array once, updating our running products and global maximum in constant time for each element.

Space Complexity

O(1): The space usage is constant as we're only using a few variables to keep track of the current maximum and minimum products and the global maximum.