Skip to content

Latest commit

 

History

History
84 lines (63 loc) · 2.79 KB

readme.md

File metadata and controls

84 lines (63 loc) · 2.79 KB

trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.

Implement the Trie class:

  • Trie() Initializes the trie object.
  • void insert(String word) Inserts the string word into the trie.
  • boolean search(String word) Returns true if the string word is in the trie (i.e., was inserted before), and false otherwise.
  • boolean startsWith(String prefix) Returns true if there is a previously inserted string word that has the prefix prefix, and false otherwise.

Example 1:

Input ["Trie", "insert", "search", "search", "startsWith", "insert", "search"] [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]] Output [null, null, true, false, true, null, true]

Explanation Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // return True trie.search("app"); // return False trie.startsWith("app"); // return True trie.insert("app"); trie.search("app"); // return True

Constraints:

  • 1 <= word.length, prefix.length <= 2000
  • word and prefix consist only of lowercase English letters.
  • At most 3 * 104 calls in total will be made to insertsearch, and startsWith.

Solution

class TrieNode:
    def __init__(self):
        self.children = {}
        self.isEnd = False

class Trie:

    def __init__(self):
        self.root = TrieNode()

    def insert(self, word: str) -> None:
        node = self.root
        for char in word:
            if char not in node.children:
                node.children[char] = TrieNode()
            node = node.children[char]
        node.isEnd = True

    def search(self, word: str) -> bool:
        node = self.root
        for char in word:
            if char not in node.children:
                return False
            node = node.children[char]
        return node.isEnd

    def startsWith(self, prefix: str) -> bool:
        node = self.root
        for char in prefix:
            if char not in node.children:
                return False
            node = node.children[char]
        return True

Thoughts

Time Complexity

  • Insert: O(L), where L is the length of the word.
  • Search: O(L), where L is the length of the word.
  • StartsWith: O(L), where L is the length of the prefix.

Space Complexity

  • The space complexity is O(N * L), where N is the number of words inserted and L is the average length of the words. This is because each word takes up space proportional to its length, and we have N words in total.